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Abstract  34 

The goal of this study is the quantitative characterization of the degree of natural alteration of marble samples by 35 

using image analysis for the automatic characterization and comparison of the pore structure of rock samples 36 

before and after weathering. The proposed methodology is based on a pore exploration path finding algorithm for 37 

the identification of paths developing within the porous domain of marble samples in both natural conditions and 38 

after weathering. Along each identified path the pore radius is measured providing a thorough description of the 39 

pore space statistical distribution. The A* path finding approach was developed and applied to binarized images 40 

obtained from 2D thin sections of marble samples in both natural conditions and after 10 years of natural decay. 41 

The results are expressed in terms of 2D porosity and statistical distributions of the pore radius of the samples pre 42 

and post weathering. A comparison with the information obtained from standardized laboratory tests used for the 43 

physical and mechanical characterization of stone material is also provided. From a computational point of view, 44 

the presented approach is highly parallelizable. The presented approach works wells in complex porous structures 45 

characterized by high path tortuosity, pore size heterogeneity and pore surface roughness. Moreover, the 46 

methodology is less affected by small-scale pore features and noise, produced during image binarization, compared 47 

to other algorithms for pore structure morphological analysis such as skeleton-based and maximal ball approaches.  48 

 49 

Keywords: marble weathering, pore network characterization, path finding, pore radius, image analysis 50 

 51 

1 Introduction 52 

The degradation of natural stone materials due to the interaction with the surrounding environment is strongly 53 

affected by the chemical and mineralogical composition and the physical-structural properties of the material. The 54 

active degradation processes are mainly governed by the microclimatic conditions of the environment (i.e., 55 

temperature, humidity, wind, rainfall), the conditions of installation and surface smoothing. One of the agents 56 

responsible for the degradation of stone materials is water, which can act, either directly or indirectly, through 57 

rainfall, condensation, humidity and/or rising humidity. Those alterations occur over a long period of time and 58 

mainly affect the external surface of the stone (Franzen and Mirwald, 2004).  59 

The quantity and structure of the voids inside the stone change with decay (Nicholson, 2001) and the measurement 60 

of porosity provides the degree of this transformation (Da Fonseca et al., 2021; Çelik and Sert, 2021). The 61 

deterioration of the stone slabs, used in construction as external cladding, affects stone mechanical resistance 62 
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because the increase in porosity deriving from decohesion produces a decrease in mechanical resistance (Ju et al., 63 

2022; Ferrero et al., 2014). The relation between stone porosity and decay has been investigated by studying the 64 

petrographic features and bowing phenomenon for over 30 years (Winkler, 1985; Grelk et al., 2007; Schouenborg 65 

et al., 2007; Marini and Bellopede, 2009; Sousa et al., 2021). Physical and mechanical stone characterization is 66 

conventionally carried out through standardized laboratory tests. Porosity can be evaluated through the 67 

measurement of Open Porosity (EN 11936), expressing the volume of the open pores present on the surfaces of 68 

the specimen, and Water Absorption (EN 13755) indicating the mass of water that can enter through the open 69 

pores (Winkler, 1985; Ozcelik and Ozguven, 2014; Aral et al., 2021). Other tests for porosity estimation are Hg 70 

intrusion porosimetry (also named MIP), polarized light and fluorescent optical microscopy and micro computed 71 

tomography (micro-CT) (Cnudde et al., 2009; Du Plessis. 2016; Murru et al., 2018; Scrivano et al., 2018).  72 

The comparison of data obtained by means of the previously mentioned tests on specimens in natural and 73 

weathered conditions provides reliable indications on the physical and mechanical behavior of rock allowing to 74 

foresee the weathering resistance of the analyzed stone. However, Cnudde et al. (2009) found that the direct 75 

correlation between micro-CT and MIP data with total porosity and pore-size distribution curves, is difficult. 76 

Automated approaches for quantifying stone weathering from porosity through image analysis have been proposed 77 

