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Leader-Follower Formation of Second-Order
Agents via Delayed Relative Displacement

Feedback
Fausto Francesco Lizzio1, Elisa Capello2 and Yasumasa Fujisaki3

Abstract— This paper investigates a leader-follower for-
mation of a group of second-order agents, considering an
undirected and connected topology. It is assumed that no
velocity information is available, and that a uniform delay
affects the processing of the displacement information. To
address these issues, a delayed relative displacement feed-
back is introduced. A necessary and sufficient condition
for stability is derived in terms of a delay threshold, given
that the delay-free controller is stable. Moreover, a stability
region in the complex plane for the eigenvalues of the
Laplacian interaction matrix is introduced. The results are
illustrated through numerical examples.

Index Terms— distributed control, stability of linear sys-
tems, delay systems, networked control systems.

I. INTRODUCTION

Consensus theory has gained significant attention in recent
years as a distributed control method for multi-agent sys-
tems. One of the most studied applications of consensus is
the leader-follower formation of autonomous vehicles. Some
prominent results can be found in [1], where consensus
is achieved employing a relative displacement and velocity
feedback, coupled through a Laplacian interaction matrix.

However, the availability of velocity measurements may
be unfeasible for some mission scenarios, as in [2]. Some
examples, in which consensus protocols can rely solely on the
displacement information, can be found in literature. The work
of [3] augments the state of the controller with two internal
variables to reach consensus through a passivity approach. In
[4], an observer-type consensus controller is introduced for
general linear systems, and it is extended to a leader-follower
topology in [5]. The work of [6] deals with the unavailability
of relative velocity measurements through an augmented state
variable, despite assuming that each agent is aware of its own
velocity information. Finally, in [7], an internal controller state
is used to achieve consensus in both position and velocity,
considering the unavailability of any velocity measurement.
This result stems from a stability condition [8] of a dynamical
system described by coupled differential equations of first-
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and second-order, and it is extended to a leader-follower
framework in [9].

Another issue, frequently encountered in consensus, is the
presence of delays in the interaction network. Time delays are
classified into communication delays, affecting the information
coming from neighboring agents as in [10], input delays,
acting on the agents’ self-states as in [11], and information
processing delays, impacting both as in [12]. A trade-off
between network connectivity and tolerance against delays
is presented in [12] for first-order delayed linear systems.
Moreover, in [10], it is shown that communication delays
alone can not yield instability. However, the behaviour of
autonomous vehicles is better modelled through a second-
order dynamics. In this case, communication delays can lead
the system to instability, and the delay-free controller has to
satisfy certain conditions to ensure the possibility of reaching
consensus in the delayed case, as proved in [13].

Frequency domain approaches are commonly employed
to deal with delayed second-order systems, in which the
factorization of the characteristic equation allows to decouple
the system modes. These procedures simplify considerably the
analytical formulation, and are able to provide the exact delay
threshold for stability change. The work of [14] applies this
method to a group of double-integrator agents performing a
rendez-vous, and it is extended to a leader-follower topology in
[15] and to generate a formation in [16]. A similar procedure is
employed in [17] to deal with a general second-order dynamic
system, and is further developed by introducing a stability
region for the proportional-derivative control gains in [18],
and for diverse time delays in [19]. Also the work of [20]
employs a similar approach, and introduces an integral term
in the consensus protocol. However, these methods consider
the availability of velocity measurements. Also, the stability
analysis has to be repeated for each of the system modes,
which are as many as the number of agents.

In this paper, we consider the case in which only relative
displacement sensors are installed on-board, so that no ve-
locity information is available. Moreover, we assume that the
controller is able to handle the measurements after a certain
processing delay. A relative displacement feedback as in [7],
[21] is employed to obtain a stable controller in the delay-free
case. Then, it is proved that this controller is able to reach
consensus in both position and velocity if and only if the delay
is lower than a certain threshold, which is related to the largest
eigenvalue of the Laplacian matrix. Different from [22], we



consider the undelayed displacement information unavailable.
Different from [23], we consider the agents’ own velocities
unavailable. Also, as a key point, we define a stability region
in the complex plane for the eigenvalues of the Laplacian
matrix, that allows to promptly assess the stability of the
system even with a large number of agents. Indeed, the link
between the delay threshold and the largest eigenvalue of the
Laplacian matrix is explicitly stated. A similar stability region
was discussed in [4] and [5] for an undelayed controller.

