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Abstract: The increasing environmental awareness paired with the rise of global warming effects has
led, in the past few years, to an increase in the sales of electric vehicles (EVs), partly but not only,
caused by governmental incentives. A significant roadblock in the mass transition to EVs can be found
in the so-called range anxiety: not only do EVs have, generally, considerably shorter ranges than
their internal combustion engine vehicle (ICEV) equivalents, but recharge takes significantly longer
than does filling up a gas tank, and charging stations are less widespread than are petrol stations. To
counteract this, EV manufacturers are developing route planners which select the best route to go
from A to B according to the range of the vehicle and the availability of charging stations. These tools
are indeed powerful but do not account for the state of health (SoH) of the battery or for temperature
conditions, two factors which may severely degrade the range of an EV. This article presents an
innovative route planning method which takes into account SoH, temperature and driving style and
selects, along the planned route, the charging stations among those which can be reached with the
energy of the battery. To verify its proper operativity, simulations were conducted, highlighting the
risk of running out of battery before destination, considering if the route is planned based on the
declared range, and taking into account battery SoH, external temperature and driving style.

Keywords: battery electric vehicles; electric vehicles; range anxiety; EV route planning; mobility;
battery health; carbon footprint; optimization; cost function

1. Introduction

The phenomenon of climate change is having an increasing impact on everyday life,
as can be seen from the rising average temperatures and number of extreme meteorological
events. While future scenarios are looking dire [1], it is encouraging to see that awareness
on the matter has been generally increasing—especially among young generations, who
are worried by long-term impact of climate change [2]—as has the acceptance that fight-
ing against climate change requires combined actions of individuals to be successful [3].
Mobility plays and will play an important role in the climate change fight: transportation
accounts for more than one-quarter of CO2 emissions worldwide [4] and is particularly
relevant in the EU, where its share of CO2 is 45% [5]. However, car commuters are not
willing to change their habits and move to public transportation or bike [6], with a 70%
share not willing to renounce to their own car for the daily commute. The attitude toward
private transportation, paired with the awareness of the climate change issue, makes a fer-
tile terrain for the penetration of electric vehicles (EVs). This technology, however, presents
severe limitations in terms of costs, charging time and range.

It is indeed well known that while the higher cost is still a major factor, even potential
buyers who could afford to purchase an EV are nevertheless discouraged because of the
so-called range anxiety [7], i.e., the fear of exhausting the battery during travel before
reaching the destination. To mitigate the effects of this phenomenon, it is possible to install
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larger batteries to increase the range of the vehicle and to position more charging stations.
In the current scenario, the long time to recharge along with the small number of stations
opens a major role for prior route planning and station selection in order to build a more
confident attitude toward EVs in traditional car users.

Car manufactures make free planners available online; these include Tesla’s “Go
Anywhere” [8], Volkswagen’s “E-route planner” [9] and Porsche’s “Charge Map” [10].
Third party developers offer similar free services, such as “EVNavigation” [11], “ABRP: A
Better Route Planner” [12], “Zap Map” [13] or “PlugShare” [14]. It is obvious that route
planners must be robust and reliable in order to improve the trust of car users in EVs.
As a matter of fact, for route planning to be reliable, several aspects have to be taken
into consideration, such as battery degradation through aging, cabin heating and cooling,
driving style, traffic conditions, number of passengers and road grading.

To obtain robust solutions, a verification on the reachability of the charging stations is
needed. A simple approach is to perform a check between the road distance from the station
and the range of the vehicle, reduced by a factor related to the vehicle speed [15]. Other
solutions are based on the computation of the energy needed to reach the station either
through the definition of an energy-per-distance factor per every road segment of the route
according to the speed [16] or through the estimation of the resisting power contributions
(drag, rolling resistance, slope) [17]. More accurate estimations of the energy consumption
are presented in [18–20]—although only the latter of the three uses the energy estimation
to perform route planning, while the other two use it to depict the set of points that are
reachable by an EV. However, the planner proposed by [20] bases the energy estimation on
statistical data to define speed and acceleration profiles and therefore does not account for
the driving style of the user, a factor which heavily influences vehicle range.

An additional aspect that plays a major role is cabin conditioning, which strictly
depends on weather. Indeed, both low and high temperatures severely reduce the range of
EVs through the increase in power demand linked to the activation of heating, ventilation
and air conditioning (HVAC) systems [20]. While traditional vehicles can warm the cabin
with heat from the internal combustion engine (ICE), EVs are forced to draw power from
the battery. Another considerable factor is the availability of charging stations.

The aforementioned charging time and station scarcity compared to gas pumps require
that this factor be considered in planning a route for an EV. It is possible that the stations
which are selected as best by the route planner are occupied upon arrival, causing a
significant waiting time for the user. The influence of this factor is already well known and
considered in the literature: the route planning approach proposed in [17] exploits real-time
knowledge of which charging stations are occupied, current SoC of the vehicle charging
and charging power. The planner is able to predict when occupied chargers will be free and
can use this information to plan the best route in terms of minimum total time. A similar
approach is used in [21], with the difference being that information does not come from the
real-time monitoring of charging stations but from the EVs themselves, which announce to
a central database their desire to recharge at a specific station at a particular time.

None of the planners present in the literature, however, mention the effect of the
battery’s state of health (SoH) degradation and driving style on EV range. It is therefore
evident that in the current state of the art, a solution considering all these range-reducing
factors and accounting for station occupancy is missing.

To fill this gap, the route planning proposed in this paper aims at providing a tool to
consider the main factors affecting EV range, such as battery SoH, external temperature,
number of passengers, driving style and station occupancy. These factors are considered as
follows: (a) battery SoH through reduction of battery capacity and increase of its internal
resistance, (b) external temperature through the definition of additional power required
by the HVAC system, (c) number of passengers through the increase in vehicle mass and
adjustments on HVAC working, (d) driving style through vehicle speed and acceleration,
and (e) station occupancy through emulation of a live availability checking system.
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Besides the combination of all range affecting factors, which in themselves represent
a novel approach, additional innovative aspects with respect to the current literature are
proposed. The first one is related to route selection. Conventional planners are based on
the Dijkstra algorithm [22] as a solution to generate the best route. However, this algorithm
does not consider energetic aspects: it is not verified that the energy on board is sufficient to
reach the selected station. To overcome this limitation and increase planning reliability and
robustness, in the technique proposed in this paper, the Dijkstra algorithm is complemented
with a routine comparing the energy available on the vehicle with the energy needed to
reach the stations. The route is built as a series of subroutes connecting the selected
stations,and Dijkstra’s algorithm is used only to find the fastest route to each station.

