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Abstract
We introduce a class of systems of Hamilton-Jacobi equations characterizing geodesic 
centroidal tessellations, i.e., tessellations of domains with respect to geodesic distances 
where generators and centroids coincide. Typical examples are given by geodesic centroi-
dal Voronoi tessellations and geodesic centroidal power diagrams. An appropriate version 
of the Fast Marching method on unstructured grids allows computing the solution of the 
Hamilton-Jacobi system and, therefore, the associated tessellations. We propose various 
numerical examples to illustrate the features of the technique.

Keywords  Geodesic distance · Voronoi tessellation · K-means · Power diagram · Hamilton-
Jacobi equation · Mean Field Games · Fast Marching method

Mathematics Subject Classification  65K10 · 49M05 · 65D99 · 35F21 · 49N70

1  Introduction

A partition, or tessellation, of a set � is a collection of mutually disjoint subsets 𝛺k ⊂ 𝛺 , 
k = 1,⋯ ,K , such that ∪K

k=1
�k = � . A classical model is the Voronoi tessellation and, in 

this case, the sets �k are called Voronoi diagrams. Tessellations and other similar families 
of geometric objects arise in several applications, ranging from graphic design, astronomy, 
clustering, geometric modelling, data analysis, resource optimization, quadrature formulas 
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and discrete integration, sensor networks, numerical methods for partial differential equa-
tions (PDEs) (see [6, 23]).

Partitions and tessellations are frequently associated with objective functionals, defining 
desired additional properties to be satisfied. A well-known example is the K-means prob-
lem in cluster analysis (see [9, 25]), which aims to subdivide a data set into K clusters such 
that each data point belongs to the cluster with the nearest cluster center. Minima of the 
K-means functional result in a partitioning of the data in centroidal Voronoi diagrams, i.e., 
Voronoi diagrams for which generators and centroids coincide (see [14]). In other applica-
tions, the size of the cells is prescribed (capacity-constrained problem), and the partition of 
� is given by another generalization of Voronoi diagrams, called power diagrams [5, 10].

Algorithms for the computation of centroidal Voronoi tessellations in the Euclidean 
case, such as the Lloyd algorithm, exploit geometric properties of the problem to rapidly 
converge to a solution [1, 28]. The case of geodesic Voronoi tessellation, i.e., tessellation 
with respect to a general convex metric, presents additional difficulties both in the compu-
tation of Voronoi diagrams and in that of the corresponding centroids [21, 22, 24].

In this work, we introduce a PDE method for the computation of the geodesic Voronoi 
tessellation. Given a density function � supported in a bounded set � , representing the dis-
tribution of a data set, the aim is to subdivide the data points into K clusters defined by a 
convex metric dC . As a prototype of the approach, shown in the simple case of the Euclid-
ean distance, we consider the system of first-order Hamilton-Jacobi (HJ) equations

We show that the family {Sk
u
}K
k=1

 defined by (1) corresponds to a critical point of the 
K-means functional, hence to a centroidal Voronoi tessellation of � with centroids 
�k ; vice versa, each critical point of the K-means functional corresponds to a solution 
u = (u1,⋯ , uK) of the previous system. Moreover, a system of HJ equations similar to 
(1) provides a way to compute the optimal weights for the capacity-constrained problem, 
which aims to find a geodesic centroidal tessellation of the domain with regions of a given 
area. This problem arises in several applications in economy, and it is connected with the 
so-called semi-discrete Optimal Transport problem [20].

It is well known that the hard clustering K-means problem can be seen as the limit of the 
soft clustering Gaussian mixture model when the variance parameter goes to 0 (see [8]). 
Relying on this observation, we provide an interpretation of system (1) as the vanishing 
viscosity limit of a multi-population Mean Field Games (MFGs) system introduced in [3] 
to characterize the parameters of a Gaussian mixture model maximizing a log-likelihood 
functional. To solve the system (1) we consider an iterative method similar to the Lloyd 
algorithm [9]. At each step, given the generators of the tessellation computed in the previ-
ous step, we compute the Voronoi diagrams solving the HJ equations via a Fast Marching 
technique. Then, we compute the new generators and we iterate. As we discuss later, smart 
management of the data and the use of acceleration techniques may considerably speed up 
the process.

The paper is organized as follows. In Sect. 2, we introduce an HJ system approach to 
the hard-clustering problem and geodesic centroidal Voronoi tessellations. In Sect. 3, we 

(1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�Duk� = 1, x ∈ ℝd, k = 1,⋯ ,K,

uk(�k) = 0,

Sk
u
=

�
x ∈ ℝd∶ uk(x) = min

j=1,⋯,K
uj(x)

�
,

�k =
∫
Sku

x�(x)dx

∫
Sku

�(x)dx
.
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consider a system of HJ equations to characterize centroidal power diagrams, a generali-
zation of centroidal Voronoi tessellations where the measure of the cells is prescribed. In 
Sect.  4, we provide an interpretation of the HJ system in terms of the MFG theory. In 
Sect. 5, we discuss the numerical approximation of the HJ systems introduced in the previ-
ous sections and we provide several examples. In Sect. 6, we summarize the results pre-
sented in the paper and we outline some prospects for future research.

2 � Geodesic Voronoi Tessellations and HJ Equations

In this section, we introduce a class of geodesic distance, the corresponding K-means 
problem and its characterization via a system of HJ equations. Consider a set-valued map 
x ↦ C(x) ⊂ ℝd and assume that 

	 (i)	 for each x ∈ ℝd , C(x) is a compact, convex set and 0 ∈ C(x);
	 (ii)	 there exists L > 0 such that dH(C(x),C(y)) ⩽ L|x − y| for all x, y ∈ ℝd;
	 (iii)	 there exists 𝛿 > 0 such B(0, 𝛿) ⊂ C(x) for any x ∈ ℝd,

where dH denotes the Hausdorff distance, i.e., for two sets A, B ⊂ ℝd,

For x, y ∈ ℝd , let Fx,y be the set of all the trajectories X(⋅) defined by the differential 
inclusion

for some T = T(X(⋅)) > 0 . Note that, because of the assumptions on the map C(x), Fx,y is 
not empty. The function d

C
∶ℝd ×ℝd

→ ℝ , defined by

is a distance function, equivalent to the Euclidean distance (see [11]). Some examples of 
distance dC are provided at the end of this section, see Remark 3.