The paper is organized as follows. In Section II, the relative
displacement feedback is introduced, along with the infor-
mation processing delay. Section III presents the necessary
and sufficient conditions for the stability of the system, while
Section IV provides some numerical examples. In Section V,
several concluding remarks are given. An Appendix contains
some important theoretical results.

II. PRELIMINARIES
Consider N second-order agents called followers

mẍi(t) = ui(t), i = 1, . . . ,N, (1)

being m > 0 the mass, xi(t) ∈ R the position, and ui(t) ∈ R
the control input of agent i, and a free-motion leader

mẍ0(t) = 0, (2)

as in [9]. Denote as hi −h0 the desired relative displacement
between agent i and the leader.

The objective of this work is to establish a consensus control
law achieving a leader-follower formation

lim
t→∞

(ẋi(t)− ẋ0(t)) = 0, lim
t→∞

(xi(t)− x0(t)) = hi −h0,

for i = 1, . . . ,N, assuming that no velocity information is
available, and that a uniform delay affects the displacement
information processing.

To this end, consider the following delayed relative dis-
placement feedback

ui(t) =−zi(t)− γ p ∑
j∈Ni

(
(xi(t − τ)−hi)− (x j(t − τ)−h j)

)
(3)

żi(t)
γ

=−zi(t)− (γ p−q) ∑
j∈Ni

(
(xi(t − τ)−hi)

− (x j(t − τ)−h j)
)
, (4)

for i = 1, . . . ,N, where zi(t) ∈ R is the internal state of the
controller, γ , p and q are positive parameters, and Ni ⊆
{0,1,2, . . . ,N} is the set of agents adjacent to agent i. The
delay τ ≥ 0 is assumed to be uniform and to affect the position
information but not the internal state zi(t), which is promptly
available to the controller as in [23].

The reason behind the choice of this controller is that, when
τ = 0, the substitution of the Laplace transform of the state
(4) into the control input (3) leads to

ui(s) =− ps+q
(1/γ)s+1 ∑

j∈Ni

(
(xi(s)−hi)− (x j(s)−h j)

)
.

This input can be treated as a PD-type control law, if γ is
large enough that the denominator dynamics of the previous

equation can be neglected. Indeed, the work of [7], [21]
showed that the delay-free controller ensures consensus in both
position and velocity if

γ >
q
p
.

Throughout the paper, we assume that this condition holds.
Let us define the graph Laplacian L ∈ RN×N whose {i, j}-

th element ℓi j is −1 if j ∈ Ni, ∑
N
j=1, j ̸=i |ℓi j| if j = i, or 0

otherwise. Similarly, we define the interaction vector between
leader and followers as l0 ∈RN , whose i-th element ℓi0 is 1 if
0 ∈ Ni, or 0 otherwise.

In this work, we assume that the interaction topology among
followers is undirected and connected, so that

L = LT ≥ 0, L1N = 0, rank(L) = N −1, (5)

and that at least one follower has access to the leader infor-
mation, so that l0 ̸= 0. Finally, define L̂ = L+diag(l0).

III. MAIN RESULT

The main result of this paper is the following theorem
providing a necessary and sufficient condition for stability of
the second-order multi-agent system (1), following a leader
(2), under the delayed relative displacement feedback (3) and
(4).

