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Abstract: Melanoma is a malignant cancer type which develops when DNA damage occurs (mainly
due to environmental factors such as ultraviolet rays). Often, melanoma results in intense and aggres-
sive cell growth that, if not caught in time, can bring one toward death. Thus, early identification at
the initial stage is fundamental to stopping the spread of cancer. In this paper, a ViT-based architecture
able to classify melanoma versus non-cancerous lesions is presented. The proposed predictive model
is trained and tested on public skin cancer data from the ISIC challenge, and the obtained results are
highly promising. Different classifier configurations are considered and analyzed in order to find the
most discriminating one. The best one reached an accuracy of 0.948, sensitivity of 0.928, specificity of
0.967, and AUROC of 0.948.

Keywords: skin cancer; melanoma detection; vision transformers; artificial intelligence; decision-making
support

1. Introduction

According to the World Health Organization (WHO), skin cancer is considered one
of the most common types of cancer worldwide [1]. Over one million skin cancer cases
are diagnosed each year, estimated to account for one third of all cancer diagnoses [2].
Exposure to sun ultraviolet (UV) radiation represents the primary cause of skin cancer.
Hence, the WHO recommends avoiding prolonged sun exposure to individuals with fair
skin and regular self-examinations for any suspicious lesions on the skin.

Melanoma is a skin cancer that develops from the pigment-producing cells known
as melanocytes [3]. The incidence of melanoma has significantly increased in the past
30 years [4], making up only 5 percent of all cases but having a mortality rate of over
75 percent [5,6].

Melanoma skin cancer requires early diagnosis and treatment, aspects vital to improv-
ing outcomes in affected individuals and preventing it from rapidly spreading to other
areas of the body. To this aim, detecting and classifying it could represent a useful tool
supporting decision making in the diagnosis phase and the whole treatment process [7,8].

Computer-aided diagnosis (CAD) technologies are utilized to help with the detection
of melanoma skin cancer. These systems integrate artificial intelligence (AI), with machine
learning (ML) and deep learning (DL) models used to analyze skin images, detect abnormal
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tissue patterns, and classify them into cancerous or non-cancerous areas [9,10]. Among
the DL methods, convolutional neural networks (CNNs) have shown promising results in
solving medical imaging tasks [11–13]. However, CNNs have limitations in understanding
long-range spatial relationships in images [14].

Indeed, CNNs investigate images by applying filters that are able to capture specific
features, such as edges or shapes. However, such filters must often deal with the downside
of having a limited receptive field. This condition prevents the model from effectively
connecting information associated with features located in distant areas of the image
with what has been extracted locally. Although specific methods (e.g., filter stacking and
factorization) have been developed to deal with this issue, CNNs still exhibit a lack of
comprehension of the global picture context. To further complicate matters, the idea of
modifying CNN filters to accommodate for wider receptive fields would lead to a number
of parameters that would be unbearably large from a computational cost perspective. Aside
from that, tackling the problem of grasping long-range spatial relationships among different
parts of an image by leveraging recurrent neural networks (RNNs) has been explored in
the literature.

Despite their aforementioned challenges, several studies have explored the use of
RNNs for image classification. The authors of [15] proposed a recurrent convolutional
neural network (RCNN) architecture that combines the strengths of CNNs and RNNs for
image classification tasks. The proposed RCNN model integrates recurrent connections to
capture the long-range dependencies within images, thereby augmenting the network’s
capacity to comprehend the global context and spatial relationships. The authors of [16]
proposed a method to enhance the performance of RNNs by using two parallel recurrent
layers that operate independently, where the final output of each recurrent layer is com-
puted as the mean of the modulus of their respective outputs. RNNs still display a higher
rate of success in applications other than vision and image analysis, such as time series
forecasting and speech recognition. This can be supported by observing that RNNs can
easily experience vanishing gradient issues. For this reason, as much as an RNN is able
to retain the memory of past inputs, working on long sequences can still cause the model
to forget relevant information. In the vision domain, this implies that a recurrent network
might face major difficulties when attempting to capture the connections among image
areas located far from each other.

Long short-term memory (LSTM) models were born to process sequences and pay
attention to their sequential inputs, even at long distances. However, these models are
sequential and process one input at a time. Therefore, although they have memory cells
designed to keep track of the sequential information, updating the weights progressively
considers the contribution of long-range dependencies less and less. By contrast, trans-
former architectures use the self-attention mechanism to propagate information over time,
and each region of the sequence pays attention to all other regions. In this way, all the
dependencies—even those at a very long range—are modeled without loss of information.
Furthermore, transformers are parallelizable, as they can process multiple inputs simulta-
neously. Given these characteristics, the advantages of using transformers led us to choose
this architecture instead of LSTM or the RNN.