(Buckman et al., 2017; Datta et al., 2016; Pal et al., 2022 and reference therein). However, for a more through 78 

description of stone alteration, porosity should be coupled with a more local evaluation of the change in the pre- 79 

and post-weathered pore size pore distribution. 80 

Several geometric methods based on pore structure extraction from 2D and 3D image analysis are proposed in the 81 

literature. Among others, segmentation-based algorithms (Øren and Bakke, 2003; Sheppard et al., 2004; Rabbani 82 

et al., 2014; Gotstick, 2017; Xu et al., 2020) allow the determination of the pore connectivity and calculation of 83 

the pore radius on segmented pore portions. However, these algorithms are sensitive to pore surface roughness and 84 

need supervision during image binarization (Wang et al., 2020). The fractal geometry approach (Xu and Yu., 2008; 85 

Xiao et al., 2019; Cai et al., 2019), and percolation theory (Liu et al., 2014 and references therein) are mainly used 86 

for total porosity and permeability estimation. Algorithms for pore skeleton extraction such as medial-axis 87 

(Lindquist et al., 1996), medial surface (Al-Raoush and Madhoun, 2017), and thinning process can be coupled 88 

with post-processing routines for pore radius estimation (Liang et al., 2019). However, these approaches can 89 

underestimate the size of the pores especially when a second medial axis junction is present within the node radius 90 

(Wang et al., 2020). Moreover, they are very sensitive to minor object boundary perturbations caused by image 91 

discretization, binarization and noise (Shaked and Bruckstein, 1998). Pore structure can be characterized through 92 

the Maximal Ball Method which consists in clustering balls into pore throats according to their sizes (Arand and 93 
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Hesser, 2017). However, this method can underestimate the pore space when it is tortuous (Wang et al., 2020). 94 

Convolutional neural networks (CNN) can be used to estimate porosity, average pore size and specific surface of 95 

the porous rocks (Alqahtani et al., 2020) as well as to estimate morphological, hydraulic, electrical, and mechanical 96 

characteristics based on micro-tomography images of porous geo-materials (Rabbani et al. 2020). The CNN 97 

approach is extremely fast but it needs to be trained on a large dataset of images. The availability of the images of 98 

stone before and after natural weathering is very limited; the application of data augmentation techniques is not 99 

recommended because of the lack in diversity of the available images (Shorten et al. 2019).   100 

A promising approach is based on the A*path finding method to explore the porous domain using binarized images. 101 

The A* algorithm allows the identification of paths developing within the porous domain in which fluid circulation 102 

can occur. The identified paths can be exploited to estimate various geometrical parameters characterizing the 103 

porous space such as tortuosity, effective porosity and permeability from 2D and 3D binary images of well-104 

connected rock samples (Viberti et al., 2020; Salina Borello et al., 2022).  105 

In this study a revisited version of the approach presented by Viberti et al. (2020) is adopted to quantitatively 106 

characterize the pore structure of 2D images of marble samples before and after 10 years of natural decay. The 107 

advantage of using the A* is that the algorithm is less affected by complex pore structure, having high path 108 

tortuosity, pore size heterogeneities and pore surface roughness, compared to skeleton-based and maximal ball 109 

approaches. Results are compared with degradation information obtained by standard experimental procedures 110 

(variations in ultrasound propagation speed, variation in flexural strength, and water absorption) in order to verify 111 

if the variations of the physical parameters obtained with standard laboratory tests are in agreement with the 112 

variations of the parameters evaluated with the use of the * A algorithm.  113 

2 Materials and Methods 114 

2.1 Rock sample description  115 

The analyzed rock, named C1, is a white marble with light gray veins (Fig.1) obtained from the Tuscan extracting 116 

basin. The composition of the marble is predominantly calcitic with some dolomitic rhombic crystals. Quartz is 117 

instead present as an accessory mineral. The marble is made up of subhedral blasts sometimes interlobated with 118 

dimensions ranging from 300 to 600 microns approximately with a slightly anisotropic microstructure. 119 