The method for the selection of the stations themselves represents a further novelty
proposed by this paper. This problem is typically solved in the literature by searching for
stations around the direct nonstop route, hereinafter defined as the "Baseline route”, in
two ways. One is to look only at stations in the radius of 5 km from the Baseline route [15],
another is to suggest the best stations in a close range when the battery SoC falls below a
specific threshold during the trip [23]. These strategies aim at reducing, as much as possible,
the time lost by leaving the main road [24] but present the following drawbacks: (1) after
having left the main route to reach a charging station, it might be more convenient to take a
completely new route instead of driving back to the Baseline as done by [15]; (2) for range
anxiety reasons, EV users would not accept driving until the car finds a suitable charging
station, as proposed by [23], but want to plan stops before starting. To overcome these
issues, the proposed solution uses a reward function which considers battery SoC, charging
station power, distance between the stop and the Baseline route and energy consumption
to reach the station. Moreover, after the selection of each station, the route is recomputed to
evaluate whether it is convenient to drive back to the previous best route.

The proposed approach is tested in simulation by means of a framework which results
from the interaction between Matlab and Simulation of Urban MObility (SUMO) [25].
SUMO is an open-source, microscopic and continuous traffic simulation package designed
to handle large networks and was developed by the German Aerospace Center [26]. It is
used here to generate possible routes between starting and arrival point and perform the
simulation needed to evaluate the selected route. The evaluation of the proposed method’s
effectiveness for devising the resulting route considers two metrics: (a) number of cases in
which travel is conducted successfully, i.e., the condition in which battery SoC is always
above the lower SoC threshold set by the user; and (b) the amount by which SoC violates
this threshold. Tests were conducted that considered a set of eight couples of starting
and arrival points and eighteen boundary condition configurations. These configurations
included 3 different vehicle classes: (a) a grand touring sedan, (b) a small city car, and (c) a
compact SUV. The impact of the energetic considerations on route planning reliability was
measured by comparing the results of the proposed planner with those of standard planner
that selects charging stations based on the nominal range. Obtained results show that the
first metric moves from 44% (standard) to 93% (proposed method). The second moves from
−13.1% (standard) to −1.1% (proposed method).

To summarize, the contributions offered by this paper are as follows: (a) the introduc-
tion in route planning of the combination of range-affecting factors including battery SoH,
number of passengers, HVAC consumption, driving style and charging station occupancy;
(b) improvement of planning reliability and robustness through completion of the Dijkstra
algorithm with a routine comparing the energy available on the vehicle with the energy
needed to reach the stations; and (c) a novel station selection method to minimize time loss
through a cost function that rewards stations close to the route and at high charging power.

The paper is organized as follows: Section 2 explains the methodology followed in
the route planner definition; Section 3 presents the algorithms for route generation and
charging stations selection; Section 4 explains the evaluation phase design through the
selection of the travel missions; Section 5 presents the obtained results; Section 6 closes the
paper with the conclusions drawn from the results.
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2. Methodology

The proposed method is based on the following phases: (a) the best nonstop route
from starting to arrival point is identified; (b) the energy needed for the nonstop route
is computed; (c) if stops are needed, new possible routes with station stops are obtained;
(d) obtained candidate routes are ranked exploiting a reward function; and (e) the best
solution is selected. In the first part of this Section, a simulation framework architecture is
presented, and an explanation of route generation through the Dijkstra algorithm is given.
Afterward, the road network and charging station representation are described along with
the vehicle model used to represent the behavior of SoH degradation, HVAC, number of
passengers and driving style.

2.1. Simulation Framework Architecture

The simulation environment is based on the mutual interaction between Matlab and
SUMO exploiting the layout illustrated in Figure 1. The entry point of the diagram rep-
resents the user and vehicle communication bus (block 1 of Figure 1). Inputs provided
by the driver are the following: starting and arrival point, number of passengers, vehi-
cle selection, desired lower SoC threshold and driving style. Battery SoH and SoC are
extracted directly from vehicle communication bus and environmental temperature from
remote communication.

Figure 1. Software architecture with interactions between Matlab and SUMO environments. Block A
represents the preliminary data collection; block B represents route creation procedure; block C
represents the cosimulation phase between Matlab and SUMO.

The core of simulation framework is represented by the Matlab Main script (block 2).
This block receives input boundary conditions from block 1 and vehicle specifications
from block 3 and passes them to block 4 to create the route. In addition to this, it works
as a master in cosimulation execution between Matlab and SUMO representation of the
network (block 7). The cosimulation phase is represented by orange arrows in Figure 1
and aims at obtaining the SoC profile followed by the vehicle when running on the route.
To compute the required power, vehicle parameters must be loaded from specific files
(block 3). Route creation function (block 4) has the task of building the route as a union of
subroutes according to parameters and constraints received from block 2. First, it attempts
to create a direct route between start and finish. If this Baseline route is not feasible for
energetic reasons, it builds alternative routes through by selecting charging stops. To do so,
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it retrieves information about stations from Charging stations file (block 5). Both Baseline
route verification and station selection require to generate their relative sub-routes through
block 7. The sub-route feasibility is checked through block 6. The final generated route
is sent to Block 2 for the route evaluation phase. The network representation (block 7) is
used both during route planning and cosimulation phases. In the latter, it is commanded
by block 2 through TraCI4Matlab, the implementation of the TraCI protocol [27] for Matlab,
which allows the user to interface Matlab with SUMO in a client–server manner.