The proposed method—based on Vision Transformers (ViTs) [17]—addressed the
limitations of conventional RNNs in terms of gradient flow by surpassing classical LSTM
and the identity RNN (IRNN) in terms of performance on several benchmark image
datasets. Indeed, the ViT feature extraction method is based on linear embedding of the
patches in which the input image is divided. This implies that such a process still occurs
locally, as for CNNs. However, additional encoding is further applied on patches to account
for their positional information. Moreover, the patches’ linear transformations are learned
by the model through backpropagation. Such a procedure further enhances the influence
of spatial information among the patches, regardless of their location in the picture. For
these reasons, the Vision Transformer has been identified as a powerful tool to deal with
challenging image analysis applications.
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Various approaches have been implemented using ViTs to classify images. The au-
thors of [18] presented a comprehensive investigation into the robustness of ViTs for
image classification. The authors evaluated the models’ ability to withstand both input
perturbations and model perturbations. The results highlighted that ViTs, when ade-
quately pretrained with large data, exhibit similar or superior robustness when compared
with ResNet models across various perturbations. Additionally, this study revealed that
transformers demonstrate resilience when specific layers are removed, indicating their
flexibility. Although activations from later layers exhibit strong correlations, it is evident
that each layer contributes significantly to the classification process. The authors of [19]
introduced a comprehensive framework (called the Classification Transformer (C-Tran))
for multi-label image classification that leverages transformers to capture the intricate
relationships between the visual features and labels. The proposed approach involves
training a transformer encoder using masked labels and the visual features from a CNN
to predict a set of target labels by achieving state-of-the-art performance on challenging
datasets such as COCO and Visual Genome. Despite existing research exploring the use of
ViTs in the field of melanoma skin cancer detection and classification [20,21], the literature
lacks approaches specifically focused on multiclass classification. To fill this research gap, in
this paper, a ViT-based architecture for the recognition of melanoma versus non-cancerous
lesions is presented.

Specifically, the main contributions of the proposed work are as follows:

• The proposed model is trained and tested on public skin cancer data from the ISIC
challenge, making a fair comparison with competitors with similar approaches to
dealing with the same clinical issue possible;

• The performance of the presented ViT-based architecture for skin lesion image classifi-
cation exceeds that of the state of the art by modeling long-range spatial relationships;

• Extensive tuning studies are performed to investigate the effect of individual elements
of the ViT model.

The remainder of this paper is organized as follows. Section 2 provides the charac-
teristics of the dermatoscopic melanoma image dataset used and processed in this study.
Section 3 describes the implemented methodology to set up the DL predictive model, de-
tailing each step of the processing pipeline. Section 4 illustrates the obtained experimental
results concerning each specific step and the performance of the built-up model, both in
the training and validation phase and in the test phase. Section 5 delves into the obtained
results, offering comprehensive analysis from both the technical and clinical perspectives.
Finally, Section 6 provides a concise summary of the study’s key findings and draws
meaningful conclusions.

2. Dataset

The dataset considered for this study is based on a collection of dermoscopic images
of skin lesions obtained from the ISIC Archive (ISIC Archive website https://challenge.isic-
archive.com/data/#2017, accessed on 1 June 2023). Specifically, the dataset served as the
basis for the ISIC 2017 Challenge (Skin Lesion Analysis toward Melanoma Detection) [22],
where researchers and clinicians worldwide competed to develop innovative algorithms
and tools for the automated diagnosis of skin lesions, including melanoma. Metadata,
including the patient’s age, sex, and lesion location, accompany each image. The images
were labeled by expert dermatologists who identified the presence or absence of melanoma
based on histopathology examination or clinical examination. This procedure ensured
the accuracy and reliability of the labels. The availability of such a comprehensive and
annotated dataset has facilitated research efforts in this field, leading to the development
of more accurate and efficient diagnostic tools for melanoma and other skin cancers. The
ISIC 2017 Challenge consisted of three tasks: lesion segmentation, dermoscopic feature
detection, and lesion classification. In this article, we focused on the lesion classification task,
aiming at the classification of skin lesion images into three classes: malignant melanoma
(MM), nevocellular nevus (NCN), and seborrheic keratosis (SK). Melanoma is defined as

https://challenge.isic-archive.com/data/#2017
https://challenge.isic-archive.com/data/#2017
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a malignant skin tumor derived from melanocytes (melanocytic). Seborrheic keratosis (SK)
is defined as a benign skin tumor derived from keratinocytes (non-melanocytic). A nevus
is defined as a benign skin tumor derived from melanocytes (melanocytic).