One sample of the marble studied in this work (C1) was exposed to external degradation agents for about ten years 120 

on the roof of the DIATI (Environmental, Land and Infrastructure Engineering Department) at the Politecnico di 121 

Torino, while the other sample comes from a slab of the same marble in natural condition.          122 
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2.2 Physical and mechanical tests  123 

The physical and mechanical stone characterization is carried out through conventional and destructive tests such 124 

as flexural strength coupled with non-destructive tests such as ultrasonic pulse velocity and water absorption 125 

performed in the laboratory by means of standardized tests (EN 14579, UNI EN 12372, UNI 11432, EN 13755). 126 

Two water absorption tests were carried out: water absorption (WA) by means of a contact sponge and water 127 

absorption (Ab) at atmospheric pressure. They are simple and cheap standardized approaches used for testing 128 

natural stones, widely used in stone laboratories as it is required for the CE marking.  129 

All tests were performed both on weathered and non-weathered samples of C1 with dimensions according to 130 

standars of each test described in the following sections 131 

2.2.1 Variations in ultrasound propagation speed – UPV 132 

The UPV (Ultrasonic Pulse Velocity) test is a fast and efficient non-invasive approach for defining the mechanical 133 

properties of a stone material. This method is based on the principle of the propagation of mechanical oscillations 134 

in the ultrasound field: a transducer held in contact with the surface of the test material produces ultrasounds, 135 

which after having crossed a path of known length within this material, are received from a second transducer and 136 

converted into an electrical signal. It is possible to determine the characteristic speed of the material once the time 137 

needed to cross this space is calculated. This speed is linked to the type of material and to its physical and 138 

mechanical characteristics such as the crystalline structure, porosity and cohesion (Rasolofosaon et al., 2000). The 139 

alteration of the properties of the material which underwent natural deterioration can be analyzed by comparing 140 

the propagation speed of the weathered sample with the original one characterized by unaltered properties. The 141 

degradation progress of the material is associated to a worsening of its mechanical characteristics and, 142 

consequently, to a lowering of the ultrasound propagation speed compared to the one measured in the unaltered 143 

sample. The test has been carried out on 10 specimens. The test results indicate that the measured propagation of 144 

ultrasounds obtained from indirect method (EN 14579 (2005) standard) shows consistent variations in speed 145 

between altered and unaltered specimens (Tab. 1).  146 

 147 

2.2.2 Variation in flexural strength 148 

Flexural strength is defined as the resistance of a material to the forces that tend to bend it. This test is based on 149 

the principle that a body undergoing a bending stress, due to the constraints to which it is subjected, reacts by 150 



6 
 

opposing a system of forces applied by means of a mechanical press, which would tend to make it rotate around 151 

one of its points. The methods of carrying out the flexural strength test are described by the European Standard 152 

UNI EN 12372 (2001). The test has been carried out on 10 specimens. Results are reported in Tab. 2. 153 

2.2.3 Variation of water absorption (WA) by means of a contact sponge 154 

Water absorption by contact sponge is a quick test which can be carried out directly in situ and is part of the Italian 155 

Cultural Heritage standards. The contact sponge method is used to determine the amount of water absorbed by the 156 

stone material per surface unit as a function of a pre-determined time interval equal to 60 seconds. The test is 157 

carried out, both in the laboratory and in situ, on flat surfaces and the procedure is described in the Italian standard 158 

UNI 11432 (2011). Through this test, it is possible to make qualitative considerations on the degree of absorption 159 

of the material at its surface and to compare the variations of this parameter on altered and unaltered specimens. 160 

The test has been carried out on 10 specimens.  The results are reported in Tab. 3. 161 

2.2.4 Variation of water absorption (Ab) at atmospheric pressure. 162 

Water absorption capacity Ab is represented by the percentage ratio between the mass of water absorbed and the 163 

dry weight of the specimen. This value is determined by following the procedure described in the European 164 