2.2. Generation of Routes

Given the starting and the arrival points positions in the network, the best route can be
obtained either as the direct nonstop route if energy is sufficient or through a combination
of subroutes. To this end, the route generator embedded in SUMO is exploited. It is based
on the Dijkstra algorithm [22], which is presented in Algorithm 1. It is preferred to a direct
implementation of the Dijkstra algorithm in Matlab since it has a low computational cost
guaranteed by an optimized code. A further reason for SUMO adoption is that it can be
used also as a traffic simulator, and this function can be exploited in future developments
where traffic congestion impact needs to be considered.

Algorithm 1 Dijkstra algorithm for route generation

load network
set all nodes costs to ∞
set starting node cost to 0
set all nodes as unvisited
while destination node is unvisited do

select the unvisited node Ni with the lowest cost
for all unvisited nodes Nj do

if cost(Ni)+ cost(i, j) < cost(Nj) then
cost(Nj) = cost(Ni)+ cost(i, j)
set Ni as the predecessor of Nj

end if
end for
set node Ni as visited

end while
node = destination node
initialize path as empty array
while node ≠ starting node do

node = predecessor(node)
append node to path

end while
flip path to obtain the path from start to finish

It is worth noting that the Dijkstra algorithm cannot work when the cost between
nodes is negative. If the cost between the nodes represents energy demand, a negative cost
is a possibility when dealing with EVs. Typically, this problem is solved in the literature by
exploiting the Bellman–Ford algorithm [28], but for the proposed solution, negative cost is
not a limitation. Here, Dijkstra is used only to find the fastest route between two points and
not to define the best overall route considering energetic aspects since these are considered
separately. Therefore, in the proposed planner, the cost between nodes represents the time
it takes to move between them, a physical dimension which is strictly positive.

2.3. Infrastructure Representation

The road map considered in this work covers a surface of 37,500 km2 and is represented
in Figure 2. The area covers Northwest Italy and is centered around the Genoa–Milan–
Turin industrial triangle. This selection comes from the fact that this is the best-served
area in terms of charging stations and is the most densely populated area in Italy, with
around a sixth of the Italian population. The map imported from OpenStreetMap [29] does
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not include road slope, but the planner is programmed to take it into consideration in
future development.

The road network is represented in SUMO and is built upon three elements: junction,
edge and lane. Junctions are the nodes. Edges are unidirectional links between two
junctions. Lanes are the subcomponents of edges and include information about edge
speed limit, edge length and type of vehicles allowed.

More than 700 charging stations are included in the network, characterized by the
following parameters: (1) name; (2) (X, Y) coordinates; (3) edge on which the station is
located; and (4) list of the charging docks, ordered by descending power. For each charging
dock, the charging power and probability to find it free to use are reported. This approach
is used to mimic a live availability sensing of the charging stations with the possibility to
book them in advance [17,21].

Figure 2. Map of the road network considered in this work. Red circles represent stations.

2.4. Vehicle Model

The vehicle is represented with a longitudinal model. The considered parameters are
mass, drag coefficient, frontal area, rolling resistance, maximum number of passengers
and additional power required by the HVAC system (PHVAC). Vehicle mass is increased
by 85 kg per every passenger, including the driver. Electrical requirements of HVAC are
modeled as a function of the number of passengers and external temperature T, as shown
in Equation (1).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PHVAC = [α1(T0 − T)+ P1](1− β1Npass) T < T0

PHVAC = [α2(T1 − T)+ P2](1− β2Npass) T0 < T < T1

PHVAC = [α3(T2 − T)+ P3] T1 < T < T2

PHVAC = [α4(T − T2)+ P4] T2 < T < T3

PHVAC = [α5(T − T3)+ P5](1+ β5Npass) T3 < T < T4

PHVAC = [α6(T − T4)+ P6](1+ β6Npass) T > T4

(1)

The parameters of HVAC power equations are vehicle dependent: power/temperature
gain (αi), power/passenger gain (βi) and power offset (Pi). The power/passenger refers to
the principle in which the higher the number of passengers is (Npass), the lower the PHVAC
is for heating the cabin and the opposite for cooling. Overall, the power required by HVAC
system increases with the distance between the environmental temperature and optimal
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temperature for comfort (expressed in ○C). Three types of vehicles are used in this work:
(a) grand touring sedan, (b) small city car, and (c) compact SUV. Their HVAC powers are
computed as displayed in Equation (2). Temperature is assumed to be uniform throughout
the whole network, but it can be improved in further refinements with real-time updating
from online weather forecast services.

(a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PHVAC = [280 ∗ (10− T)+ 2010](1− 0.05Npass) T < 10
PHVAC = [200 ∗ (16− T)+ 810](1− 0.03 ∗ Npass) 10 < T < 16
PHVAC = [150 ∗ (21− T)+ 60] 16 < T < 21
PHVAC = [150(T − 21)+ 60] 21 < T < 26
PHVAC = [190 ∗ (T − 26)+ 660](1+ 0.075 ∗ Npass) 26 < T < 30
PHVAC = [240 ∗ (T − 30)+ 1420](1+ 0.11 ∗ Npass) T > 30

(b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PHVAC = [190 ∗ (10− T)+ 1500](1− 0.05Npass) T < 10
PHVAC = [110 ∗ (16− T)+ 700](1− 0.03 ∗ Npass) 10 < T < 16
PHVAC = [85 ∗ (21− T)] 16 < T < 21
PHVAC = [85(T − 21)] 21 < T < 25
PHVAC = [167 ∗ (T − 25)+ 660](1+ 0.075 ∗ Npass) 25 < T < 30
PHVAC = [240 ∗ (T − 30)+ 1420](1+ 0.11 ∗ Npass) T > 30

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PHVAC = [247 ∗ (10− T)+ 1950](1− 0.05Npass) T < 10
PHVAC = [143 ∗ (16− T)+ 1053](1− 0.03 ∗ Npass) 10 < T < 16
PHVAC = [110.5 ∗ (21− T)] 16 < T < 21
PHVAC = [110.5 ∗ (T − 21)] 21 < T < 26
PHVAC = [217.1 ∗ (T − 26)+ 858](1+ 0.075 ∗ Npass) 26 < T < 30
PHVAC = [312 ∗ (T − 30)+ 1846](1+ 0.11 ∗ Npass) T > 30

(2)

Vehicle powertrain is modeled through constant efficiency representing all the losses
of the vehicle, whose value per every car model is reported in Table 1.