We introduce the K-means problem for the geodesic distance dC . Let � be a bounded 
subset of ℝd and � a density function supported in � , i.e., � ⩾ 0 and ∫

�
�dx = 1 , represent-

ing the distribution of the points of a given data set X  . The K-means problem for the dis-
tance dC aims to minimize the functional

A minimum of the functional IC provides a clusterization of the data set, i.e., a repartition 
of X  into K disjoint clusters V(yk) such that each data point belongs to the cluster with the 
smallest distance from centroid yk . This property can be expressed in the elegant termi-
nology of the geodesic centroidal Voronoi tessellations (see [13, 14, 22]). Given a set of 

dH(A,B) = max

{
sup
x∈B

d(x,A), sup
y∈A

d(y,B)

}
.

Ẋ(t) ∈ C(X(t)), X(0) = x, X(T) = y

(2)dC(x, y) = inf
Fx,y

T(X(⋅)),

(3)
IC(y1,⋯ , yk) =

K∑
k=1

∫V(yk)

dC(x, yk)
2�(x)dx,

where V(yk) =

{
x ∈ ℝ

d∶ dC(yk, x) = min
j=1,⋯,K

dC(yj, x)

}
.
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generators {yk}Kk=1 , yk ∈ � , we define a geodesic Voronoi tessellation of � as the union of 
the geodesic Voronoi diagrams

(a point of V(yk) ∩ V(yj) is assigned to the diagram with the smaller index).

Definition 1  A geodesic Voronoi tessellation {V(yk)}Kk=1 of � is said to be a geodesic cen-
troidal Voronoi tessellation (GCVT) if, for each k = 1,⋯ ,K , the generator yk of V(yk) 
coincides with the centroid of V(yk) , i.e.,

Remark 1  If C(x) = B(0, 1) for each x ∈ ℝd , then dC coincides with the Euclidean distance 
and (3) is the classical K-means problem (see [13]). In this case, {V(yk)}k is called a cen-
troidal Voronoi tessellation (CVT) and the centroids are given by

Since � is bounded and IC is continuous, a global minimum of the functional (3) exists; 
but, since IC is in general nonconvex, local minimums may also exist. In [22, Theorem 1], 
it is proved that the previous functional is continuous and

Critical points of IC can be computed via the Lloyd algorithm, a simple two steps iterative 
procedure. Starting from an arbitrary initial set of generators, at each iteration the follow-
ing two steps are performed:

•	 given the set of generators {yk}Kk=1 at the previous step, construct the Geodesic Voronoi 
tessellation {V(yk)}Kk=1 as in (4);

•	 take the centroids of {V(yk)}Kk=1 as the new set of generators and iterate.

The procedure is repeated until an appropriate stopping criterion is met. At each iteration, 
the objective function IC decreases and the algorithm converges to a (local) minimum of 
(3) (see [13, Theorem 2.3] in the Euclidean case and [22] in the general case).

In order to introduce a PDE characterization of GCVT, we associate to the distance dC 
a Hamiltonian H∶ℝd ×ℝd

→ ℝ defined as the support function of the convex set C, i.e.,

Then, H∶ℝd ×ℝd
→ ℝ is a continuous function and satisfies the following properties: 

	 (i)	 H(x, 0) = 0 , H(x, p) ⩾ 0 for p ∈ ℝd;
	 (ii)	 H(x,  p) is convex and is  positive homogeneous in p, i.e., for 𝜆 > 0 , 

H(x, �p) = �H(x, p);

	 (iii)	 |H(x, p) − H(y, p)| ⩽ L|x − y|(1 + |p|) for x, y ∈ ℝd.

(4)V(yk) =

{
x ∈ �∶ dC(x, yk) = min

j=1,⋯,K
dC(x, yj)

}

(5)∫V(yk)

�(x)dC(yk, x)dx = min
z∈V(yk)∫V(yk)

�(x)dC(z, x)dx.

(6)yk =
∫
V(yk)

s�(s)ds

∫
V(yk)

�(s)ds
.

(7)critical points of IC correspond to GCVTs of �.

(8)H(x, p) = sup
q∈C(x)

p ⋅ q.
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Moreover, for any y ∈ ℝd , the function u∶ℝd
→ ℝ , defined by u(x) = dC(y, x) , is the 

unique viscosity solution (see [7] for the definition) of the problem

We characterize GCVTs of � via the following system of HJ equations:

for k = 1,⋯ ,K . Recall that the unique solution of (9) is given by u(x) = dC(y, x) , hence 
uk(x) = dC(�k, x) . Furthermore, the last condition in (10), see also (5), implies that the 
points �k are the centroids of the sets Sk

u
 with respect to the metric dC . On the other hand, 

the HJ equations are coupled via the points �1,⋯ ,�k which are the centroids of the sets Sk
u
 , 

k = 1,⋯ ,K and therefore, they are unknown. Indeed, the true unknowns in system (10) are 
the points �k , k = 1,⋯ ,K , since they determine the functions uk as viscosity solutions of 
the corresponding HJ equations and consequently the diagrams Sk

u
.

Remark 2  If C(x) = B(0, 1) , then dC is the Euclidean distance, see Remark 1. In this case, 
H(x, p) = |p| and (10) coincides with (1). In Sect. 4, we will explain that the latter system 
can be deduced by passing to the vanishing viscosity limit in a second order system charac-
terizing the optimal parameters for a Gaussian mixtures model in soft clustering analysis.

We now show that system (10) characterizes critical points of the functional (3) or, 
equivalently, GCVTs of the set �.

Theorem 1  The following conditions are equivalent. 

	 (i)	 Let (y1,⋯ , yK) be a critical point of the functional IC in (3) with geodesic Voronoi 
diagrams V(yk) . Then, there exists a solution of (10) such that �k = yk and Sk

u
= V(yk).

	 (ii)	 Given a solution u = (u1,⋯ , uK) of (10), then (�1,⋯ ,�K) is a critical point of IC 
with geodesic Voronoi diagrams V(yk) = Sk

u
.

Proof  Assume that (y1,⋯ , yK) is a critical point of the functional IC , hence V(yk) defined 
as in (4) is a GCVT and

Define u = (u1,⋯ , uK) , � = (�1,⋯ ,�k) by

Then, u = (u1,⋯ , uK) is a solution of the HJ equations in (10) with �k = yk . Moreover, by 
(3), we have that Sk

u
= V(yk) and therefore (11) is equivalent to

(9)
{

H(x,Du) = 1, x ∈ ℝd,

u(y) = 0.