Theorem 1: The system composed of (1)–(4) achieves a
consensus

limt→∞(ẋi(t)− ẋ0(t)) = 0
limt→∞(xi(t)− x0(t)) = hi −h0

limt→∞ zi(t) = 0
∀i = 1, . . . ,N

if and only if
τ < τ

∗
N ,

where τ∗N is the largest delay such that the complex region
enclosed by the first crossing of the boundary

λ̃ =−ms2 · (1/γ)s+1
ps+q

· eτs, s = jω

with the real axis contains all the eigenvalues of L̂.
Proof: Define matrices

A =

0 0 − 1
m

1 0 0
0 0 −γ

 , Ad =

0 − γ p
m 0

0 0 0
0 −γ(γ p−q) 0


and state vector

Xi(t) =
[
ẋi(t)− ẋ0(t) (xi(t)−hi)− (x0(t)−h0) zi(t)

]T

X(t) =
[
XT

1 (t) XT
2 (t) · · · XT

N (t)
]T

.

The system composed of (1)–(4) can be rewritten as

Ẋ(t) = (IN ⊗A) ·X(t)+(L̂⊗Ad) ·X(t − τ),

where ⊗ denotes the Kronecker product. Since (5) and l0 ̸= 0
hold, L̂ is symmetric and positive definite. Thus, it can be
diagonalized through an orthonormal matrix S ∈ RN×N , so
that ST L̂S = Λ is a diagonal matrix whose entries are the real
positive eigenvalues λ1 ≤ λ2 ≤ ·· · ≤ λN of L̂.
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Fig. 1. Stability boundary λ̃ .

Now, we can employ a variable transformation such as

ξ (t) = (ST ⊗ I3) ·X(t), (6)

where

ξ (t) =
[
ξ T

1 (t) ξ T
2 (t) · · · ξ T

N (t)
]T ∈ R3N ,

so that system (6) can be decoupled as N independent subsys-
tems like

ξ̇i(t) = A ·ξi(t)+λiAd ·ξi(t − τ). (7)

Reminding that ξi(t−τ)→ ξi(s)e−τs in the frequency domain,
from the previous equation we get

sξi(s) = A ·ξi(s)+λi Ad ·ξi(s)e−τs.

Computing the determinant det(sI3 − A − λiAde−τs) finally
leads to the Characteristic Equation (CE)

λi (ps+q)e−τs +ms2
(

s
γ
+1

)
= 0. (8)

Rewriting the previous equation for s = jω as

λi =
mω2

q
·

jω
γ
+1

jω p
q +1

·
(
cos(τω)+ j sin(τω)

)
allows to decouple the dynamics, control, and delay parameters
of the system from the eigenvalues of the interaction matrix.
Besides, it provides a stability boundary in the complex plane
for the eigenvalues of L̂ that we denote as λ̃ , depicted in Figure
1. Its real and imaginary parts are given by

ℜ(λ̃ ) =
mω2

q

(
1+ ω2 p

γq

)
cos(τω)+

(
p
q −

1
γ

)
ω sin(τω)(

1+ ω2 p2

q2

) ,

ℑ(λ̃ ) =
mω2

q

(
1+ ω2 p

γq

)
sin(τω)−

(
p
q −

1
γ

)
ω cos(τω)(

1+ ω2 p2

q2

) .

Due to the complex exponential, the stability boundary crosses
the real axis an infinite number of times. Moreover, as the
delay increases, these crossings move closer to the origin, i.e.

∂ℜ(λ̃ )

∂τ

∣∣∣∣∣
ℑ(λ̃ )=0

< 0, (9)

as proven in the Appendix. Whenever λ̃ crosses any λi of
L̂, the CE has two purely imaginary roots at s =± jω∗

i . This
happens when ℑ(λ̃ ) = 0, and ℜ(λ̃ ) = λi.