Table 1. Lumped η efficiency for vehicle models used in this work.

Vehicle Model Efficiency η [-]

Grand touring sedan 0.80

Small city car 0.80

Compact SUV 0.80

Through efficiency η, the mechanical power (Pmechanical) required at wheel level is
converted into electrical power (Pbatt) required at battery level.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pbatt =
Pmechanical

η
+ PHVAC traction

Pbatt = Pmechanical ∗ η + PHVAC braking
(3)

The battery open-circuit voltage (VOC(SoC)) and its internal resistance (Req(SoC)) are
modeled as functions of SoC [30] and scaled with the number of cells in parallel and series.
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SoH is used as a coefficient to determine battery total capacity. The current drawn from the
battery and the SoC are computed as follows [31].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Imotor =
Vmotor −

√
V2

motor − 4ReqPbatt

2Req

Ibattery = Imotor
Vmotor

VOC

(4)

SoC(t + 1) = SoC(t)− Ibatt
Cbatt

tstep

3600
(5)

The electrical power at battery and at motor is assumed to be the same as a conse-
quence of lumping all losses in vehicle efficiency η. The assumption of constant efficiency
does not excessively simplify the model since it has been demonstrated that even with sub-
optimal control strategies, efficiency is close to the one obtained with an optimal analytical
approach [32]. Nevertheless, control of electric machines to achieve maximum efficiency is
a topic that goes beyond the purpose of this work [31]. As the energy estimation needs to be
performed for every station several times during the route planning phase, simplifications
here described are necessary to reduce computational cost. On the other hand, in the cosim-
ulation phase alone it would be beneficial to implement a more complete vehicle model,
such as the one presented in [33]. Battery internal resistance and open-circuit voltage could
be obtained through data-driven battery models, such as the one presented in [34].

2.5. Driving Style Definition

Driving style affects the estimation of required energy during route planning and
because of this, most free online planners allow users to set their driving style as an
input [11,12]. In this paper, it is categorized in three levels characterized by vehicle speed
and acceleration ranges. When a class of driving style is selected by the user, the speed
and acceleration used in planning and in simulation vary within the limits indicated in
Table 2. The resulting speed profile is simplified and does not account for sharp turns,
traffic lights or other factors forcing the driver to slow down. Such approximation leads
to an underestimation of the required energy during planning, which is compensated for
by means of a corrective factor K. It depends on the driving style, and it is the lowest for
sport driving style, as it is the one which leads to the largest energy underestimations. The
values of K have been tuned through preliminary tests and are presented in Table 2.

Table 2. Properties of driving style classes.

Driving Style Speed Range [km/h] Acceleration Range
[m/s2] K Energy Factor [-]

Eco driving style 0–90 0–1 0.9

Average driving style 0–144 0–2.5 0.6

Sport driving style 0–180 0–9 0.5

The speed and acceleration levels characterizing each of the three proposed driving
styles are approximate and can be refined in more levels through the analysis of position
and speed data collected from the pools of vehicles. The position and speed of vehicles
participating in the data collection could be retrieved through a ground navigation satellite
system (GNSS) integrated with on-board sensors [35] and uploaded to a central server.

On the other hand, it is possible to install the proposed planner directly on the EV
through integration with the on-board navigation system. The latter solution would imply
that the user would no longer be selecting his driving style in the interface. Through on-
board integration, the planner system would be able to predict the speed profile based on
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data collected during operation. Solutions to monitor, in real time, the driving parameters
have been proposed [36,37], and their installation on an EV would enable the on-board
route planner to learn user’s driving style and adapt station selection accordingly.

3. Charging Station Selection

The overall route is built by selecting the best charging stations and grouping the
resulting subroutes. The algorithm for stations selection aims at generating a route that
is as close as possible to the Baseline route. If such a nonstop route is not feasible, a
station search is conducted through hierarchically organized algorithms, described in the
following. The high level route planning is performed via a bidirectional route construction
algorithm. Its aim is to plan the route through building two segments, from starting and
from arrival points. The bidirectional planning follows this goal through a lower level
station search algorithm, which is required to select the best station to extend either of the
two route segments being constructed. To identify what the best station is on the base of the
requirements from the high level planning, the station search algorithm relies on a reward
function. If the reward function for a station is higher than is the current best, the station
reachability is tested through energy estimation by a low-level feasibility check function.

3.1. Bidirectional Route Construction

The planner progressively builds the route from the two ends by selecting stations
in proximity of the extremes (A and B) of the two route segments. This two-direction
approach is necessary to minimize the deviation from the Baseline route. Every time a
station is selected, the corresponding subroute is appended to the sequence originating
from the starting or the arrival points. The search is iterated until the energetic feasibility
of the route joining the two segments is verified. This process is presented in pseudo-code
in Algorithm 2.

Algorithm 2 Bidirectional route construction
initialize <A>, <B> as starting and arrival edges
load the charging station database
numStop = 0
searchEnded = 0
initialize StartSegment as empty vector
initialize ArrivalSegment as empty vector
while searchEnded == 0 do

create route from <A> to <B> as directRoute
check feasibility through energy estimation
if feasible then

searchEnded = 1
Route = [StartSegment; directRoute; ArrivalSegment] ▷ directRoute from <A> to <B> is

feasible and connects the two segments
else

numStop+1
if numStop is odd then

perform "Station search" routine, from <A> to every station in database
save the edge of bestStation as <A>
insert bestRoute as last element of StartSegment

else
perform "Station search" routine, for every station in database to <B>
save the edge of bestStation as <B>
insert bestRoute as first element of ArrivalSegment

end if
end if

end while
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3.2. Station Search Routine

In the high-level planner, a station search needs to be performed every time the direct
route joining the two route segments is not feasible. In the literature, there are solutions
which a priori define the number of stops and then select the stations accordingly [15].
The proposed planner does not set a hard constraint on the number of stops but aims
at minimizing it by rewarding longer trips between the stations. The station search is
described in Algorithm 3 and is conducted on all charging stations in the database. To
speed up, a pruning process to discard nonuseful stations is conducted on the following
criteria: (1) insufficient charging power; (2) a too-long air distance of the station from point
A or B (above the range of the vehicle corrected through SoC and SoH); (3) a too-low air
distance of the station from point A or point B (below 10% of the corrected range). If the
station is not discarded, the availability of the charging docks is checked. If a suitable dock
is available, the reward function is computed. If the reward function is higher than is the
current best reward value, a verification whether the on-board energy is sufficient for the
subroute is conducted as illustrated below. If this verification fails, the station is discarded;
otherwise, it is selected as the new best station.