(10)

⎧⎪⎪⎨⎪⎪⎩

H(x,Duk) = 1,

uk(�k) = 0,

Sk
u
=

�
x ∈ ℝd∶ uk(x) = min

j=1,⋯,K
uj(x)

�
,

∫
Sk
u

�(x)uk(x)dx = min

�∫
Sk
u

�(x)uy(x)dx∶ uy solution of (9) with y ∈ Sk
u

�

(11)∫V(yk)

�(x)dC(yk, x)dx = min
z∈V(yk)∫V(yk)

�(x)dC(z, x)dx, ∀k = 1,⋯ ,K.

(12)uk(x) = dC(yk, x), �k = yk, k = 1,⋯ ,K.
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We conclude that u = (u1,⋯ , uK) and � = (�1,⋯ ,�k) in (12) give a solution of (10).
Now assume that u = (u1,⋯ , uK) , � = (�1,⋯ ,�k) is a solution of (10) and set yk = �k , 

k = 1,⋯ ,K . Then, defined V(yk) as in (3), we have V(yk) = Sk
u
 . Moreover, taking into 

account that uk(x) = dC(�k, x) and �k are characterized by

we also have that yk satisfies (5). Therefore, Vk , k = 1,⋯ ,K , is a GCVT and, by (7), yk , 
k = 1,⋯ ,K , a minimum of IC.

The previous result can be restated in the terminology of the Voronoi tessellation, say-
ing that a solution of the system (10) determine a GCVT and vice versa. We have the fol-
lowing existence result for (10).

Corollary 1  Let � be a positive and smooth density function defined on a smooth bounded 
set � . Then, there exists a solution to (10).

Proof  The statement is an immediate consequence of existence of critical points for the 
functional IC and the equivalence result provided by Theorem 1.

Remark 3  We give some examples of the geodesic distance dC and the corresponding 
Hamiltonian H (see also Fig. 1): 

∫Sk
u

�(x)uk(x)dx = min

{
∫Sk

u

�(x)uz(x)dx∶ uz solution of (9) with z ∈ Sk
u

}
.

∫Sk
u

�(x)uk(x)dx = min

{
∫Sk

u

�(x)uy(x)dx∶ uy solution of (9) with y ∈ Sk
u

}
,

Fig. 1   Unitary balls for the Minkowski distance for various values of s (left) and a Riemann distance 
induced by A(x, y) =

(
(R + r cos y)2, 0; 0, r2

)
 for R = 1 , r = 0.5 , corresponding to parametrization of a uni-

tary torus in ℝ3 (cf. Test 4)
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	 (i)	 if C(x) = {p ∈ ℝd∶ ‖p‖s ∶= (
∑d

i=1
�pi�s)1∕s ⩽ 1} for s > 1 , then dC is the Minkowski 

distance dC(x, y) = ‖x − y‖s and H(x, p) = �p�2∕‖p‖s;
	 (ii)	 if C(x) = a(x)B(0, 1) , where a(x) ⩾ 𝛿 > 0 , then H(x, p) = a(x)|p| . In particular, the 

Euclidean case corresponds to a(x) ≡ 1;
	 (iii)	 if C(x) = A(x)1∕2B(0, 1) , where A is a positive definite matrix such that 

A(x)𝜉 ⋅ 𝜉 ⩾ 𝛿 > 0 for � ∈ ℝd , then dC is the Riemannian distance induced by the 
matrix A on ℝd and H(x, p) =

√
A(x)p ⋅ p.

Moreover, it is possible to consider the distance function corresponding to a Hamilto-
nian H defined by

where Hn , n = 1,⋯ ,N are Hamiltonians of the types above.

3 � A System of HJ Equations for Geodesic Centroidal Power Diagrams

In this section, we consider a generalization of centroidal Voronoi diagrams, called 
centroidal power diagrams. We first introduce the definition of power diagrams, or 
weighted Voronoi diagrams, then describe centroidal power diagrams and a system of 
HJ equations that can be used to compute them. Consider the distance dC defined as in 
(2). Given a set of K distinct points {yi}Ki=1 in � and K real numbers {wi}

K
i=1

 , the geodesic 
power diagrams generated by the couples (yi,wi) are defined by

As Voronoi diagrams, power diagrams provide a tessellation of the domain � , i.e., 

V(yi,wi)
o ∩ V(yj,wj)

o = ∅ for i ≠ j and 
K⋃
i=1

V(yi,wi) = � . Note that, whereas Voronoi dia-

grams are always nonempty, some of the power diagrams may be empty and the corre-
sponding generators belong to another diagram. Power diagrams reduce to Voronoi dia-
grams if the weights wi coincide, but they have an additional tuning parameter, the weights 
vector w = (w1,⋯ ,wk) , which allows to impose additional constraints on the resulting tes-
sellation. A typical application of power diagrams is the problem of partitioning a given set 
in a capacity constrained manner (see [5]). Given a density function � supported in � and 
K distinct points {yi}Ki=1 in � , consider the measure �(dx) = �(x)dx and, to each point yi , 
associate a cost ci > 0 with the property that 

∑K

i=1
ci = �(�) . For a partition of � in a fam-

ily of K subsets Ri , define the cost of each subset as �(Ri) =∶ ∫
Ri
dC(x, yi)�(dx) . The aim is 

to find a partition {Ri}
K
i=1

 of � such that the total cost

is minimized under the constraint �(Ri) = ci . In [29, Theorem 1], it is shown that the mini-
mum of the previous functional exists and it is reached by a geodesic power diagram gener-
ated by the couples (yk,wk) , k = 1,⋯ ,K , where the unknown weights wk can be found by 
maximizing the concave functional

H(x, p) = max{H1(x, p),⋯ ,HN(x, p)},

(13)V(yk,wk) =

{
x ∈ �∶ dC(x, yk) − wk = min

j=1,⋯,K
(dC(x, yj) − wj)

}
.

Q(R1,⋯ ,RK) =

K∑
i=1

∫Ri

dC(x, yi)�(dx)
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The gradient of F  is given by

and, if (w1,⋯ ,wk) is a critical point of F  , then the power diagram generated by the cou-
ples (yi,wi) satisfies the capacity constraint �(V(yi,wi)) = ci . Algorithms to compute criti-
cal points of (14) are described in [12, 20].