Standard UNI EN 13755 (2001). The results allow a direct comparison between the characteristics of the non-165 

degraded and degraded material, both within it and on its surface. The test has been carried out on 10 specimens.  166 

Results are reported in Tab. 4. 167 

2.2.5 Discussion 168 

All the physical tests carried out on the weathered and non-weathered specimens show how there is significant 169 

increase in water absorption both at atmospheric pressure and by means of a contact sponge in the specimen that 170 

underwent natural aging. The values of flexural strength and speed of propagation of ultrasonic waves confirm a 171 

worsening of the mechanical characteristics of the specimen subjected to aging. 172 

 173 

 174 

2.3 Pore structure characterization from image analysis 175 

The characterization of the rock pore structure is obtained by analyzing a number of binarized microscope images 176 

acquired from 2D thin sections obtained from impregnated specimens: a horizontal section on the non-weathered 177 
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specimen (initial), three horizontal sections taken at different depths (epar1, epar2 and epar3) from the weathered 178 

specimen, and a vertical section (transv) taken from the weathered specimen (see fig. 4). The impregnation process 179 

was carried out with epoxy resin and methylene blue, repeatedly, under vacuum in order to obtain a smooth surface, 180 

when viewed under the macroscope. Each image is processed for the identification and characterization of paths 181 

developing within the porous domain through a revisited version of the approach presented by Viberti et al. (2020). 182 

This technique was successfully used by the authors to estimate tortuosity, effective porosity and permeability 183 

from 2D binary images of well-connected rock samples. Here the methodology has been revisited to allow a good 184 

exploration of poorly connected samples/areas, focusing on pore size characterization. 185 

The adopted workflow is qualitatively described in the flow chart in Fig. 2. 186 

2.3.1 Image acquisition and binarization 187 

Thin sections of marble samples described in paragraph 2.1, representative of pre- and post-weathering conditions, 188 

were analyzed and compared. The images were acquired using a Leica MZ6 macroscope (40X magnification) and 189 

photographed by means of the Panasonic Lumix CMD-GF6 digital camera in *.tiff format at 12 Mpixels, with an 190 

image resolution of 0.8 µm per pixel. Square subsections of 2.47 mm per side were extracted to avoid the peripheral 191 

darkening (vignetting) reproducing the optical edge of the macroscope’s light path. Digital processing was then 192 

applied to the images to highlight and extrapolate the impregnated paths according to the following steps: 193 

 194 

1 Preliminary tuning of image parameters such as intensity, gamma, saturation, brightness and contrast is 195 

applied to highlight the impregnated paths: originally blue on a gray background, impregnated paths 196 

become light green on a purple background (see Fig. 5). 197 

2 Gauss blur (µ=0, σ=3) is applied to avoid artificial path fragmentation due to noise.  198 

3 Image is binarized according to a color-based mask: 199 

a. Being the impregnated paths green, a greenness index (𝑖𝑖𝑔𝑔) is calculated for each pixel:   200 

𝑖𝑖𝑔𝑔 = 𝑔𝑔
𝑟𝑟+𝑏𝑏

      (1) 201 

Where r, g and b are the normalized RGB components of the images. The color index approach 202 

is borrowed by image analysis of microfluidics (Mauk et al., 2013). 203 

b. A greenness threshold (𝑡𝑡) is fixed as the 80th percentiles of the greenness distribution within the 204 

image.  205 

c. All pixels with 𝑖𝑖𝑔𝑔 > 𝑡𝑡    are assumed to be impregnated pixels and are assigned digital value 1 206 
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(depicted in white); all remaining pixels are assigned digital value 0 (depicted in black).  207 

4 Bicubic interpolation with threshold 0.5 is applied to remove possible isolated pixels and to reduce the 208 

computational cost of the subsequent analysis; the final resolution of the binarized images is 4 µm per 209 

pixel.  210 

 211 

Accuracy of image binarization was qualitatively evaluated by visual inspection. An example is shown in Fig. 6. 212 