Algorithm 3 “Station search” routine
initialize bestReward as 0
for station in charging station database do

if power is not enough to charge the vehicle then
move to next station

else if airdistance > range || airdistance < 0.1range then
move to next station

else
for charging docks in the station do

if power is not enough to charge the vehicle then
move to next station ▷ docks are sorted by power, so all the following docks in the

station are useless
else if charging dock is available then

exit cycle and compute reward function rewardFcn of the station
end if

end for
end if
if rewardFcn > bestReward then

check feasibility through energy verification
if feasible then

save station as bestStation
save the route to reach the station as bestRoute

end if
end if

end for

3.3. Reward Function Computation

The choice of the best station is conducted through the evaluation of the following
reward function.

rewardFcn =
⎛
⎜⎜⎜
⎝

Lc

Ld

1.001− Lc

Ls

⎞
⎟⎟⎟
⎠

3

Pch (6)

where Lc (concording length) is the length of the portion where the route to the station
overlaps with the direct A-B route, Ld (direct route length) is the length of the direct A-B
route, Ls (station route length) is the length of the travel to the station, and Pch (charging
power) is the charging power of the station under test. The reward function aims to
minimize the total time travel through three factors: (1) Charging power is a factor to be
maximized as much as possible to reduce the time duration of the stop. (2) The function
rewards stations which are close to the direct route to minimize the energy wasted during
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the detour. This is obtained through the term at the denominator, which spans between
0.001 (if the station is right on the direct A–B route) and 1.001 (in case the direct subroute
and the station subroute do not share any road segment). This has been done to prevent the
denominator becoming 0, which would cause numeric problems. (3) The number of stops is
minimized. This last factor is not subject to hard minimization constraints but is minimized
by rewarding stations which are further down the direct route. This is represented by the
presence of Lc at the numerator to make the reward function proportional to the length run
on the direct route. To avoid excessive detours to reach powerful stations, the first factor
of the multiplication needs to weigh more than the charging power. This is obtained by
raising the factor to a power of three, as this was found to be the best compromise during
preliminary tests.

3.4. Feasibility Check

As seen from Equation (6), the total distance of a station is not accounted for directly
by the reward function. The reachability of a station is verified through an estimation of
the energy required to travel between the two subroute extremes. The energy needed to
complete the route is estimated through battery power integration and is compared to the
available one, which depends on the battery SoH and minimum SoC. The total amount
of energy on the vehicle Eavailable,tot has been assumed to be 80% of the nominal installed
battery energy, a common value for EV batteries [38]. From this value, the battery energy
made available for the travel is computed as shown in Equation (7), which considers also
the capacity degradation and the lower SoC threshold imposed by the user. The available
energy is further corrected through the driving style-dependent K factor introduced before,
in Table 2.

Eavailable,travel = Eavailable,tot
SoC0 − SoCmin

0.8
SoH ∗K (7)

The current speed and the one at the next time instant are needed to account for the
instantaneous power required. The acceleration of the vehicle is computed as the difference
between the target speed (i.e., the minimum between the maximum speed on the road
segment and the maximum speed accepted by the driver) and the actual speed. It is then
saturated to the maximum acceleration set by the driving style. This approach is not capable
of accounting for any event which may cause the driver to slow down, such as bumps,
turns or slower vehicles with no overtaking opportunities. It is not possible to predict in
advance the exact traffic scenario that the EV will face during the travel, and so a random
component is added to the acceleration to represent the irregular speed profile followed by
the driver. This is obtained through a random acceleration, as described in Equation (8).

arandom = − accmax

4
+ accmax

2
∗ random(0, 1) (8)

With speed and acceleration, the algorithm computes the power drawn from the
battery and integrates it. As soon as the energy integral is larger than the available energy,
the simulation is interrupted to save computational cost, and the charging station under
test is discarded. The procedure of the feasibility check is summarized in Algorithm 4.
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Algorithm 4 “Feasibility check” routine

retrieve numberEdges from Route
retrieve length and speed limit of each edge from the network
feasible = 1
counter = 1
energyIntegral = 0

Energyavailable = Energyusable ∗
(SoC0 − SoCmin)

0.8
∗ SoH ∗K

actualSpeed = 0
flag = 1
while counter ≤ numberEdges && f lag do

lengthRun = 0 ▷ resets the length run every time it changes Edge
set EdgeLength to the length of ith edge
while lengthRun < EdgeLength do

lengthRun = lengthRun + actualSpeed
if lengthRun > EdgeLength then

increase the counter to move to the next edge
if counter > numberEdges then

break ▷ the edge was the last one, the destination was reached
end if

end if
nextSpeed = min(EdgeSpeed, driverMaxSpeed) ▷ driverMaxSpeed depends on the driving

style
acc = nextSpeed − actualSpeed
saturate acc between [-4.5; driverMaxAccel] + arandom ▷ driverMaxAccel depends on the

driving style
compute the required Pbatt
energyIntegral = energyIntegral + Pbatt ▷ timestep is 1s
actualSpeed = actualSpeed + acc
if energyIntegral > Energyavailable then

flag = 0
feasible = 0
break ▷ Interruption for computational cost reasons

end if
end while

end while

4. Travel Mission Dataset and Route Evaluation Procedure

A travel mission is defined as the union of starting and arrival points (S −A) and
boundary conditions (temperature, number of passengers, battery SoH, battery SoC thresh-
old, driving style). The dataset of missions is the result of the combination of eight (S −A)
pairs and eighteen boundary condition configurations.