The training dataset contains 2000 color dermoscopic skin images in JPEG format,
comprising 374 images from melanoma cases, 254 from seborrheic keratosis cases, and
the remainder being benign nevi (1372). The validation and test sets were evaluated in
new databases with 150 images (30 for MM, 42 for SK, and 78 for NCN) and 600 images
(117 for MM, 90 for SK, and 393 for NCN), respectively [22]. The images were of many sizes
(from 1022 × 767 to 6748 × 4499 pixels) and photographed with different angles, artifacts,
and lighting conditions. The images were acquired from various dermatology clinics and
hospitals across different continents, ensuring diversity in the dataset.

Figure 1 represents examples from the three classes: MM, NCN, and SK. Inhomoge-
neous dark spots with irregular shapes usually characterized the MM class, and similar
features were shared with the NCN and SK classes, making the classification task particu-
larly challenging.

Figure 1. Some examples belonging to the used dataset, with the three classes highlighted.

3. Methodology

The proposed methodology is based on ViTs, used to encode images which are able
to model long-range spatial relationships among areas in the dermatoscopic image, with
respect to traditional deep-learning architectures. Before proceeding with the model’s
set-up, the images were properly processed (i.e., resized and cropped).

Finally, the model exploiting the ViT and the MLP head was trained and validated.
The end-to-end workflow is represented in Figure 2 and described in the next subsection.

Figure 2. The implemented end-to-end workflow.
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3.1. The End-to-End Workflow

The dataset splits were unmodified with respect to the original database, as described
in the previous sections. The images went through the following processing procedure:

• Input image: The input image was fed to the model at its original size. A blue-colored
block represented the workflow’s starting point.

• Resizing: The images were resized to 384 × 384 in order to be properly processed by
the model.

• Random resized cropping: The training images were randomly resized and cropped
as a part of the data augmentation procedure. This block was marked with yellow to
indicate that it only operated on the training images.

• RandAugment: The RandAugment library [23] was applied to the training set for
data augmentation purposes. This block, as with the previous one, was marked in
yellow, with the exact same meaning.

• Patching: The original image was divided into equally sized, non-overlapping
32 × 32 square patches.

• Flattening: Each patch was vectorized (flattening) in order to have an embedding for
the corresponding token in the input sequence.

• Embedding + positional encoding: The patches were encoded to account for their
positional information.

• Concatenation (input sequence): The positional encoded vector was added to the
corresponding token.

• Layer normalization: The resulting vector was layer normalized and fed to the trans-
former encoder.

• Multi-head attention: The multi-head attention mechanism came into play, repro-
ducing the behavior of multiple “experts” analyzing different areas of the picture,
exchanging information, and interacting to come up with a coherent interpretation of
the image.

• Layer normalization: The output of the multi-head attention blocks was added to
the embedded input by means of a skip connection, and it was later normalized
once more.

• Multilayer perceptron: The resulting output was fed to an MLP consisting of two
fully connected layers with a GELU activation function [24].

• Classification head: The MLP output was added to the multi-head attention output
through another skip connection. The classification head is a fully connected layer
that will produce the model output.

• Classification output: The final outcome was a value that would be used to determine
which class the input image belonged to. This block, highlighted in green, marks the
end of the workflow.

The next section will explore the dynamics of multi-head attention (see Figure 3).
To this aim, mentioning that ViTs are an adaptation to the computer vision domain of

the original Transformer [25] can help to grasp the underlying concepts of the architecture.
In fact, the very first transformers were and still are applied to Natural Language Processing,
a field in which knowledge about the position of a word within a sentence, together with
the capability to understand the context, is the key to a good interpretation.



Sensors 2023, 23, 5677 6 of 13

Figure 3. Overall scheme of the proposed ViT-based architecture for melanoma classification.