Further insights on image binarization are beyond the scope of this work.  213 

A number of images representing well-spaced subsections were acquired from each thin section to guarantee a 214 

statistical representativeness of the results. The number of images depends on the degree of heterogeneity of the 215 

pore network observed within the thin section e.g., higher heterogeneity requires a higher number of images to 216 

statistically represent the geometrical layout of the pore network.  217 

High heterogeneity was observed, especially in the non-weathered and in the transversal sections. Five images 218 

were acquired for the weathered horizontal sections (epar1, epar2 and epar3), while nine images were considered 219 

for the non-weathered thin section (initial) and for the vertical (transv). The latter were divided in three groups: 3 220 

subsections near the top (transv1), 3 in the middle (transv2) and 3 near the bottom (transv3) (see Fig. 3). This 221 

subsection grouping allows the correlation between the horizontal and transversal subsections through the 222 

association of epar1-transv1, epar2-transv2 and epar3-transv3 subsections as qualitatively shown in Fig. 4. For 223 

example, some subsections are shown in Fig. 5 while the image binarization process is shown in Fig. 6 for one 224 

subsection of transv2. 225 

2.3.2 Path identification in the porous domain 226 

The pore network is characterized by the identification of paths based on the approach presented by Viberti et al. 227 

(2020) which relies on the A* pathfinding algorithm (Hart et al., 1968; Nilsson, 2014). A* is widely used to search 228 

for the shortest path between a starting and an end point (Russel and Norvig, 2018). Each calculated path is 229 

represented by a continuous graph developing from an initial to a final node which are connected through a set of 230 

nodes and edges. Each node is identified by its coordinates. Only the continuous paths able to connect an initial 231 

and final node are stored and used for pore network description (Viberti et al., 2020, Salina Borello et al., 2022). 232 

However, when dealing with a marble pore structure characterized by truncated connectivity, the application of 233 

A* to the binarized image is less effective due to the significant presence of dead-end paths (i.e., paths forming at 234 

the initial node but not reaching the associated final node). Such paths would not be stored, thus blocking the 235 

exploration of the inner part of the image. Therefore, a better characterization of the pore network of the poorly 236 
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connected areas of the image is achieved by adopting some modifications in the algorithm.  237 

First of all, dead-end paths are recorded and accounted for. This is achieved by identifying the point at which a 238 

dead end is reached during the path construction and store the path up to that point. Furthermore, each binarized 239 

2D image is subdivided into sub-windows Fig. 7b) and inlet/outlet nodes are identified on the opposite sub-window 240 

boundaries to investigate the path construction along the main directions (x,y). This allows the construction of 241 

paths in the inner zones of the image even if connectivity is not preserved. 242 

For the cases presented 36 sub-windows of 0.412 x 0.412 mm were adopted as a result of preliminary sensitivities. 243 

For each of the 36 sub-windows, a set of nodes corresponding to the pore channel centers is located along the four 244 

boundaries of the sub-image considering four main path development directions (N-S, S-N, E-W, W-E). The nodes 245 

along the boundaries are then set as initial or final based on the considered direction (e.g., in the N-S scenario the 246 

initial nodes are located on the top boundary while the final nodes on the bottom boundary). Along each direction 247 

A* is run for each initial/final node pair combination giving a total number of 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 x 𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  output paths for 248 

each main direction. Each path is resampled so that a path node is placed at each pixel crossed by a path (Viberti 249 

et al., 2020). Eventually, the four sets of paths (N-S, S-N, E-W, W-E) are merged for each window (Fig. 7c-e). 250 

