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Abstract
This paper presents an analysis of the KPT system for the 2022
NIST Language Recognition Evaluation. The KPT submis-
sion focuses on the fixed training condition where only specific
speech data can be used to develop all the modules and auxil-
iary systems used to build the language recognizer. Our solu-
tion consists of several sub-systems based on different neural
network front-ends and a common back-end for classification
and fusion. The goal of each front-end is to extract language-
related embeddings. Gaussian linear models are used to classify
the embeddings of each front-end, followed by multi-class lo-
gistic regression to calibrate and fuse the different sub-systems.
Experimental results from the NIST LRE 2022 evaluation task
show that our approach achieves competitive performance.
Index Terms: language recognition evaluation, language em-
beddings, deep neural networks, language classification

1. Introduction
NIST 2022 Language Recognition Evaluation (LRE22) [1] is
the latest in a series of evaluations promoted by NIST to as-
sess the current state of the art in language recognition. The
LRE22 task consists of a language detection problem in which
it is necessary to determine whether a specific language from 14
alternatives was spoken in a particular utterance. The main task
consists of a fixed training data condition that allows only cer-
tain datasets to be used for training the recognition systems. The
KPT submission combines the efforts of Politecnico di Torino
and Kore University of Enna for LRE22. Our system is based
on the fusion of 15 sub-systems that use six different deep neu-
ral network (DNN) architectures, described in Section 3, as em-
bedding extractors. Some sub-systems use the same architec-
ture but are trained for a different number of epochs. This so-
lution arises from preliminary results showing the effectiveness
of merging these variants at score level. The same classification
back-end, based on a Gaussian Linear Classifier (GLC) [2], was
used for all sub-systems. The rationale for this choice stems
from our preliminary evaluation, where we assessed several
back-ends, namely: (i) Logistic Regression, (ii) Support Vector
Machines, (iii) Pairwise Support Vector Machines [3, 4], (iv)
Probabilistic Linear Discriminant Analysis (PLDA) [5], and (v)
their duration-aware variants [6, 7, 8]. Although some of these
classifiers (especially PLDA and its extensions) were able to im-
prove performance over GLC for individual sub-systems, they
did not offer advantages over a pure GLC setup when multiple
sub-systems were combined. Calibration of each sub-system
and final fusion were based on linear multi-class logistic regres-
sion [9]. Given the limited amount of LRE22 development data,
care was devoted to devise a training protocol that would allow
the majority of the data to be used for training both the clas-

sification back-ends and the fusion model. Our results show
that our procedure, based on an ad-hoc Leave-One-Out scheme,
achieves very good performance that is consistent across devel-
opment and evaluation data. We also analyze the contribution
of the different models and show that the large number of sys-
tems did not lead to overfitting, despite the limited amount of
training data for target languages. For a comparative analysis of
our results with those of other participants, confirming the ef-
fectiveness of our approach, we refer the reader to [10], where
our submission is identified as team “T2”.1

The paper is organized as follows. Section 2 briefly de-
scribes the LRE22 task and the fixed condition data. Section 3
details our embedding extractors, while Section 4 introduces
our back-end and fusion strategies. The results and analysis of
the contributions of the different building blocks can be found
in Section 5. Finally, we present our conclusions in Section 6.

2. NIST 2022 Language Recognition
Evaluation

The LRE22 fixed condition training set consists of NIST LRE
2017 (LRE17) training and test data [11], VoxLingua-107
(VOX) [12] data and the LRE22 Development set. Among
these, only the latter set contains labeled segments belonging
to the 14 target languages. It consists of 30 audio segments per
language, which have been subdivided into 10 sub-segments per
audio segment by NIST, resulting in a total of 300 audio files per
language with nominal durations ranging from 3 to 93 seconds.