Multi-Head Attention

To achieve the goal introduced above, each input was associated with three main
quantities, namely the key, the query, and value. Those quantities were obtained by multi-
plying the input by a set of weights that needed to be initialized. The next step was the
multiplication of each query by each key through a dot product scaled by the square root
of the key vector dimension. The result was later fed to a softmax function and multiplied
by the value vector. The final outcome is called the attention score, and each block of layers
performing the described sequence of operations is called a head. The whole sequence can
be executed by several heads at a time (hence the name multi-head attention). In a sense,
this process resembles a team of specialists working on the same picture, with each one
of them focusing on a specific subsection of the image, drawing conclusions, and sharing
knowledge with the others.

3.2. Experimental Set-Up

In order to determine the optimal configuration, the experimental phase was subdi-
vided into two main steps: (1) a search for the best learning rate and (2) an ablation study,
with the dual purpose of investigating the effect of the network depth on performance and
determining the proper trade-off between model complexity and efficiency. Specifically,
to determine the best learning rate, we conducted a systematic search by training the
model with different learning rate values. We started with a relatively large learning rate
(1.5 × 10−5) and gradually reduced it to 0.5 × 10−6, monitoring the model’s performance
at each iteration. We evaluated the model’s performance metrics based on accuracy on
a validation set to identify the learning rate that resulted in the best performance. The
ablation study served two main purposes: (1) examining the impact of the network depth
on performance to understand how it influenced the model’s effectiveness and (2) striking
a balance between model complexity and efficiency. Through these two steps in the experi-
mental phase, our objective was to refine the model and identify the optimal configuration
that maximized performance while taking into account computational efficiency.

Evaluation Metrics

The performance of the proposed approach was evaluated using conventional metrics
such as accuracy, sensitivity, and specificity, defined in Equations (1)–(3), respectively.
Moreover, the area under the receiver operating characteristic curve (AUROC) was calcu-
lated [26]:

Accuracy =
TN + TP

TN + TP + FN + FP
(1)

Sensitivity =
TP

TP + FN
(2)
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Speci f icity =
TN

TN + FP
(3)

where TP, TN, FP, and FN represent the number of true positives, true negatives, false
positives, and false negatives, respectively.

4. Experimental Results

The experiments were conducted in the Google Colab environment while deploying
the models available on Hugging Face. The best selected model was ViT-Large (307 million
parameters), with an input resolution of 384 × 384 and a patch size of 32 × 32.

The proposed model, which was pretrained on ImageNet [27], was fine-tuned on the
ISIC 2017 dataset for 40 epochs using the hyperparameters listed in Table 1. The ViT-based
model was trained using several configurations, which are listed in Table 2. In particular,
the performance was evaluated by varying the learning rate of the Adam optimizer and
changing the number of hidden layers. The scheduler, which was used for the training
phase, applied a linear learning rate variation with a warm-up. When the set point for
the learning rate (maximum value to be reached) was chosen, the scheduler started from
a lower value until the set point was reached and decreased with a gentler slope in the last
few epochs. In particular, having set the number of layers to 24, different set points were
selected (i.e., 0.5 × 10−6, 0.5 × 10−5, 1.0 × 10−5, and 1.5 × 10−5). Such a scheduling method
guaranteed that the experiments explored the influence of the learning rate over a sufficient
dynamic range. In general, the effect of high learning rate values was reflected in a learning
curve trend that did not decrease effectively as a consequence of the model not learning
proper classification. On the other hand, low learning rate values can lead the system to
learn rather efficiently (aside from the risk of getting stuck in local minima). However, this
usually requires a large number of epochs to reach convergence. Considering this, since the
system obtained the same accuracy value (94.83%) with the values 0.5 × 10−5, 1.0 × 10−5,
and 1.5 × 10−5, we decided to choose the configuration with an intermediate learning rate.
The proposed intermediate learning rate value requires a reasonable number of epochs
for training.

A large difference in performance, on the other hand, was found as the number of
layers varied. Figure 4 shows how the accuracy varied as the number of layers changed.
In particular, different values in the range of 2–28 were tried. As shown in Figure 4, the
accuracy had an increasing trend as the number of layers increased (as expected), and the
increase was greater as the first few layers increased, whereas the growth subsequently
became slower. In the range of 24–26, the accuracy presented its maximum (where the curve
has a plateau), and the accuracy stayed constant at 94.83% while for higher values, the
accuracy began to decrease. Indeed, this was a consequence of overfitting because we were
increasing the model complexity. Considering these findings, and following Occam’s razor,
a value of 24 was chosen for the number of hidden layers (which is also the default value
for the ViT-Large architecture), minimizing the architecture’s complexity and optimizing
the classification performance.