The final output that accounts for all the 36 sub-windows is shown in Fig. 7d. The construction path process 251 

described above can be highly optimized through parallelization. 252 

2.3.3 Pore space characterization  253 

The analysis of the weathering effect on marble slabs is carried out through the statistical characterization and 254 

comparison of the pre- and post-weathered marble samples. Total porosity is calculated for each binarized image 255 

by simply computing the ratio between void (e.g., pores) and total image area. Furthermore, the identified paths 256 

are exploited for inner pore network characterization. The local pore radius is calculated at each path node location 257 

along each path. This is achieved by identifying the local path direction (path slope) and by counting the number 258 

of pore cells (e.g., white pixels) along the axis orthogonal to the local path direction as qualitatively shown in Fig. 259 

8. It is possible to calculate the pore radius at a specific node location by knowing the pixel dimension. A more 260 

thorough description of the pore radius calculation is provided by Viberti et al. (2020) and Salina Borello et al. 261 

(2022). Eventually, the statistical outputs are extrapolated from porosity and pore size distributions. 262 

3 Results and discussion 263 

For all the analyzed images, a good pore space exploration was provided both in well-connected areas (Fig. 9c and 264 

Fig. 9e) as well as in poorly connected areas (Fig. 9a-b and Fig. 9d). Results on the total porosity distribution for 265 
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the pre- (initial) and post- weathering (epar1, epar2, epar3, transv1, transv2, tramsv3) sections are compared and 266 

summarized as percentiles (P10, P25, P50, P75 and P90) in Tab. 5, and as boxplots in Fig. 11a where the box 267 

represents the P25-P75 range, the horizontal line the P10-P90 range and the vertical line the P50. Results on pore 268 

radius distribution for the pre (initial) and post weathering (epar1, epar2, epar3, transv1, transv2, transv3) sections 269 

are compared and summarized as distribution percentiles in Tab. 6, as histograms in Fig. 10 and as boxplots in 270 

Fig. 11b. 271 

The result comparison given in Fig. 10a and 10b shows a significant pore radius increase after weathering, 272 

especially at the bottom section (epar3). The increase of the pore radius after weathering is comparable in the 273 

median value (P50) between epar3 (20%) and epar1 (13%); the difference is more evident in the P90 where epar3 274 

shows an increase of 30% vs. 9% for epar1. However, low percentile values are almost unchanged with respect to 275 

the non-weathered sample indicating that small pores were less affected by degradation. Conversely, the 276 

distribution on the internal section (epar2) is almost unchanged.  277 

A coherent behavior is observed on the transversal sections (Fig. 10b), where the distribution of the bottom part 278 

(transv3) is shifted to higher pore radius values while the distribution of the middle part (transv2) is concentrated 279 

on lower pore radius values. However, as the sections were taken along the vertical direction, quantitative results 280 

are not fully comparable with the initial horizontal sections. For instance, the middle part distribution of the 281 

transversal section (transv2) shows lower percentiles with respect to the initial section for both total porosity and 282 

pore radius.  283 

The significant change in pore structure highlighted by the pore radius distribution is confirmed by a significant 284 

increase in total porosity. By comparing total porosity calculated from the horizontal section of the non-weathered 285 

marble (initial) with sections of naturally weathered specimens (epar1, epar2 and epar3) (Fig. 11a), the porosity 286 

increase, in terms of P50, is about 90% for epar3 and 54% for epar1 and even doubled if considering P25 (about 287 

170% for epar3 and 123% for epar1). A not negligible porosity increase is observed also in epar2, but way lower 288 

than in the other two sections.  289 

The same trend is observed at the transversal sections: bottom subsections (transv3) show a significantly higher 290 

porosity value with respect to the other subsections (transv2 and transv1). 291 

The detected degradation is in good agreement with the decreasing of mechanical resistance observed in 292 

experimental measurements of flexural strength and Ultrasound Pulse Velocity (Tab. 1). In fact, the increase in 293 

the average size of the pores is closely correlated both to the decrease in flexural strength and to the reduction in 294 

the ultrasound propagation speed. Moreover, the experimentally measured increase of more than 200% in water 295 

adsorption (Tab. 3 and Tab. 4) is coherent with the 170% increase of P25 of total porosity observed on epar3. 296 
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 297 
The analysis carried out when applying the A* algorithm on 2D thin section images from pre- and post- weathered 298 