The condition on the null imaginary part leads to

τ =
1
ω

cot−1
(

ω2 p+ γq
(γ p−q)ω

)
+

kπ

|ω|
, (10)

where k ∈N takes into account the periodicity of the cotangent
function. Substitute (10) into the real part of λ̃ to obtain

ℜ(λ̃ )
∣∣∣
ℑ(λ̃ )=0

=
mω2

q
·

√
p2

γ2q2 ω4 +( p2

q2 +
1
γ2 )ω

2 +1

1+ ω2 p2

q2

. (11)

Since λi ∈R+, k has to be even, for (11) to be positive. Calling
τ∗i the solution of (10) and (11) for k = 0 and ℜ(λ̃ )

∣∣∣
ℑ(λ̃ )=0

=

λi, any delay

τ
∗
i , τ

∗
i +

2π

|ω∗
i |
, τ

∗
i +

4π

|ω∗
i |
, . . .

makes the stability boundary cross λi, while yielding two
purely imaginary roots of the CE at s =± jω∗

i .
Now, the necessary condition of Theorem 1 can be proven

by showing that the roots s = ± jω∗
i of the CE always

move from the imaginary axis towards the unstable right-half
complex plane as the delay increases. That is, the real part of
the following sensitivity

∂ s
∂τ

∣∣∣∣
s=± jω∗

i ,τ=τ∗i +
2kπ

|ω∗
i |

(12)

is positive for any k ∈ N and for i = 1, . . . ,N. Performing
implicit differentiation with respect to τ in (8) leads to

∂ s
∂τ

=
λi(ps+q)e−τs

m
(

3s2

γ
+2s

)
+λi

(
p− τ(ps+q)

)
e−τs

.

Substituting s = ± jω∗
i , τ = τ∗i + 2kπ

|ω∗
i |

, and λi from (11),
sensitivity (12) takes the form

a+ jb
c+ jd

=
ac+bd
c2 +d2 + j

bd −ad
c2 +d2 ,

with a,b,c,d ∈ R. Its real part is always positive because

ac+bd =

3p2

γ2q2 ω4 +
(

2p2

q2 + 3
γ2

)
ω2 +2

p2

γ2q2 ω4 +
(

p2

q2 +
1
γ2

)
ω2 +1

· (q2 + p2
ω

2)− p2
ω

2

is positive regardless of k ∈ N and i = 1, . . . ,N.
Thus, anytime λ̃ crosses any λi of L̂, two unstable roots are

added to the system. Since (9) holds, λN is the first eigenvalue
of L̂ crossed by the boundary, so that τ < τ∗N is a necessary
condition for stability. Indeed, as long as it holds, λ̃ does not
cross any λi, and no root of the CE can move towards the
unstable right-half plane.

To prove the sufficient condition, we focus on the region
shown in Figure 2, which is enclosed by the first crossing of
λ̃ with the real axis, and contains a part of the positive real
axis in a neighborhood of the origin. Indeed, the stability of the
system can be assured if all the λi of L̂ lie inside this region.
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Fig. 2. Stability region.

Fig. 3. Equivalent Closed Loop Subsystem.

Remind that, since (9) holds, this condition is equivalent to
τ < τ∗N .

Rewrite the subsystem (7) as proposed in [24]

ξ̇i(t) = (A+λiAd) ·ξi(t)+ τ∗NλiAd · (υi,1(t)+υi,2(t))
yi,1(t) = A ·ξi(t)
yi,2(t) = λiAd ·ξi(t)
υi,1(t) = ∆1 · yi,1(t)
υi,2(t) = ∆2 · yi,2(t),

(13)
where ∆1(s) =

(e−τs−1)
τ∗N s I3 and ∆2(s) = (e−τs ·∆1(s))I3.

Through (13), it is possible to express the original system
as N closed loop subsystems like the one in Figure 3, where

Gi(s) =Ci
(
sI3 − (A+λiAd)

)−1Bi (14)

given

Bi = τ
∗
Nλi[Ad Ad ], Ci =

[
A

λiAd

]
.

Notice that both ||∆1(s)||∞ ≤ 1 and ||∆2(s)||∞ ≤ 1 hold if
τ/τ∗N ≤ 1. Thus, if ||Gi(s)||∞ < 1, we can ensure asymptotic
stability of the closed loop subsystem in Figure 3 through the
Small Gain Theorem, given that A+λiAd is Hurwitz.