We consider geodesic centroidal power diagrams, i.e., geodesic power diagram for 
which generators coincide with the corresponding centroids. Indeed, it has been observed 
that the use of centroidal power diagrams in the capacity constrained partitioning problem 
avoid generating irregular or elongated cells (see [10, 29]).

Definition 2  A geodesic power diagram tessellation {V(yi,wi)}
K
i=1

 of � is said to be a geo-
desic centroidal power diagram tessellation if, for each i = 1,⋯ ,K , the generator yi of 
V(yi,wi) coincides with the centroid of V(yi,wi) , i.e.,

In [29], geodesic centroidal power diagrams satisfying the capacity constraints 
�(V(yk,wk)) = ck are characterized as a saddle point of the functional

Note that the previous functional is similar to one defined in (14), but it depends also on the 
generators (y1,⋯ , yk) . For (y1,⋯ , yk) fixed, G is concave with respect to w = (w1,⋯ ,wK) 
and therefore it admits a maximizer which determine a power diagram {V(yi,wi)}

K
i=1

 . For 
(w1,⋯ ,wk) realizing the capacity constraints �(V(yi,wi)) = ci , G coincides with the func-
tional IC in (3), hence it is minimized by the centroids of sets {V(yi,wi)}

K
i=1

 . We propose 
the following HJ system for the characterization of the saddle points of G:

The previous system is obtained by (10), which characterize GCVT, adding the constraints 
on the measure of the cell, i.e., �(Sk

u
) = ck . It depends on the 2K parameters (�k,�k) . Recall 

that a solution of

(14)F(w1,⋯ ,wk) =

K∑
i=1

∫V(yi,wi)

dC(x, yk)�(x)dx −

k∑
i=1

wi(�(V(yi,wi)) − ci).

�F

�wi

= ci − �(V(yi,wi))

∫V(yk ,wk)

�(x)dC(yk, x)dx = min
z∈V(yk ,wk)∫V(yk ,wk)

�(x)dC(z, x)dx.

G(y1,⋯ , yk,w1,⋯ ,wk) =

K∑
i=1

∫V(yi,wi)

dC(x, yi)�(x)dx

−

k∑
i=1

wi(�(V(yi,wi)) − ci).

(15̇)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

H(x,Duk) = 1, x ∈ �,

uk(�k) = −�k,

Sk
u
=

�
x ∈ ℝd∶ uk(x) = min

j=1,⋯,K
uj(x)

�
,

∫
Sk
u

�(x)uk(x)dx = min

�∫
Sk
u

�(x)uy(x)dx∶ uy solution of (9) with y ∈ Sk
u

�
,

�(Sk
u
) = ck.
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is given by uy(x) = −� + dC(y, x) . Hence, if there exists a solution u = (u1,⋯ , uk) to (15), 
then uk(x) = −�k + dC(�k, x) . Moreover

and �k is the centroid of Sk
u
 . It follows that the set Sk

u
 coincides V(yk,wk) defined in (13), and 

�(Sk
u
) = ck . We conclude that a solution of (15) gives a centroidal power diagram {Sk

u
}K
k=1

 of 
� realizing the capacity constraint.

4 � A Mean Field Games Interpretation of the HJ System

In this section, we establish a link between the HJ system introduced in Sect. 2 and the 
theory of MFGs (see [17, 19] for an introduction). We show that the HJ system (1) can 
be obtained in the vanishing viscosity limit of a second order multi-population MFG 
system characterizing the extremes of a maximal likelihood functional.

Finite mixture models, given by a convex combination of probability density func-
tions, are a powerful tool for statistical modeling of data, with applications to pattern 
recognition, computer vision, signal and image analysis, machine learning, etc. (see 
[8]). Consider a Gaussian mixture model

where �k and Σk denote the mean and the covariance matrix of the Gaussian distribution 
N(x;�k,Σk) . The aim is to determine the parameters � = (�1,⋯ , �K) , � = (�1,⋯ ,�K) , 
Σ = (Σ1,⋯ ,ΣK) of the mixture (16) in such a way that they optimally fit a given data set 
X  described by the density function � . This can obtained by maximizing the log-likelihood 
functional

where

are the responsibilities, or posterior probabilities (see [8, Cap. 7] for more details). In [3], 
we proposed an approach to parameter optimization for mixture models based on the MFG 
theory. It can shown that the critical points of the log-likelihood functional (17) can be 
characterized by means of the multi-population MFG system

{
H(x,Du) = 1,

u(y) = −�

Sk
u
=

{
x ∈ ℝ

d∶ − �k + dC(�k, x) = min
j=1,⋯,K

{−�j + dC(�j, x)}

}

(16)m(x) =

K∑
k=1

�kN(x;�k,Σk) with �k ∈ (0, 1),

K∑
k=1

�k = 1,

(17)L(�,�,Σ;X) = ∫
ℝd

K∑
k=1

�k(x){ln(�k) + ln(N(x;�k,Σk))}�(x)dx,

�k(x) =
�kN(x;�k,Σk)

K∑
j=1

�jN(x;�j,Σj)
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for k = 1,⋯ ,K , where

are unknown variables which depend on the solution of the system (18). More precisely, a 
solution of (18) is given by a family of quadruples (uk,�, �k,�,mk,�, �k,�) , k = 1,⋯ ,K , with

and the corresponding parameters (�k,�,�k,�,Σk,�) , k = 1,⋯ ,K , are a critical point of the 
log-likelihood functional (17). Note that in general the solution of (18) is not unique. In 
soft-clustering analysis, the responsibilities can be used to assign a point to the cluster with 
the highest �k,� , i.e., the set � is divided into the disjoint subsets

Taking into account (19) and the definition of mk,� in (20), we see that the clusters Sk
u,�

 can 
be equivalently defined as

It is well known, in cluster analysis, that the K-means functional (3) can be seen as the limit 
of the maximum likelihood functional (17) when the variance parameter of the Gaussian 
mixture model is sent to 0 (see [8, Chapter 7]). In order to deduce a PDE characterization 
for centroidal Voronoi tessellations, we follow a similar idea. Assuming that Σk = �I and 
passing to the limit in (18) for �, � → 0+ in such a way that �∕�2