3. Front-ends
Given the limited amount of data for the target languages, the
LRE22 Development set was used only for training the back-
end and fusion models. The embedding extractors were instead
trained on the LRE17 training data and the VOX datasets. These
data were organized into two different lists. The first consists of
all VOX data. The second (VOX + LRE) consists of all VOX
languages not included in the LRE17 set and the LRE17 training
data. The reason for removing a subset of VOX languages is that
LRE17 contains dialects of different languages that are present
in VOX only as a single class. The evaluation part of LRE17
was withheld for internal validation.

3.1. Acoustic features

The embedding extractors were trained with the following two
sets of acoustic features:

1Due to evaluation rules [1], we cannot directly publish compar-
ative results with other teams. The work [10] provides the official,
anonymized results disclosed by the evaluation organizers.
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Figure 1: CNN block for CNN-based networks. The 2D CNN blocks transform the acoustic features in a set of higher-level features
that are then fed to the different deep neural networks.

46 Log-Mel: we extracted 46 Log-Mel band parameters with
short time centering (STC) computed over both speech and
non-speech audio frames. The speech frames were extracted
using energy-based voice activity detection (VAD).
23 MFCC: we extracted 23-dimensional MFCCs with a
frame length of 25ms, which were mean-normalized over a
sliding window. An energy-based VAD was used to filter out
non-speech frames.

3.2. Embedding extractors

Most embedding extractors employ custom implementations of
known architectures. Unless otherwise noted, networks were
trained with 3-second segments and a batch size of 128. We
used Stochastic Gradient Descent (SGD) as the optimizer with
a momentum of 0.9 and a weight decay of 10−4. A cyclic learn-
ing rate approach [13] was adopted, with 10−5 as the starting
value and 10−1 as the maximum value. At each epoch corre-
sponding to one iteration over all segments of the entire training
set, the maximum LR is halved. In our initial experiments, we
found that for some extractors, very few epochs are sufficient
to achieve optimal performance. Therefore, to select the most
promising models, we divided each epoch into 10 mini-epochs
and evaluated the performance of the different networks as a
function of the number of mini-epochs.

In the following, all models whose name starts with CNN
contain an initial module based on 2D convolutions inspired by
[14]. This module, shown in Figure 1, consists of a 2D convolu-
tional layer with a stride of 2, followed by two 2D convolutional
residual blocks, and a final 2D convolutional layer with a stride
of also 2. All layers have a channel size of 128 and a kernel
of size 3. The channel and frequency dimensions of the output
are then flattened to one dimension and used as input for the
different architectures.

3.2.1. CNN-ETDNN

The Extended Time Delay Neural Network (ETDNN) [15] is
the extension of the classical x-vector model introduced in [16].
The network is implemented as in [17], with the addition of the
CNN module mentioned above. The network is trained with a
cross-entropy loss. The resulting embeddings are the output of
the second last fully-connected layer and have a size of 512.

3.2.2. CNN-ECAPA

The ECAPA architecture is implemented according to [18],
with the channel dimension set to 512. The network was trained

using Additive Angular Margin softmax [19, 20] with a margin
of 0.2 and a scale factor of 30. The 192-dimensional embed-
dings are extracted from the last fully-connected layer.

3.2.3. CNN-Factorized TDNN

The Factorized TDNN (FTDNN) [21] introduces a factoriza-
tion of the weight matrix of each layer, with one of the fac-
tors constrained to be semi-orthogonal. We adopt the ”floating”
constraint of [21]. Our implementation follows the details in
[17], and the network is trained with cross-entropy loss. The
512-dimensional embeddings are extracted from the last fully-
connected layer after the pooling layer.

3.2.4. Conformer

The implementation of the Conformer architecture follows [22],
with the sub-sampling module replaced by a 1-dimensional con-
volutional block. The network was trained with Additive Mar-
gin softmax [23, 20] with a margin of 0.2 and a scale factor of
30. The 192-dimensional embeddings are extracted from the
last fully-connected layer.