The condition on the H∞ norm of Gi(s) can be provided by
building the Hamiltonian Hi of subsystem (14)

Hi =

[
A+λiAd −Bi ·BT

i
CT

i ·Ci −(A+λiAd)
T

]
,

and showing that its eigenvalues do not belong to the imagi-
nary axis, as proved in [25]. Using the Schur complement, the

eigenvalues of Hi can be computed through

det(sI3 − (A+λiAd)) ·det(sI3 +(A+λiAd)
T +Ψi) = 0, (15)

where Ψi = CT
i Ci · ((sI3 − (A+ λiAd))

−1) ·BiBT
i has the fol-

lowing structure

Ψi = λ
2
i · 2γ2τ∗N

2

det(sI3 − (A+λiAd))
·Φ,

with

Φ =


s(ps+q)

m
γ2(ps+q)

m

(( p
m

)2
+(γ p−q)2

)
s2(γ p−q)

(
1

m2 + γ2
)

 ·
[ p

m 0 (γ p−q)
]

and

det
(
sI3 − (A+λiAd)

)
= s2(s+ γ)+

λiγ

m
(ps+q).

Employing a first-order approximation for λi → 0+, one can
see that matrix Ψi becomes negligible with respect to both
matrices sI3 and (A+λiAd)

T , so that (15) tends to

det
(
sI3 − (A+λiAd)

)
·det

(
sI3 +(A+λiAd)

T )= 0 (16)

as λi → 0+. It is straightforward to notice that the roots of
equation (16) are given by the eigenvalues of A+ λiAd and
by their symmetric with respect to the imaginary axis. The
explicit form of (16) is(

s2(s+ γ)+
λiγ

m
(ps+q)

)
·
(

s2(s− γ)+
λiγ

m
(ps−q)

)
= 0.

Since all the eigenvalues of A+λiAd have negative real part,
we can conclude that the Hamiltonian Hi of the system does
not have any purely imaginary eigenvalue for λi → 0+, which
is equivalent to ||Gi(s)||∞ < 1. Therefore, subsystem (13) is
asymptotically stable when λi → 0+, i.e. when λi is close to
the origin on the positive real axis.

This allows us to conclude that the whole region depicted
in figure 2 is stable. If all the eigenvalues λi of L̂ lie inside
it, or, equivalently, if τ < τ∗N , the asymptotic stability of the N
subsystems (13) yields

lim
t→∞

ξ (t) = 0.

This, together with (6), leads to
limt→∞(ẋi(t)− ẋ0(t)) = 0
limt→∞((xi(t)−hi)− (x0(t)−h0)) = 0
limt→∞ zi(t) = 0

for i = 1, . . . ,N

i.e. the sufficient condition of Theorem 1 holds true.
Hence, τ < τ∗N is a necessary and sufficient condition for
stability. The region enclosed by the first crossing of λ̃ with
the real axis and containing all the eigenvalues of L̂ is the
only stable region.. This allows to easily assess the stability
of the system even with a large N, by checking whether the
eigenvalues of the Laplacian belong to the stability region.



IV. NUMERICAL RESULTS
In this section, we provide some numerical results to vali-

date Theorem 1. Consider N = 10 agents with p = 1, q = 2,
m = 5, γ = 10. Their initial positions xi(0) and velocities ẋi(0)
are randomly selected in the interval [−10,10]m, [−2,2]m/s,
respectively. The leader starts at x0(0) = 0, and travels with a
constant velocity ẋ0 = 0.25m/s. The desired relative displace-
ments of the formation are hi−h j = 3(i− j), for i, j = 0, . . . ,N,
and h0 = 0.

It is assumed that 3 agents have access to the information
from the leader, and that the interaction topology is represented
by a path graph, as shown in figure 4. Thus, the maximum
eigenvalue of L̂ is λN = 4.315. With these conditions, solving
(10) with k = 0 and (11) with ℜ(λ̃ )

∣∣∣
ℑ(λ̃ )=0

= 4.315 allows to

compute τ∗N = 0.333s, which is the maximum delay threshold
the system can tolerate before losing stability.