→ 1 , we observe that the 
responsibility �k,� in (19) converges to the characteristic function of the set where �kmk is 
maximum with respect to �jmj , j = 1,⋯ ,K or, equivalently, where uk is minimum with 
respect to uj . Hence, we formally obtain that (18) converges to the first order multi-popula-
tion MFG system

(18)

⎧
⎪⎪⎨⎪⎪⎩

−�Δuk,� +
1

2
�Duk,��2 + �k,� =

�2

2
(x − �k,�)

t(Σ−1
k,�
)tΣ−1

k,�
(x − �k,�), x ∈ ℝd,

�Δmk,� + div(mk,�Duk,�) = 0, x ∈ ℝd,

�k,� = ∫
ℝd �k,�(x)�(x)dx,

mk,� ⩾ 0, ∫
ℝd mk,�dx = 1, uk,�(�k,�) = 0

(19)

⎧⎪⎪⎨⎪⎪⎩

�k,�(x) =
�k,�mk,�(x)∑K

j=1
�j,�mj,�(x)

,

�k,� =
∫
ℝd

x�k,�(x)�(x)dx

∫
ℝd

�k,�(x)�(x)dx
,

Σk,� =
∫
ℝd

(x−�k,�)(x−�k,�)
t�k,�(x)�(x)dx

∫
ℝd

�k,�(x)�(x)dx

(20)

⎧⎪⎨⎪⎩

uk,�(x) =
�

2
(x − �k,�)

tΣ−1
k,�
(x − �k,�), �k,� = �2Tr(Σ−1

k,�
),

mk,�(x) = N(x;�k,�,Σk,�) = Cke
−

uk (x)

� ,

�k,� = ∫
ℝd �k,�(x)�(x)dx,

Sk
u,�

=

{
x ∈ �∶ �k,�(x) = max

j=1,⋯,K
�j,�(x)

}
.

Sk
u,�

=

{
x ∈ �∶ uk,�(x) = min

j=1,⋯,K
uj,�(x)

}
.
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for k = 1,⋯ ,K , with

The coupling among the K systems in (21) is in the definition of the subsets Sk
u
 and the 

coefficient �k represents the fraction of the data set contained in the cluster Sk
u
.

In order to write a simplified version of (21), we observe that the ergodic constant 
�k in the HJ equation, which can be characterized as the supremum of the real number 
� for which the equation admits a subsolution (see [7]), is always equal to 0. Moreo-
ver, since the solution uk is defined up to a constant, we set uk(�k) = 0 and we obtain 
uk(x) = |x − �k|2∕2 . The solution, in the sense of distribution, of the second PDE in 
(21) is given by mk = ��k

(⋅) , where ��k
 denotes the Dirac function in �k . It follows that 

the HJ equations are independent of mk and �k . Recalling that the unique viscosity 
solution of the problem

is given by u(x) = |x − �| , we can write the equivalent version of (21)

for k = 1,⋯ ,K , which is a system of HJ equations coupled through the sets Sk
u
 . Taking into 

account (23), we see that the previous system coincides with (10) when dC is given by the 
Euclidean distance.

5 � Numerical Tests

In this section, we study an iterative procedure to solve the HJ systems characterizing 
centroidal tessellations.

(21)

⎧
⎪⎪⎨⎪⎪⎩

1

2
�Duk�2 + �k =

1

2
�x − �k�2, x ∈ ℝd,

div(mkDuk(x)) = 0, x ∈ ℝd,

�k = ∫
ℝd 1Sk

u
(x)�(x)dx,

mk ⩾ 0, ∫
ℝd mk(x)dx = 1, uk(�k) = 0

(22)Sk
u
=

{
x ∈ ℝ

d∶ uk(x) = min
j=1,⋯,K

uj(x)

}
,

(23)�k =
∫
ℝd x1Sk

u
(x)�(x)dx

∫
ℝd 1Sk

u
(x)�(x)dx

.

{ |Du| = 1, x ∈ ℝd,

u(�) = 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�Duk� = 1, x ∈ ℝd,

uk(�k) = 0,

Sk
u
=

�
x ∈ ℝd∶ uk(x) = min

j=1,⋯,K
uj(x)

�
,

�k =
∫
ℝd

x1
Sku
(x)�(x)dx

∫
ℝd

1
Sku
(x)�(x)dx
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5.1 � Tests for the Geodesic K‑means Problem

For the K-means problem in Sect. 2 and the associated system (10), we consider the PDE 
version of the Lloyd algorithm reported in Algorithm 1. 

In the first step of the iterative procedure, it is sufficient to solve problem (24) in the set 
� , the support of the density �.

Proposition 1  The sequence u(n) = (u(n),1,⋯ , u(n),K) , n ∈ ℕ , given by Algorithm  1 con-
verges to a solution u = (u1,⋯ , uK) of (10).

Proof  It is sufficient to observe that the PDE Lloyd algorithm is equivalent to the classical 
one. Indeed, in the first step, by (9) we have that u(n),k(x) = dC(�

(n),k, x) and therefore S(n),k
u

 
gives a Voronoi tessellation of the generator �(n),k , k = 1,⋯ ,K . Then, in the second step, 
the centroids of S(n),k

u
 are updated as in the classical algorithm. Convergence results for the 

Lloyd algorithm (see [13, 22]) imply that �(n),k converges to a critical point �k of IC . It fol-
lows that u(n),k converges uniformly in � to uk(x) = dC(�

k, x) , which, by Theorem 1, is a 
solution of (10).

To solve problem (24), we introduce a regular triangulation of � , the support of � , given 
by a collection of N disjoint triangles T ∶= {Ti}i=1,⋯,N . We denote with Δx the maximal 
area of the triangles, i.e., maxi=1,⋯,N |Ti| < Δx , and we assume that 𝛺 ⊆

⋃N

1
Ti ≈ 𝛺 . We 

denotes with G ∶= {Xi}i=1,⋯,N the set of the centroids of the triangles Ti and, for a piece-
wise linear function U∶G → ℝ , we set Ui ∶= U(Xi).
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To test our method, we start with the classical K-means problem, i.e., the case where 
the distance dC coincides with the Euclidean one. In this case, the Hamiltonian in (10) is 
given by H(x, p) = |p| and the centroids of the Voronoi diagrams V(yk) are given by (6). 
For the approximation of the HJ equation, we consider the semi-Lagrangian monotone 
scheme

where h is a fictitious-time parameter (generally taken of order O(
√
Δx) , see [15] for 

details), and � a standard linear interpolation operator on the simplices of the triangulation.
Algorithm 2 is obtained by a discretization of Algorithm 1.