Table 1. Model hyperparameters.

Hyperparameter Value

Number of layers 24
Number of heads 16
Hidden size 1024
Optimizer Adam with β1 = 0.99, β2 = 0.999, ε = 1 × 10−8

Learning rate 1.0 × 10−5

Learning rate scheduler linear with a warm-up ratio of 0.1
Batch size 16
Gradient accumulation steps 4
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Table 2. Tested configurations.

Configuration Batch Size Learning Rate Layers Accuracy

#1 16 1.5 × 10−5 24 0.948
#2 (Best Model) 16 1.0 × 10−5 24 0.948
#3 16 0.5 × 10−5 24 0.948
#4 16 0.5 × 10−6 24 0.945

#5 16 1.0 × 10−5 20 0.925
#6 16 1.0 × 10−5 16 0.902
#7 16 1.0 × 10−5 12 0.850
#8 16 1.0 × 10−5 10 0.817
#9 16 1.0 × 10−5 8 0.788
#10 16 1.0 × 10−5 4 0.707
#11 16 1.0 × 10−5 2 0.655

Figure 4. Variation in accuracy as a function of the number of layers.

Regarding the best configuration, the model reached a final test accuracy of 0.948.
Figure 5 shows the training and validation losses. It is possible to observe a drop in both
curves at epoch 5, which was likely due to the warm-up ratio of the learning rate scheduler.
Moreover, the curves’ peaks that can be seen on the plot might be associated with the
selected batch size. The test confusion matrix for configuration 2 is shown in Figure 6.
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Figure 5. Training and validation loss of configuration 2 (best model).

Figure 6. Confusion matrix for configuration 2 (best model).

5. Discussion

In the literature, various methods have been proposed to improve the decision-making
process in the diagnosis of skin lesions, particularly in cases of melanoma. The authors
of [28] proposed a comprehensive comparative study of U-Net and attention-based skin
lesion image segmentation methods. The results indicated that the hybrid TransUNet
outperformed the other benchmarking methods in segmentation tasks, achieving an ac-
curacy of 0.921 and a Dice coefficient of 0.898. The authors of [29] proposed the use of
fully Transformer networks (FTNs) for skin lesion analysis, a hierarchical transformer that
uses a spatial pyramid transformer (SPT) to capture long-range contextual information
from skin lesion images. Their conducted experiments on the public International Skin
Imaging Collaboration (ISIC) skin lesion segmentation and classification datasets demon-
strated the effectiveness and efficiency of FTNs. In [30], the authors presented a novel
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deep learning-based framework named Attention Deeplabv3+ for skin lesion segmen-
tation. Their proposed method uses attention mechanisms in two stages to capture the
relationships between channels and to emphasize the relevant field of view more. Their
experimental results on public skin cancer datasets showed high state-of-the-art perfor-
mance. The authors of [31] proposed a novel self-attention-based network for diagnosing
melanocytic lesions from digital whole slide images. The method outperformed other state-
of-the-art methods and achieved results comparable to 187 practicing U.S. pathologists.
In [32], the authors proposed a framework that employs methods for data augmentation
and a Medical Vision Transformer-based classification model for classifying skin cancer.
The results achieved on the HAM10000 datasets showed that the proposed model out-
performed the state-of-the-art techniques for skin cancer classification, proving that early
detection can increase survival rates by up to 70%, leading to improved outcomes for
patients with this deadly disease. However, the potential of ViTs has not yet been exploited
to its fullest in the classification of melanoma skin cancers.

Melanoma detection is a critical task in improving cancer diagnoses and prognoses.
To this aim, this work proposed a ViT-based architecture for efficient MM recognition
compared with the NCN and SK classes.

The proposed model (training and testing procedures) was built up using publicly
available skin cancer data from the ISIC challenge. This choice enabled a fair comparison
with other competitors who have employed similar methods to address the same clinical
issue by using the same dataset. The performance in classifying skin lesion images of the
introduced architecture based on ViTs outperformed the current state-of-the-art models.
This improvement can be attributed to the model’s ability to capture and model long-range
spatial relationships within the images effectively.