marble slabs, provide a quantitative characterization of the 2D pore structure alteration. Within each identified 299 

group (top, mid, bottom in fig. 4) the corresponding epar and transversal sections show a coherent behavior. It 300 

stands to reason that a 2D analysis can qualitatively mirror a similar alteration degree of the pore structure in the 301 

three-dimensional space. However, in order to quantitatively describe the 3D pore network characteristics and the 302 

propagation of the weathering effect within the porous domain of the rock sample, a more thorough analysis would 303 

require further investigation using 3D micro-CT image as an input for A*, which could then be easily applied to 304 

the 3D rock image (Salina Borello et al., 2022). 305 

4 Conclusions 306 

Stone degradation induces a change in the pore structure resulting in the reduction of mechanical resistance of the 307 

material. Therefore, the evaluation of a change in porosity as well as in the pore structure can provide insights on 308 

the degree of transformation of the physical characteristics of the stone. 309 

In this study, several samples of a marble slab, both in natural conditions and after 10 years of natural weathering, 310 

have been analyzed to study the relationship between the weathering effect and porosity and pore structure 311 

variation. 312 

An automatic approach has been used to quantitively evaluate the pore radius distribution within the porous 313 

domain. The method has been applied to 2D binarized images obtained from the digitalization of marble thin 314 

sections pre- and post- weathering. The images were analyzed using the A* path finding algorithm. This algorithm 315 

can efficiently work with complex pore structure being less affected by the geometry of the porous domain. It is 316 

possible to calculate the local pore radius extension along each identified path. The pre- and post- weathering pore 317 

radius distribution comparison allows a quantitative evaluation of the degree of variation of the pore structure.  318 

The results highlight an increase in water absorption which occurred naturally in the specimen at 10-year exposure 319 

compared to the non-weathered sections. The increase in the average size of the pores correlates well with the 320 

results obtained from conventional laboratory tests, which highlight a decrease in flexural strength, a reduction in 321 

the ultrasound propagation speed and an increase in water absorption.  322 

Future work should be focused on the investigation of pore space connectivity distribution within the image. The 323 

A* can be easily applied to extract this data. Connectivity could be then coupled with pore size variation to obtain 324 

further insights on the effect of weathering to the pore structure.  325 

 326 
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Data Availability Statement 327 

Some or all data, models, or code that support the findings of this study are available from the 328 

corresponding author upon reasonable request, such as pore throat calculation script. 329 
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List of figure captions 475 

Fig. 1:  Thin section in parallel light (left) and in polarized light (right)of the marble C1 (long side is of 1,37 mm). 476 

Fig. 2: Workflow 477 

Fig. 3: Qualitative representation of a thin section image subdivision into subsections. Example of the transversal 478 

thin section in which three main groups are identified, each having 3 subsections, along the top row (transv1), 479 

middle row (transv2) and bottom row (transv3). 480 

Fig. 4: Qualitative representation of the weathered thin section position with respect to the marble slab and the 481 

correspondence between epar sections and transv subsections. 482 

Fig. 5: Images of some subsections from thin sections of impregnated marble, after preliminary image processing: 483 

(a) non- weathered, (b) epar2, (c) epar3, (d) transv (middle), (e) transv (bottom - center). 484 

Fig. 6: Binarization process: (a) image from thin section, after preliminary image processing; (b) superposition of 485 

image and binary mask; (c) downsampled binary image. 486 

Fig. 7: Schematic representation of the approach used to increase algorithm exploration in poorly connected areas: 487 

(a) original binarized image; (b) image subdivision into 36 sub-windows; (c) example of path creation result within 488 

an individual sub-window; (d) final output image that accounts for the contribution of all the 36 sub-windows; (e) 489 

path creation along the main four directions (N-S, S-N, E-W, W-E) and path merging within a sub-window (right). 490 