Remark 4  By Proposition 1, we know that, given u(n) as in (24), then there exists a solu-
tion of (10) such that ‖u − u(n)‖∞ → 0 for n → ∞ . Moreover, by classical results for semi-
Lagrangian schemes (see [7, Appendix A, Thm 1.4]), given U(n) as in (26) we have the 
estimate

Gi(U) = min
a∈B(0,1)

{
�[U](Xi − ha) + h

}
,

max
k=1,⋯,K

‖u(n),k − U(n),k‖∞ ⩽ C
�
h

1

2 +
Δx

h

�
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with C independent of n. Hence U(n) , for n large, gives an approximation of u and of the 
corresponding centroidal tessellation.

Test 1.
The first test is a simple problem to check the basic features of the technique. We con-

sider a circular domain �∶=B(0, 1) and a CVT composed of 6 cells. The density func-
tion � is chosen uniformly distributed on � , i.e., �(x) = 1∕|�| , where |�| = π . We set the 
approximation parameter Δx = 0.004 . Moreover, we iterate the algorithm steps till meeting 
the stopping criterion

and we fix � = Δx∕10 . Figure  2 shows tessellations computed by the algorithm starting 
from different sets of initial centroids. The evolution of the centroids is marked in red with 

max
k

{|𝜇(n+1),k − 𝜇(n),k|} < 𝜀

C
C
C

Fig. 2   Three Voronoi tessellations with K = 6 computed with different initial centroids and Δx = 0.004 , 
top/left: �(0) = ([0.4, 0.6], [0.6, 0.4], [0.6,−0.4], [−0.4,−0.6], [−0.6,−0.4], [−0.6, 0.4]) ; top/right: �(0) =

([0.4, 0.6], [0.6, 0.4], [0.6,−0.4], [−0.6,−0.4], [−0.4, 0.6], [0.1, 0.1]) ; bottom/left: �(0) = ([0.4, 0.6],

[0.6, 0.4], [−0.4, 0.6], [−0.4,−0.6], [−0.6,−0.4], [0.1, 0.1]) ; bottom/right: evolution of the K-means func-
tional for iteration step of the algorithm
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a sequential number related to the iteration number. We can observe that in all the cases, 
the centroids move from the initial guess toward an optimal tessellation of the domain, 
where the optimality is intended referred to the functional (3). The convergence toward 
optimality is highlighted in the last picture in Fig. 2, where the value of the  K-means func-
tional is evaluated at the end of every iteration for the previous three cases.

Remark 5  (Dependency on K and Fast-Marching method (FMM)) The previous numerical 
procedure may be computationally expansive, with the bottleneck given by the resolution 
of K-eikonal equations on the whole domain of interest, see (26). In some cases, the first 
step of the Lloyd algorithm may turn out to be very expansive, in particular, if we use, to 
solve (26), a value iteration method, i.e., a fixed point iteration on the whole computational 
domain (see for details [15]). The following numerical steps are generally much easier 
since they can benefit from a good initialization of the solution coming from the previous 
iteration of the algorithm. We observe, anyway, that the dependency on K w.r.t. the com-
putational time is only linear: therefore, to solve the same problem with 2K subdomains 
we only need double CPU time w.r.t. the original K problem. The latter means that a K 
(reasonably) large does not pose problems to our algorithm. In addition, the use of parallel 
computing (the problem is naturally parallelizable w.r.t. K), may constitute a valid strategy 
if we are in presence of a very high value of K.

The CPU time needed, especially for the first step of the algorithm, is considerably miti-
gated with the use of a more rational way to process the various parts of the domain, in our 
case the use of FMM (see [26]). In those methods, the nodes of the discrete grid are pro-
cessed ideally only once, thanks to the information about the characteristics of the problem 
that may be derived by the same updating procedure. In our case of unstructured grids, the 
computational process is slightly more complicated than the standard one, and it requires 
an updating procedure that includes the geometry of the triangles of the grid. The choice of 
FMM with respect to other techniques (e.g., Fast Sweeping) comes exactly from the choice 
(in general not necessary) of using unstructured grids. Refer to [27] for a precise descrip-
tion of the algorithm.

Remark 6  (Performances, CPU time and comparison with sampled-based standard algo-
rithms.) Our PDE-based CVT Algorithm 2 has the undeniable drawback of needing the 
approximation of K PDEs equations. This is relatively complex and sometimes, computa-
tionally expensive. For example, in Test 1, with Δx = 0.004 , we reached the approximated 
solution after 6, 13, and 10 iterations, with the use of the CPU time of 78, 89, and 82 
seconds depending on the initial guess of the centroids. The results, in terms of efficiency, 
are not unacceptable in our opinion, especially since we used a standard portable laptop 
(specs. Processor 1.4 GHz Quad-Core Intel Core i5 Memory 8 GB 2 133 MHz) while the 
algorithm, by construction completely parallel, would largely benefit of running on a clus-
ter computer. We must underline, for sake of completeness, that we have been able to miti-
gate the computational cost with the use of FMM.

To compare our results with other clustering techniques we show the results obtained 
by the k-means++ algorithm (see [4]) which is, as our proposal, based on the Lloyd algo-
rithm. As it is pretty standard in these techniques, the algorithm works with a sample of the 
density distribution while in our proposal, we use directly the density function representing 
the data set. The latter means that the performances of the solver will be strongly depend-
ent on the dimension of the sample set. In Fig. 3 we show the results of the K-means++ 
algorithm with a sample set of 104 , 5 ⋅ 106 , and 107 points for which we obtain the solution 
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after 0.085, 28.7, and 214 seconds. We observe that, as our algorithm, also K-means++ 
finds various configurations depending on the initialization of the centroids. The accuracy 
of the technique depends on the dimension of the sample set and comparing the results in 
the case of the most regular configuration (center in Fig. 3) we may approximately evaluate 
that our test (Test 1) is equivalent, in terms of accuracy, to K-means++ with a sample set 
of 5 ⋅ 106 points. Finally, the latter means that the technique that we propose is less efficient 
than K-means++ (approx. 80 s vs. 28 s), but it shares with it the same order of CPU time.