3.2.5. TDNN

The time-delay neural model (TDNN) is the building block of
the x-vector architecture used to extract the 512-dimensional
language embeddings according to the implementation in [16].
The embeddings are extracted from the second last fully-
connected layer. The model is trained with a natural gradient
extension of SGD with momentum [24]. The learning rate starts
at 0.01 and ends at 0.001 and is decreased by a factor of 10 dur-
ing training with an exponential schedule. For more details on
the training phase, the reader is referred to [24].

3.2.6. MagNetO

The MagNetO architecture is implemented as in [25]. The
network was trained with Additive Margin softmax [23, 20]
with a margin of 0.2 and a scale factor of 40. 512-dimensional
embeddings are extracted from the last fully-connected layer.
SGD was used for training, with a momentum of 0.9 and a
weight decay of 5e−5. An exponentially decaying learning
rate was used during training. The starting LR is 10−1 and is
halved at each epoch.

The set of networks, selected for the final submission based
on fusion results on the development set, is given in Table 1. In
the same table, we also report the model size of each network.
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Table 1: Additional details and results for the different sub-systems of the KPT primary submission.

ID DNN Params Mini Emb. PCA Act Cprim — Dev†† Act Cprim — Eval
epochs† Size Sub-System Net Fusion Sub-System Net Fusion

Training Set: VOX + LRE — Acoustic features: 46 Log-Mel

1 CNN-ECAPA
10.7M

1
192

— 0.337
0.232

0.353
0.2392 CNN-ECAPA 2 150 0.304 0.314

3 CNN-ECAPA 10 150 0.268 0.269

4 CNN-FTDNN

18.5M

7

512

200 0.256

0.202

0.280

0.210
5 CNN-FTDNN 20 200 0.233 0.235
6 CNN-FTDNN 60 200 0.227 0.232
7 CNN-FTDNN 70 200 0.234 0.234
8 CNN-FTDNN 100 200 0.243 0.240

9 CNN-ETDNN 10.7M 50 512 200 0.206 0.202 0.226 0.21910 CNN-ETDNN 70 200 0.210 0.224

11 Conformer
18.4M

10
192

— 0.340
0.302

0.338
0.30112 Conformer 30 — 0.350 0.336

13 Conformer 40 — 0.336 0.343

14 MagNetO 28.5M 30 512 100 0.278 0.278 0.301 0.301

Training Set: VOX — Acoustic features: 23 MFCC

15 TDNN 4.5M 200 512 150 0.325 0.325 0.320 0.320

Primary system (Fusion of all sub-systems) 0.161 0.187

† One epoch (full training set) corresponds to 10 mini-epochs
†† Development results are computed using the LOO approach detailed in Section 4
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Figure 2: Performance of different system fusions on the devel-
opment and evaluation sets. The left-most column (PRIMARY
SYSTEM) refers to the primary submission, that includes all
systems. Left-to-right are the results obtained by incrementally
removing the least contributing sub-system(s), shown on the x-
axis, based on evaluation results. The right-most column corre-
sponds to sub-system ID 10.

4. Back-end, calibration and fusion
The VOXLingua-107 and LRE17 datasets do not contain data
for most of the target languages of LRE22. Therefore, we
used the LRE22 Development set to train the back-end, cal-

ibration, and fusion models as well as for internal evaluation
and model selection. A Gaussian Linear Classifier (GLC) [2]
was trained over the embeddings of each front-end. The em-
beddings were pre-processed using Principal Component Anal-
ysis (PCA), whose dimensionality was chosen to optimize the
results of the fused system rather than those of each individ-
ual sub-system. The PCA dimensions for each sub-system are
given in Table 1. Calibration is based on multi-class logistic
regression [9] trained to compute a linear mapping of the clas-
sification scores to a set of class-conditional log-likelihoods2 .
The model consists of a single scalar and a set of language-
dependent bias terms. Fusion follows a similar strategy, with
a linear model containing a single scalar per sub-system and a
bias vector for each language. In order to use the entire LRE22-
Dev set for training the back-end, calibration, and fusion mod-
els, as well as for evaluating the different systems, we used the
following leave-one-out (LOO) procedure.