Fig. 8: Qualitative representation of pore throat description along a path. At each path node individuated by A* 491 

the pore size is calculated perpendicularly to the local path direction. Only a few path nodes are shown as example. 492 

Fig. 9: Examples of paths identified within the porous structure of the binarized images: (a) non- weathered, (b) 493 

epar2, (c) epar3, (d) transv (middle), (e) transv (bottom - center). 494 

Fig. 10: Comparison of pore radius distribution (a) in the horizontal sections before and post weathering, and (b) 495 

in the three subdivisions (top, middle, bottom) of the transversal sections of the weathered sample. 496 

Fig. 11: Statistical comparison between the horizontal and vertical subsections: (a) Pore radius distribution; (b) 497 

porosity distribution. The vertical lines represent the mean values, the box limits are the P25 (left) and the P75 498 

(right) values while the line limits represent the P10 (left) and the P90 (right). 499 

 500 
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Table. 1: Final results of UPV measurements: Velocities (v), standard deviation (St. dev.) and variations between 501 

non-weathered and weathered specimen (∆v) at different ultrasound oscillation frequencies (f). 502 

Specimen 
f = 33 kHz f=250 kHz 

v 
[m/s] 

St. dev. 
[m/s] 

∆v 
[%] 

v 
[m/s] 

St. dev. 
[m/s] 

∆v 
[%] 

non-weathered 2422 54 
-16,43 

3823 12 
-42,32 

weathered 2024 187 2205 193 
 503 

 504 

 505 
Table. 2: Flexural strength (σ) test results. 506 

Specimen σ 
[MPa] 

St.dev. 
[MPa] 

∆ σ 
[%] 

non-weathered 12,9 4,5 
-28,48 

weathered 9,2 1,9 
 507 

 508 

 509 
Table. 3: Final values of the water absorption capacity (WA) obtained by means of contact sponge. 510 

Specimen 
W A 

�
𝒈𝒈

𝒄𝒄𝒄𝒄𝟐𝟐 ∙ 𝒎𝒎𝒎𝒎𝒎𝒎
� 

St. dev. 
�

𝒈𝒈
𝒄𝒄𝒄𝒄𝟐𝟐 ∙ 𝒎𝒎𝒎𝒎𝒎𝒎

� 
∆ W A  

[%] 

non-weathered 3,37E-03 1,69E-03 
293,75 

weathered 1,33E-02 8,05E-03 
 511 

 512 
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Table. 4: Final values of the water absorption capacity (Ab) obtained at atmospheric pressure. 513 

Specimen Ab 
[%] 

St.dev. 
[%] 

∆ Ab 
[%] 

non-weathered 0,186 0,072 
203,49 

weathered 0,564 0,065 
 514 

 515 

 516 
Table. 5: Percentile values of the porosity distribution. 517 

Section 
Porosity (%) 

P10 P25 P50 P75 P90 

Initial 5.3467 8.1283 14.5186 21.8309 23.5754 

Epar1 17.8861 18.1874 22.3606 26.8697 28.3669 

Epar2 16.8431 17.9868 19.5253 23.8747 31.5994 

Epar3 20.7917 22.0146 27.5460 28.5460 28.5814 

Transv1 6.3058 7.8469 12.4700 20.2944 22.9025 

Transv2 10.6411 10.7863 11.2219 18.0451 20.3194 

Transv3 18.7181 20.0354 23.9875 26.2819 27.0467 
518 
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Table. 6: Percentile values of the pore radius distribution. 519 

Section 
Pore Radius Distribution (µm) 

P10 P25 P50 P75 P90 

Initial 4 5.6569 10 16.9706 26 

Epar1 4 6 11.3137 16.9706 28.2843 

Epar2 4 6 10 16.9706 28 

Epar3 4 8 12 20 33.9411 

Trasnv1 2.8284 5.6569 8.4853 16 26 

Transv2 2.8284 5.6569 8.4853 14.1421 24 

Transv3 4 6 10 16.9706 30 
 520 
 521 
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