Test 2.
We consider a bounded domain � given by the union of two squares [0, 1] × [0, 1] , 

[−1, 0] × [−1, 0] and a section of a circle B(0, 1) ∩ [−1, 0] × [0, 1] and we remove by the 
domain the circle B([−0.4, 0.4], 0.2) , as displayed in Fig. 4. Then, a CVT of � given by three 
cells, i.e., K = 3 , is computed.

At first, the density function � is given by a uniform distribution on � , i.e., �(x) = 1∕|�| , 
where |�| = (2 + π∕4) − π(1∕5)2 ≈ 2.66.

In Fig. 4 we see the evolution of the centroids �(n) starting from the initial position

The two images in the top panels of Fig. 4 are relative to different discretization param-
eters Δx ∶= max |Ti| and � = Δx∕10 . We underline how the number of iterations does not 
increase much for a smaller stopping parameter, e.g., setting � to 10−6 we obtained numeri-
cal convergence for n = 11 . Moreover, the approximation of the position of the centroids 
�(n) , once reached convergence, is sufficiently accurate even in the presence of a discretiza-
tion parameter Δx relatively coarse. This suggests, at least in this example, avoiding exces-
sive refinement of Δx to prevent increasing computational cost for the algorithm.

Even in this easy case, we can observe an additional feature of the method: the approxima-
tion of the critical points is monotone with respect to the functional IC while a point may have 
a non-monotone migration toward the correct approximation. This is because the evolution of 
IC in the algorithm is monotone (cf. Fig 2 of the previous test) at any iteration, but not for a 
single centroid.

We complete this test with a case where � is not constant. Consider a multivariate normal 
distribution around the point [0.5, 0.5] and covariance matrix I, i.e.,

�(0) = ([−0.6,−0.6], [−0.4,−0.6], [−0.4, 0]).

�(x) =
1

2π|�|e
−(x1−0.5)

2−(x2−0.5)
2

2 .

Fig. 3   The same problem solved with a standard soft-clustering technique (k-means++ algorithm, see [4]). 
The density function is sampled, respectively, from left to right, by 104 , 106 , and 107 points
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The results are shown in the bottom panels of Fig. 4, with the same choice of the param-
eters as in the previous test. We observe, as expected, a reduction of the dimension of the 
sets S(n),k in correspondence to higher values of the density function � . Even if we need few 
more steps to reach the numerical convergence, the algorithm shows similar performances 
and stops for n = 13.

We now consider the general case of a geodesic distance dC . To approximate the HJ equa-
tion in (10), we consider the semi-Lagrangian scheme

since in C(Xi) are contained all the points of the unitary distance from Xi w.r.t. the distance 
dC (see (8)). To compute the new centroids, since uy(x) = dC(y, x) , the optimization prob-
lem in (10) has its discrete version as

(28)Gi(U) = min
�∈C(Xi)

{
�[U](Xi − ha) + h

}
,

Fig. 4   Top: uniformly distributed � , left: Δx = 0.01 ; right: Δx = 0.001 . Bottom: � is a multivariate normal 
distribution around [0.5, 0.5], left: Δx = 0.01 ; right: Δx = 0.001



	 Communications on Applied Mathematics and Computation

1 3

and, called H(Y) =
∑

Xj∈S
(n+1),k �(Xj)dC(Y ,Xj) , the maximal growth direction is (see [24])

where nY (x) is the unit vector tangent at Y to the geodesic path joining Xi to Y.

For the numerical tests, we consider the case of the Minkowski distance on ℝ2 , see 
Remark 3. We remind that such a distance generalizes the Manhattan distance (case s = 1 ) 

�
Xj∈S

(n+1),k

�(Xj)dC(�
(n+1)

k
,Xj)

= min

⎧
⎪⎨⎪⎩

�
Xj∈S

(n+1),k

�(Xj)dC(Y ,Xj) ∶ Y ∈ S(n+1),k

⎫
⎪⎬⎪⎭
,

�k ∶= DH(Y) =
1

2

∑
Xj∈S

(n+1),k

�(Xj)DdC(Y ,Xj)nY (Xj),
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and the Chebyshev distance (case s → ∞ , dC(x, y) = maxi(|xi − yi|) ). In Fig. 1 are shown 
the balls B(0, 1) in the Minkowski distance for various values of s.

Test 3.
We first consider the problem on a simple L-shaped bounded domain 

� = [0, 1] × [0, 1] ∪ [−1, 0] × [−1, 1] as displayed in Fig.  5. In this case, the Che-
byshev distance (i.e., s → ∞ ) provides an optimal tessellation which is trivially 
guessed: due to the geometrical characteristics of the domain and the distance (the con-
tour lines of the distance from a point are squares, see Fig.  1) the solution, for K = 3 
and uniform density function ( �(x) = 1∕|�| , where |�| = 3 ), is simply composed 
by the three squares {[0, 1]2, [−1, 0] × [−1, 0], [−1, 0] × [0, 1]} , with the centroids 
𝜇̄ = ([0.5, 0.5], [−0.5,−0.5], [−0.5, 0.5]).

In Fig. 5, top panels, we see the evolution of the centroids �(n) starting from the initial 
position �(0) = ([−0.6,−0.6], [−0.4,−0.6], [−0.4, 0]) for two different values of Δx . Also 
in this case we can observe as the position of the centroids and the rough structure of the 
tessellation is correctly reconstructed even in the presence of a larger grid. This is also 

Fig. 5   Top: left panel Δx = 0.01 ; right panel: Δx = 0.001 starting from �(0) = ([−0.6,−0.6], [−0.4,−0.6],
[−0.4, 0]) . Bottom: left panel �(0) = ([−0.6, 0.6], [−0.4, 0.6], [−0.5, 0.4]) , Δx = 0.001 ; right panel, conver-
gence of the error on the centroids for iterations on the Euclidean norm
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highlighted by the evolution of the Euclidean norm of the error 𝜇(n) − 𝜇̄ reported in Fig. 5 
(bottom right). The evolution of the error and the total number of iterations necessary to 
converge to the correct approximation are barely affected by Δx . On the other hand, the 
final approximation apparently converges to 𝜇̄ with order Δx.

We perform the same test with a different initial position �(0) equal to 
([−0.6, 0.6], [−0.4, 0.6], [−0.5, 0.4]) , see Fig.  5, bottom left panel. Since in this case the 
optimal tessellation is unique, the algorithm converges to the same configuration. The 
number of iterations necessary is clearly affected by the initial guess of �.