The set of starting–arrival points, listed below, are selected to be as far as possible so
that EVs need to stop at least once to recharge, with the exception of direction H, which is
built to verify that the planner recognizes when the Baseline direct route is feasible.

• (S −A) case A: (45.544 N, 10.212 E)–(44.310 N, 8.485 E). Length: 256 km.
• (S −A) case B: (44.396 N, 7.555 E)–(45.707 N, 9.765 E). Length: 304 km.
• (S −A) case C: (44.809 N, 10.323 E)–(45.706 N, 7.675 E). Length: 277 km.
• (S −A) case D: (45.065 N, 7.673 E)–(44.332 N, 9.332 E). Length: 199 km.
• (S −A) case E: (45.142 N, 10.034 E)–(45.111 N, 7.299 E). Length: 245 km.
• (S −A) case F: (45.556 N, 8.067 E)–(44.285 N, 10.301 E). Length: 319 km.
• (S −A) case G: (45.470 N, 7.878 E)–(44.298 N, 8.467 E). Length: 194 km.
• (S −A) case H: (45.057 N, 9.701 E)–(45.439 N, 8.631 E). Length: 122 km.

The (S −A) couple positions in the network are shown in Figure 3.
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Figure 3. Locations of starting points (○) and arrival points (8) of the travel missions in the consid-
ered network.

The eighteen boundary condition configurations are created with three different
vehicles being considered: (1) vehicle A, a grand touring vehicle with 5 seats, weighing
2200 kg and with over 90 kWh of total battery energy; (2) vehicle B, a small city car with
four seats, weighing 1200 kg and with around 30 kWh of battery energy; and (3) vehicle
C, a small-sized SUV with five seats, weighing around 1500 kg and with over 50 kWh of
battery energy. The configurations are designed to highlight the effects of the external
temperature, battery SoH, number of passengers and driving style on the planned route.
Moreover, as the grand touring vehicle and the compact SUV also offer also the possibility to
perform a fast charge of the battery, three configurations highlight the impact of a station’s
maximum charging power on the reward function. The boundary condition configurations
are presented in Table 3.

Planned routes are evaluated by means of two metrics. (a) The first is a classification
on the feasibility of the planned route. This metric returns three possible results: (1) success,
in which the route allows the vehicle to reach the destination respecting the constraint on
the minimum SoC imposed by the user; (2) near miss, in which the route allows the vehicle
to reach the destination, but the SoC falls below minimum SoC desired by the user, with
bad effects on battery SoH; and (3) critical failure, in which the vehicle SoC falls below 0
during the travel and the route is unfeasible. (b) The second metric is the computation of
the SoC violation when the first metric is a near miss by means of Equation (9).

SoCviol = min(SoC)− SoCthreshold (9)

In critical failures, the amount of the violation is not meaningful since the battery is
completely discharged, while in successes, there is no violation by definition. The metrics
are obtained through a Matlab–SUMO cosimulation. The first simulates the vehicle to
obtain the battery SoC profile, while the second simulates the network and retrieves vehicle
speed and acceleration. First, the initial subroute is performed, and resistant forces acting on
the vehicle are computed. Speed accounts for stops at crossroads, traffic lights and reduced
speed on sharp turns, differently from what happens in the feasibility check previously
described. Once the vehicle reaches the desired station, the subroute is completed, and the
recharge routine is performed. The simulation proceeds with the following subroutes until
the vehicle reaches the final destination. As a first approximation, the results presented in
the following section are obtained via the simplified vehicle model used for the feasibility
check. While the feasibility check has to be performed thousands of times to plan the route,
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the cosimulation has to be performed only once. Therefore, it is possible to improve the
accuracy of the cosimulation through more complex vehicle and battery models, as stated
in Section 2.4.

Table 3. Vehicle and boundary condition settings. Vehicle A: large grand touring sedan. Vehicle B:
small city car. Vehicle C: compact SUV.

Test Vehicle
Charging

Power
[kW]

Battery
SoH

Starting
SoC

SoC
Lower

Thresh-
old

T [°C] Passengers
Number

Driving
Style

1 A 22 kW 100% 90% 40% 22 0 Average

2 A 22 kW 100% 90% 40% 32 0 Average

3 A 22 kW 100% 90% 40% 3 0 Average

4 A 22 kW 100% 90% 40% 22 4 Average

5 A 22 kW 85% 90% 40% 22 0 Average

6 A 22 kW 100% 90% 40% 22 0 Sport

7 A 22 kW 90% 90% 40% 11 3 Sport

8 A 216 kW 100% 90% 40% 22 0 Average

9 A 216 kW 90% 90% 40% 11 3 Sport

10 B 7.4 kW 100% 90% 40% 22 0 Average

11 B 7.4 kW 100% 90% 40% 32 0 Eco

12 B 7.4 kW 100% 90% 40% 3 0 Eco

13 B 7.4 kW 100% 90% 40% 22 3 Eco

14 B 7.4 kW 85% 90% 40% 22 0 Eco

15 B 7.4 kW 90% 90% 40% 11 3 Average

16 C 7.4 kW 100% 90% 40% 22 0 Average

17 C 7.4 kW 100% 90% 20% 22 0 Average

18 C 75 kW 75% 90% 15% 22 0 Average

A further step in the refinement of the energy estimation and the tuning of K parameter
would be the validation of the simulated results through repetition of the travel on real
roads with constant monitoring of the EV. The instantaneous speed could be measured
by means of Kalman filters [39] and used to compare the effective energy consumption as
measured from on-board BMS to the energy consumption estimated by the planner for a
vehicle following the measured speed profile.