• For each language, we group the segments belonging to the
same audio file (30 groups per language).

• For each language, we randomly shuffle the groups and then
iteratively remove one group of segments (for a total of 14
groups per iteration, corresponding to 140 segments), while
using the remaining 29 for training the back-end classifier. At
each iteration i, the 140 removed segments are then scored
with the trained classifier Mi. The scores obtained by each
classifier are then pooled together to form the dataset of
scores used to train the fusion models. An additional model
MP is trained over the entire development set. This model

2Up to an utterance-dependent but language-independent bias that is
irrelevant to compute likelihood ratios.
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Figure 3: Performance as a function of mini-epochs for different architectures (Top-Left: ECAPA, Top-Right: ETDNN, Bottom-Left:
FTDNN, Bottom-Right: Conformer).

is then used to score the evaluation segments.
• We repeat the LOO scheme starting from the raw pooled

scores created in the previous step. The groups are randomly
shuffled again, using a different seed. At each iteration, a
calibration model Ci or a fusion model Fi is trained for each
sub-system or for a combination of sub-systems and applied
to the scores of the left-out segments. The calibrated / fused
scores are then pooled to compute the Dev metrics of Table 1.
The final fusion model FP is trained over the entire set of raw
pooled scores and applied to the evaluation scores generated
by the back-end MP .

5. Results
Table 1 reports the actual primary cost (Cprim) for each sub-
system on the LRE22 evaluation set and on the LRE22 de-
velopment set using the leave-one-out procedure described in
Section 4. For each DNN architecture, we also report the per-
formance of partial fusions (Net Fusion column) that combine
models with the same architecture trained with a different num-
ber of epochs. We can observe that for most architectures the
scores of models trained with different numbers of epochs pro-
vide complementary information and that their fusion improves
the results in both the evaluation and development sets. Fi-
nally, the last row of the table gives the actual costs for our pri-
mary submission (fusion of all individual sub-systems), which
achieved competitive results for the task, as shown in [10],
where our team submission is labeled as “T2”.

To assess the contribution of each sub-system to the primary
fusion, we analyzed the effects of successively removing indi-
vidual sub-systems from our primary fusion. At each step, we
chose to incrementally remove the system that would cause the
least degradation or the best improvement of the actual Cprim

in the evaluation set. The results are shown in Figure 2. The
left-most column corresponds to the fusion of all sub-systems,
while from left to right we report the results obtained by incre-

mentally removing the sub-system(s) with the lowest contribu-
tion. We can observe that (i) our primary submission achieves
close to optimal results, (ii) similar results could have been ob-
tained with a much smaller set of sub-systems, but (iii) the large
number of systems does not cause significant overfitting and the
results on development and evaluation data are mostly consis-
tent, confirming the strength of our training protocol.

Finally, Figure 3 shows the performance of the different
front-ends as a function of mini-epochs (1/10 of an epoch) and
the contribution of the 2D convolutional input blocks described
in Section 3.2. For most architectures, good results can be ob-
tained with a small number of mini-epochs. For ECAPA and
conformers, training for multiple epochs actually leads to sig-
nificant overfitting. Even in this case, the development and eval-
uation results are consistent. We can also observe that the 2D
convolutional input blocks consistently improve performance
for all models.

6. Conclusions
We presented the KPT submission for the NIST 2022 Language
Recognition Evaluation. The primary system was based on the
fusion of multiple sub-systems using different neural network
front-ends for embedding extraction and a GLC classification
back-end. The fusion was implemented through multi-class lo-
gistic regression. We analyzed the impact of our main con-
tributions, a robust protocol for training the back-end, the ex-
tension of DNN embeddings with a 2D CNN input block, and
aggressive early stopping for DNN training, showing that our
approach was indeed effective for the task.
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