Test 4.
The flexibility of the technique allows us to solve the problem on more complex 

domains, in particular on manifolds: in fact, we need to consider an appropriate Riemann 
metric and to address the periodicity of the manifold, solving the HJ equations on a peri-
odic domain. This allow us to solve the problem on a cylinder: considering the standard 
parametrization

we have the induced metric dX2 + dY2 + dZ2 = r2dx2 + dy2, therefore, using the notation 

of Remark 3, A(x, y) =
(
r2 0

0 1

)
 . Solving the problem on [−π, π] × [−1, 1] and considering 

the periodicity (−π, y) ∼ (π, y) (therefore, r = 1 ), we obtain, for the discretization parame-
ters K = 6 , Δx = 0.01 , the results shown in Fig. 6, left.

If we want to solve the same problem on a torus (periodicity (x, y) ∼ (x + 2π, y)

∼ (x, y + 2π) ) we start from the standard parametrization

where R is the distance from the center of the tube to the center of the torus, and r is the 
radius of the tube,

so we obtain, solving the problem in [−π, π]2 for K = 6 , Δx = 0.004 the tesselation repre-
sented in Fig. 6.

Finally, considering the same problem on a hyperbolic paraboloid Z − XY = 0 in ℝ3 of 
parametrization (X, Y , Z) = (x, y, xy) , we have the induced metric

The result for K = 6 , Δx = 0.004 is, again, in Fig. 6.

(29)

⎧⎪⎨⎪⎩

X = r cos x,

Y = r sin x,

Z = y,

(30)

⎧⎪⎨⎪⎩

X = (r cos x + R) cos y,

Y = (r cos x + R) sin y,

Z = r sin x,

(31)A(x, y) =

(
(R + r cos y)2 0

0 r2

)
,

(32)A(x, y) =

(
1 + y2 xy

xy 1 + x2

)
.
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5.2 � Tests for Geodesic Centroidal Power Diagrams

The procedure to obtain an approximation of centroidal power diagrams contains all the 
tools already described in the previous sections and it includes a three-step procedure: res-
olution of K HJ equations, update of the centroids points, and optimization step for the 
weights.
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Test 5.
We consider the Minkowski distance with s = 1 . Since contour lines of the distance 

assumes a rhombus shape, we expect to be able to see this in the tessellation that we obtain. 
In addition, we want to show as our technique, with the help of an acceleration method, can 
successfully address the GCVT problem with a larger K. This is not intended to be an accu-
rate performance evaluation (which is not the main goal of this paper), but only a display of 
the possibilities give by the techniques proposed. We consider tesselations of � = B(0, 1) 
with K = 20 and of � = [−1, 1]2 with K = 30 . In the first case (the circle), the function � is 
given by a uniform distribution, while, in the second case, by multivariate normal distribu-
tion around the point [0, 0] and covariance matrix I, i.e.,

where |�| = 4 . The resulting tessellations are shown in Fig. 7.
We see that our technique can address without too much troubles a problem with a 

higher K (cf. Remark 5): as observed, this parameter enters in the first step of the Lloyd 
algorithm linearly. Since we did not observe a substantial change of the number of itera-
tions of the algorithm for a larger K, the technique remains computationally feasible, 
even performed on a standard laptop computer.

Test 6.
We test the centroidal power diagram procedure, Fig. 8, in a simple case given by the 

unitary square � = [0, 1]2 for K = 6, 8 and capacity constraint given, respectively,  by

Clearly we have 
⋃

k S
(n),k = � , for any n and therefore we 

∑
k ck = ��� = 1.

Test 7.
The same technique is used to generate some power diagrams of more com-

plex domains: in Fig.  9 we show the optimal tessellation of a text and a rab-
bit-shaped domain. In the first case, the algorithm parameters are set to K = 8 , 
c = (0.33, 0.22, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05) , Δx = 0.002 . In the second one, K = 6 , 
c = (0.3, 0.15, 0.15, 0.15, 0.15, 0.10) , Δx = 0.002.

�(x) = �([x1, x2]) =
1

2π|�|e
−(x1 )

2−(x2 )
2

2 ,

c = (0.3, 0.25, 0.18, 0.12, 0.1, 0.05),

c = (0.3, 0.24, 0.15, 0.1, 0.08, 0.06, 0.05, 0.02).

Fig. 6   Three tessellations on two-dimensional manifolds, respectively, a cylinder, a torus, a hyperbolic 
paraboloid. The parameters are set K = 6 , Δx = 0.01, 0.004, 0.004 . The position of the centroids in marked 
with red dots
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6 � Conclusion

In this work, we described a PDE method for the computation of centroidal geodesic Voro-
noi tessellation and power diagrams. The PDE theory is a robust framework to solve clas-
sic (and less traditional) tessellation problems. The main advantage of this approach is the 
high adaptability of the framework to specific variations of the problem (presence of con-
straints, non-conventional distance functions, periodicity, etc.). This increased adaptability 
comes with a precise cost: a PDE approach is more computationally demanding than other 
methods available in the literature. However, the recent developments of numerical meth-
ods for nonlinear PDEs, and the increment of the accessibility to more powerful computa-
tional resources at any level, make these techniques progressively more appealing in many 
applicative contexts [2, 16, 18].

Fig. 7   Two tessellations with a larger number of sets. On the left: Δx = 0.04 , uniform � , K = 20 . On the 
right: Δx = 0.04 , multivariate � around the origin, K = 30 . In this figure, the numbers are merely to identify 
the k-centroid of the tessellation

Fig. 8   Left panel: K = 6 , Δx = 0.015 , �(0) = {0.4, 0.5, 0.6} × {0.4, 0.6} ; right panel: Δx = 0.001, 
�(0) = {0.4, 0.45, 0.55, 0.6} × {0.4, 0.6} , c = (0.3, 0.24, 0.15, 0.1, 0.08, 0.06, 0.05, 0.02) (in this image some 
points of the evolution of the centroids are omitted for a better clarity)
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Fig. 9   Optimal power diagrams of a text and a rabbit shaped domain. The parame-
ters are set K = 8 , c = (0.33, 0.22, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05) , Δx = 0.002 (left), K = 6 , 
c = (0.25, 0.15, 0.15, 0.15, 0.15, 0.10) , Δx = 0.002 (right)
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