5. Results

This section presents the results obtained by the proposed planning method and
compares them to a planning method—hereinafter defined as the“standard”—that does
not account for any range-reducing factor but selects the stations according to the nominal
EV range adjusted by the SoC lower threshold without performing any energy estimation.
To ensure that the results comparison displayed the robustness increase provided by
the proposed planner, the two planners were built around the same station selection
procedure and cost function, and the generated routes were evaluated through cosimulation
with the same vehicle model. The planning methods were compared through the two
metrics previously introduced: (1) success rate, i.e., the percentage of routes planned whose
cosimulation ends with the vehicle reaching the destination without the SoC falling below
the threshold set by the user; (2) SoC threshold violation, i.e., the amount of SoC which is
discharged below the user set threshold in a near miss. A comparison of the first metric
between the standard (a) and the proposed (b) planner is shown in Figure 4 as a function of
different range-affecting factors and the overall numerical results are presented in Table 4.
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The overall results relative to the first metric are presented in point (1) of Figure 4,
and the improvement in the robustness of the planned algorithm is noticeable. The routes
planned by the standard algorithm (a) achieve success in fewer than half of the scenarios,
and almost one in five routes ends with the vehicle fully discharged along the route. On the
contrary, the proposed planner (b) does not incur any critical failure, and the success rate
more than doubles (from 44% to 93%). The critical failure through full discharge appears
mainly in cases with the sport driving style.

Figure 4. Comparison between the successes and failures of the standard planner (a) and the proposed
route planner (b). (1) Overall results. (2) Results under the sport driving style. (3) Results with a
degraded battery SoH. (4) Results with passengers on board. (5) Results when the HVAC is on.

Sport driving style is indeed the factor with the heaviest impact on standard route
planner reliability, as is evident from point (2), which shows that the standard planning
method does not achieve successful travels in cases of sport driving style (Tests 6, 7 and 9
from Table 3). Moreover, in two=thirds of these scenarios, the route selected by the standard
planner causes the car to run out of battery before reaching the destination.
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Table 4. Comparison between the metrics of the standard planner (white rows) and the proposed
planner (shaded rows).

Factor Related Test
Scenarios

Metric 1 Metric 2

Successes
[%]

Near
Misses

[%]

Critical
Failures

[%]

To Few
Stations

[%]

SoC
Violation

[%]

All scenarios {1–18}
44 38 19 0 −13.1
93 3 0 4 −1.1

No factors {1, 8, 10, 16}
50 50 0 0 −10.5

100 0 0 0 0
Sport

driving style
{6, 7, 9}

0 33 67 0 −22.4
83 17 0 0 −1.0

Eco
driving style {11–14}

100 0 0 0 0
97 3 0 0 −4.6

Battery SoH
degradation

{5, 7, 9, 14, 15, 18}
23 38 40 0 −17.0
85 6 0 8 −0.9

Number of
passengers {4, 7, 9, 13, 15}

30 30 40 0 -16.9
80 10 0 10 −1.9

HVAC
turned on {2, 3, 7, 9, 11, 12, 15}

41 21 38 0 −14.7
80 10 0 10 −0.9

The factor with the second heaviest impact on the reliability of the standard planner is
the SoH degradation of the battery. The reduction in capacity and the consequent reduction
in vehicle range are not considered by the standard planner, and this led to a share of
78% of near misses and failures in the considered scenarios (Tests 5, 7, 9, 14, 15 and 18).
The results of these scenarios with the standard and the proposed planner are shown in
point (3). The success rate increased from 23% with the standard planner to 85% with
the proposed planner. Moreover, the share of cases where the charging stations were
insufficient (8%) consist of four cases of Test 15, where the city car is placed in its most
severe conditions, with an average driving style, battery degradation to 90%, cold outside
temperature and three passengers. With such boundary conditions, the proposed planner
could not find a feasible route on four out of eight test routes because of the lack of stations
along the highways.

The number of passengers was the third-most-impacting factor on the reliability of
the standard planner, which achieved a success rate of 30% in the considered scenarios
(Tests 3, 7, 9, 13 and 15). The comparison between the results of the standard planner and
the proposed planner in these scenarios is presented in point (4). The success rate increased
from 30% to 80%, demonstrating that the proposed planner is robust with respect to the
number of passengers.

Finally, the external temperature is the least failure-affecting factor in the standard
planner. The scenarios in which the external temperature caused a significant power
demand by the HVAC systems (Tests 2, 3, 7, 9, 11, 12 and 15) saw a 41% success rate by the
standard planner, which increased to 88% with the proposed planner, as can be seen from
point (5).

Other than improving the robustness in presence of factors reducing vehicle range, the
proposed planner presents better results compared to the standard one even in conditions
where no range-affecting factors are present, i.e., Tests 1, 8, 10 and 16. The success rate
doubles from 50% to 100%, so all routes generated by the proposed planner are listed
as successes.

As the focus of this work is on the increase in robustness of the route-planning
algorithm, the total time required for the travel is not considered as a metric. Therefore, it
might happen that a route planned with the standard algorithm results in faster travel, as a
lower number of recharges is required. The more robust battery management is achieved
through a higher number of stops, but the overall time duration of the travel does not
change significantly. The comparison between the time duration of the travels generated
by the two planners is presented in Figure 5.
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Figure 5. Comparison between the time duration of the travels on the routes generated by standard
and proposed route planners.

For the average driving style, routes found by the proposed route planner take 15.6%
longer to be completed when neither the standard nor the proposed planner violates the
lower SoC threshold. The situation is reversed in scenarios with the eco driving style (Tests
11–14). These scenarios are tested with Vehicle B (small city car), as such a car can not
follow an aggressive speed profile in real life. Out of the thirty-two travels planned in Tests
11–14, in twenty-four cases (75%), the proposed planner outperforms the standard planner
without violating the lower SoC threshold. The energy estimation allows for the selection
of the charging stations that are outside of the nominal range because of the lower speed,
and therefore the proposed planner requires fewer stopping times, leading to a reduction
of the time the route takes to be completed. In seven of the thirty-two cases, the proposed
planner is outperformed by the standard planner; that is, the route created by the proposed
planner takes longer to be completed. Finally, in a single case, the route generated by the
proposed planner violates the threshold, while the standard planner respects it. Overall,
the success rate is better for the standard planner (100%) than for the proposed planner
(96.9%) in this subset of cases, but the only near miss obtained by the proposed planner has
a violation of the SoC constraint by −4.6%. Overall, the proposed planner generates routes
which are completed in 15.4% less time.