Table 3 shows the performance of our proposed ViT-based approach and a comparison
with the other state-of-the-art solutions that used the ISIC 2017 dataset. It should be noted
that in the specific application scenario approached by our study, there was no possibility
of changing (increasing) the number of classes (i.e., the MM, NCN, and SK classes). Indeed,
the number of classes was established in the ISIC 2017 skin lesion classification challenge
to which the dataset refers. The optimal configuration is able to accurately identify images
from all three categories, showing remarkable classification capabilities on the given dataset.
The accuracy of 0.948, sensitivity of 0.928, and specificity of 0.967 were significantly higher
compared with the other models. Only the AUROC results were a bit lower compared with
the other models. Reducing the number of layers led to a decrease in accuracy. However, it
is interesting to observe that employing a ViT-based architecture with 20 layers instead of
24 still yielded a final accuracy above the state of the art.

Table 3. Model test performance on the ISIC 2017 dataset.

Model Name Accuracy Sensitivity Specificity AUROC

IRv2 + soft attention [33] 0.904 0.916 0.833 0.959
ARL-CNN50 [34] 0.868 0.878 0.867 0.958
SEnet50 [35] 0.863 0.856 0.865 0.952
RAN50 [36] 0.862 0.878 0.859 0.942
ResNet50 [37] 0.842 0.867 0.837 0.948
Proposed ViT-based approach 0.948 0.928 0.967 0.948

An in-depth analysis was given in order to assess the influence of the hyperparameters
and to consequently select the best model configuration in terms of batch size, learning rate,
and number of layers. First of all, the influence of the learning rate during the training phase
was evaluated. After selecting the best learning rate value, further investigations were
conducted to explore model performance and the number of layers within the architecture.
This process was motivated by the necessity to balance efficacy and complexity. Indeed,
despite the apparent direct proportionality between performance and network depth, the
availability of a tool that can guarantee comparable results when deployed on devices
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with limited computational resources (e.g., a mobile phone, tablet, or smartwatch, which
are increasingly used in e-Health and m-Health) is paramount. Furthermore, extensive
ablation studies were conducted to explore the impact of individual components of the ViT
model, which highlighted their respective contributions to the overall performance.

The proposed architectural solution represents a trade-off between computational
cost and classification performance. The study performed in the tuning phase of the
hyperparameters allowed obtaining a predictive model with very high sensitivity and
specificity, corresponding to very low amounts of falses (positive as well as negative). This
is due to the self-attention mechanism which, by taking into account the correspondences
between patches, can better understand the image’s content. The transformer generally
works in overfitting. Our ablation analysis also confirmed this, which shows that not all
layers are needed. Considering that the last layers on the transformer represent the most
abstract relations in the image, it can be deduced that the keys of the better classification
require only the low-level features of the image. However, we cannot forget the high
computational cost of the transformer, which implies that the proposed classification
is offline.

Despite the better results of the proposed approach at convergence, the dynamics of the
training (see Figure 5) is an issue because of the presence of high peaks. This phenomenon
was probably due to the small size and the internal covariate shift of the mini-batches.
Future works will deal with regularization techniques to overcome this problem, such as
data augmentation using generative networks (e.g., GANs and diffusers).

6. Conclusions

Melanoma detection is crucial to improving cancer diagnoses and prognoses. This
work presented a ViT-based model to efficiently recognize malignant melanoma, nevo-
cellular nevus, and seborrheic keratosis cases. The model was evaluated on a known
dataset from the literature called the ISIC challenge to ensure comparison with the state
of the art. The results show how the proposed architecture outperformed the state-of-
the-art models mainly based on convolutional networks. Ablation studies conducted on
the presented model with its hyperparameters highlighted the robustness of the model
for classification purposes. Future plans could include the use of attention maps to pro-
vide explainability to the model and understand which regions of the images are relevant
for classification purposes.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
AUROC Area under the receiver operating characteristic
CAD Computer-aided diagnosis
CNNs Convolutional neural networks
DL Deep learning
e-Health Electronic Health
FTNs Fully Transformer networks
GANs Generative adversarial networks
GELU Gaussian error linear unit
IRNNs Identity recurrent neural networks
ISIC International Skin Imaging Collaboration
LSTM Long short-term memory
m-Health Mobile Health
ML Machine learning
MM Malignant melanoma
MLP Multilayer perceptron
NCN Nevocellular nevus
RCNNs Recurrent convolutional neural networks
RNNs Recurrent neural networks
SK Seborrheic keratosis
SPTs Spatial pyramid transformers
UV Ultraviolet
ViTs Vision transformers
WHO World Health Organization
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