Figures 5, 6 and 7 depict the leader and followers positions
for τ = 0.320s, τ = 0.333s and τ = 0.340s, respectively. The
leader position is depicted in black. As it is clear from Figure
5, the system is stable for a delay value lower than τ∗N . The
followers travel at the leader velocity, and arrange themselves
in the desired relative displacements. In Figure 6, for τ =
τ∗N , the followers positions display an oscillatory behaviour
caused by the roots of the CE lying on the imaginary axis.
Finally, in figure 7, the system is clearly unstable as τ > τ∗N .
Note that other frequency domain approaches, found in [14] –
[20], would require the stability analysis to be repeated N =
10 times. In this sense, our method is more immediate when
assessing the stability of large systems.

V. CONCLUSIONS
In this paper, a relative displacement feedback was intro-

duced to achieve a leader-follower formation of a second-
order multi-agent system. The work considered a uniform

Fig. 4. Topology employed in simulations.

Fig. 5. Leader and followers positions with τ = 0.320s < τ∗N .

Fig. 6. Leader and followers positions with τ = 0.333s = τ∗N .
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Fig. 7. Leader and followers positions with τ = 340s > τ∗N .

delay in the displacement information processing, and the
unavailability of velocity measurements. A stability region in
the complex plane for the eigenvalues of the Laplacian matrix
allowed to define a necessary and sufficient condition for
consensus in terms of a delay threshold. Numerical examples
were provided to validate the results. Future works will extend
the analysis to general linear systems expressed through a
state-space representation. Furthermore, future studies will
explore the achievement of finite-time consensus and the speed
of consensus reaching in interconnected systems with delays,
particularly in the context of real-life applications.

APPENDIX

Lemma 1: As τ increases, the stability boundary crosses the
real axis closer to the origin, i.e.

∂ℜ(λ̃ )

∂τ

∣∣∣∣∣
ℑ(λ̃ )=0

< 0. (17)

Proof: To prove the lemma, it is convenient to express
(17) as

∂ℜ(λ̃ )

∂τ

∣∣∣∣∣
ℑ(λ̃ )=0

=
∂ℜ(λ̃ )

∂ω

∣∣∣∣∣
ℑ(λ̃ )=0

· ∂ω

∂τ

∣∣∣∣
ℑ(λ̃ )=0

. (18)
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The first factor can be computed from (11), and is given by

p4

γ2q4 ω7 +
(

p4

2q4 +
5p2

2γ2q2

)
ω5 + 3

2

(
p2

q2 +
1
γ2

)
ω3 +ω

q
2m

(
1+ ω2 p2

q2

)2
√

p2

γ2q2 ω4 +
(

p2

q2 +
1
γ2

)
ω2 +1

,

which is positive for ω > 0 and negative for ω < 0.
The inverse of the second factor of (18) can be obtained

from (10)
∂τ

∂ω

∣∣∣∣
ℑ(λ̃ )=0

=− 1
ω2 f (ω), (19)

where

f (ω) = cot−1
(

ω2 p+ γq
(γ p−q)ω

)
+

(
ω2 p−γq
(γ p−q)ω

)
1+

(
ω2 p+γq
(γ p−q)ω

)2 +
ω

|ω|
kπ

is depicted in figure 8. Function f (ω) is such that

lim
ω→0±

f (ω) =±kπ, lim
ω→±∞

f (ω) =±kπ,

while its derivative, being α = p
q −

1
γ

and β = γq
p , is

∂ f (ω)

∂ω

∣∣∣∣
ℑ(λ̃ )=0

= 2αβω
2 · (−ω4 +2βω2 +α2β 3 +3β 2)

(ω4 +(2β +α2β 2)ω2 +β 2)2 ,

which is positive for small |ω| and negative for large |ω|.
Moreover, it has one real positive zero, one real negative zero
and two zeros at the origin. Thus, we can conclude that f (ω)
is positive for ω > 0 and negative for ω < 0 so that (19)
is negative for ω > 0 and positive for ω < 0. Since (10) is
an invertible mapping, the sign of (19) equals the one of the
second factor of (18).

The signs of the two factors allow to state that (17) holds.
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