Figure 6 shows side by side the routes generated by the standard (a) and the proposed
planner (b) in driving missions that are relevant for their results. The first point of Figure 6
compares the SoC profiles on (S −A) case A, Test 1. It is evident how the need for more
charging stops does not translate into a longer route, as the stations are selected close to
the Baseline route to minimize time loss. The second, third and fourth points of Figure 6,
instead, show cases in which the proposed planner requires a detour from the Baseline
route. Case (2) refers to the driving mission conducted on (S −A) case B, Test 1, where the
proposed planner requires leaving the motorway to stop for the last recharge. On the other
hand, the standard planner requires a single stop further down the route, but—to do so– -it
overdischarges the battery by 10% SoC. Case (3) refers to the driving mission conducted on
(S −A) case B, Test 7, where the proposed planner requires a total change of route from the
Baseline. This is the product of the recomputation of the direct route every time a station is
selected, as in that case, it is more efficient to generate a whole new route instead of driving
back to the Baseline route. Case (4) refers to the driving mission conducted on (S −A)
case F, Test 7, where the proposed planner requires to deviate twice from the Baseline
route. The first deviation requires driving through the urban road network after leaving
the highway to perform a recharge. This deviation would not be advantageous in real life,
where urban roads are severely congested, and the speed of their traffic is significantly
lower than the nominal speed limit, but the planner currently does not account for traffic
congestion. The second deviation is required since the best station among those from which
the destination is reachable is far from the Baseline route, and all of the stations present in
the cluster located to its north along the Baseline route are too far from the destination. It is
important to highlight that in both case (3) and (4), the standard planner is outperformed
by the proposed planner, as the former experiences critical failures with the battery fully
discharged. This can be seen in the maps of Figure 6 relative to cases (2), (3) and (4), where
the SoC profile disappears along the way, leaving the Baseline route visible (in black).
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Figure 6. SoC profile along the trajectory generated by the standard planner (a) and proposed planner
(b) for different travel missions. The black trajectory on the background is the Baseline direct route.
Black circles indicate the stations where the vehicle stops, and purple circles indicate the stations not
reached because of full discharge. Numbers in the circles indicate the order of stations.
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Cases (5) and (6) refer to cases in which the driving mission involves the eco driving
styles, which allows the proposed planner to select stations that are outside of the nominal
EV range. This advantage concretizes in two ways, respectively shown in case (5) and (6):
(1) the selection of farther charging stations that avoids excessive detours as the one done
for the second and the last stop of case (5) ((S −A) case D, Test 11) and (2) the selection of
fewer stations (4 instead of 3) for case (6) ((S −A) case F, Test 14) to reduce the total travel
duration. However, compared to what occurs with the standard planner, the lower number
of stations does not come at the cost of the generate route reliability, with a 96.3% success
rate in the eco driving style subset.

The second metric is deeply linked with the first one, as a higher success rate leads to
a smaller amount of travel missions with a SoC threshold violation. This phenomenon is
presented in Figure 7, where the distribution of the magnitude of the violation is shown.
The total amount of violations is significantly lower for the proposed planner, as the near
miss percentage drops from 38% to 4%. It is important to point out that the magnitude of
the violation is also reduced by the adoption of the proposed planner. The most common
amount of violation is the (0 ÷ 3)% band for both planners, but no travel run on a route
generated by the proposed planner over-discharges by more than 6%. Instead, in several
occurrences the standard planner violated the SoC threshold by almost 40%. As 40% is
the lower threshold in most of the boundary conditions settings, it is evident that such
violations almost constitute a critical failure. Overall, the average SoC threshold violation
moves from −13.1% to −1.1%, thanks to the adoption of the proposed planner.

Figure 7. Amount of SoC threshold violation for the simple and proposed planner.

6. Conclusions

This paper proposed a route planning method for EVs accounting for driving style,
battery SoH degradation, number of passengers and external temperature. It builds the
route through the progressive selection of charging stations with a cost function which
favors the most powerful charging stations and the stations which detour less from the
Baseline route.

The reachability of the selected stations is checked by means of energy estimation
instead of nominal vehicle range comparison. This facilitates taking into account the
aforementioned factors, which are not considered if the stations are only tested for the
nominal EV range. The route testing is conducted via Matlab–SUMO cosimulation instead
of real-life on-road tests because of the large amount of driving missions to be performed.

The routes are evaluated through two metrics based on SoC profile: share of routes
completed without violating the SoC constraints and the amount of violation on such
SoC constraints.
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To evaluate the improvement in robustness offered by the energetic estimation, the
proposed planning method was tested against a standard planning method, which uses the
same cost function to select the stations but only considers nominal EV range. Results show
that the success rate increased from 44% to 93%, and the violation on the SoC constraint
increased from −13.1% to −1.1%.

Future steps for the development of this route planning method include refinements
on the evaluation procedure and the introduction of more range-affecting factors into the
route planner.

Regarding the evaluation procedure, a more precise vehicle and battery model could
be introduced to more accurately represent the SoC profile during the travel, and real-life
tests could be run to experimentally validate the cosimulation evaluation procedure.

Additional range-affecting factors that can be introduced as a future development
include the following: (a) the introduction of altimetric values in the map, as the planner is
designed to account for them, but the road network was considered as flat; (b) the definition
of wind speed and direction across the map to obtain a more accurate definition of the
aerodynamic drag; and (c) the introduction of traffic congestion coefficients, representing
the speed at which traffic flows on each portion of network instead of the maximum speed
to optimize the total travel time accounting also for traffic jams.

Finally, the route planning method proposed here would be improved by the intro-
duction of live information services, such as live weather monitoring to better detail HVAC
impact, real-time traffic updates to adapt the traffic congestion coefficients and monitoring
of charging stations to obtain information about the charging station availability in real-time
instead of simulating it.
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