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Abstract—Years of research on congestion controls have high-
lighted how end-to-end and in-network protocols might perform
poorly in some contexts. Recent advances in data plane net-
work programmability could also bring advantages in transport
protocols, enabling mining and processing in-network congestion
signals. However, the new machine learning-based congestion
control class has only partially used data from the network,
favoring a more sophisticated model design but neglecting pos-
sibly precious pieces of data. In this paper, we present HINT,
an in-band network telemetry architecture designed to provide
insights into network congestion to the end-host TCP algorithm
during the learning process. In particular, the key idea is to
adapt switches’ behavior via P4 and instruct them to insert
simple device information, such as processing delay and queue
occupancy, directly into transferred packets. Initial experimental
results show that this approach comes with a little network
overhead but can improve the visibility and, consequently, the
accuracy of TCP decisions of the end-host. At the same time,
the programmability of both switches and hosts also enables
customization of the default behavior as the user’s needs change.

Index Terms—In-Band Network Telemetry, Congestion Con-
trol, P4

I. INTRODUCTION

For the computer network to continue to thrive, it is neces-
sary that congestion control mechanisms remain effective as
the network evolves. It is not surprising, then, that several
TCP variations have been proposed, given the increasing
demand for ultra-low latency, high bandwidth, and network
stability. There is a recent attempt to let the TCP learn the
best congestion window size (cwnd) updates via learning-
based schemes. A specific class of Machine Learning (ML),
namely Reinforcement Learning (RL), has been proven to
bring advantages to TCP flow and congestion control, having
the ability to learn best updates based on collected experience
and adapt them to the network environment [1]–[4]. Learning-
based algorithms have shown great potential in automatically
adapting to various network conditions, saving the engineering
effort of manually tuning for unseen network conditions. It
has been shown how end-to-end (e2e) TCP-based congestion
control algorithms cannot detect if an increase in e2e delay
measurements is due to another competing flow, stochastic
packet losses, a route change, or the client delaying the
acknowledgment [3], [5]. As such inefficiencies could lead to
performance degradation, using network data may help detect
actual network congestion.

At the same time, numerous recent In-band Network
Telemetry (INT)-based network measurement solutions have
been proposed to efficiently collect network data. They can
measure, for example, one-way delay [6], tail latency [7],
available bandwidth [8], queue depth [9]. Many advanced net-
work management schema based on INT has also significantly
improved network efficiency, including traditional congestion
control [10], routing decisions [11], anomaly detection [12],
and path tracing [7]. However, despite the improvements, none
of the newly proposed TCP modifications can fully integrate
network signals into the client’s intelligence.

To this end, and to provide timely network feedback to the
TCP logic, in this paper, we present HINT, a new solution
based on incorporating in-band network telemetry into the
newly RL-based mechanisms of TCP. In particular, this work
aims to analyze how it can support and improve TCP protocol
decisions by collecting network statistics on devices and then
processing them through the RL algorithm on hosts. In fact,
our solution is constituted of two main components: (1) a
modified instance of TCP that runs on the end hosts and (2)
intelligent network devices to empower network telemetry. We
use the P4 [13] language for device programming, given the
vast gamma of metrics available and the short processing time
that the PISA architecture provides. Our solution overcomes
some limitations of standard protocols by integrating the
intelligence of ML algorithms with incoming fresh network
information. We feed P4 collected metrics to the RL model,
i.e., switch processing time and queue occupancy, giving the
host capabilities to understand different situations and react
adequately to the network’s congestion level.

Our results have shown that P4-enabled switches effec-
tively collect a heterogeneous set of metrics, and we experi-
mented with how multiple packet header formats can be used.
Moreover, we showed that when such metrics are used by
a target TCP algorithm, i.e., Owl [3], its decision-making
ability improves, leading to better results in terms of both
throughput and RTT. Moreover, we quantified the advantages
of HINT compared to other TCP congestion control protocols
for various network loads and sizes.

The remainder of the paper is structured as follows. Sec-
tion II presents current INT mechanisms and TCP congestion
control algorithms. In Section III we describe the main func-
tionalities offered by HINT, while Section IV explains how
it can be used for TCP congestion control. Performance is



quantified in Section V, and Section VI concludes the paper.

II. RELATED WORK

In-band Network Telemetry. In-band network telemetry
(INT) is an emerging modality of network telemetry, that
collects the network status and parameters, such as the load
on the links, queuing latency, or queue size, by inserting
switching nodes’ metadata directly into packets [14], [15].
INT-path [9], for example, couples the INT probe with the
source routing label stack to accommodate the user-specified
monitoring path. This solution, as many other recent ones, are
built upon the P4 language for data collection and consumption
because of the facility provided by the language to operate
by adapting to various packet formats and protocols [14],
[16]. Given its success in this area, P4.org defined the INT
data plane specification and formalized INT notations and
specifications for a general architectural model that can fit
many applications [17]. It also defined the set of information to
carry in the INT header, and INT-MD is a widely used standard
format that allows inserting information and instructions in
the packets. Recent approaches focus on a trade-off between
completeness of the information and switches/bytes overhead
to reduce the load on the network and reduce the amount of
calculation required to obtain data from the telemetry platform
layer [7], [18].
Recent network-assisted CCs. Although hosts can use the
rich network status information provided by in-band network
telemetry for a broad range of operations, in this paper we
specifically focus on new congestion avoidance and control
protocols. Several protocols leverage the Explicit Congestion
Notification (ECN) as insightful feedback to end hosts, e.g.,
the well-known DCTCP [19], or XCP [20], that modify
switches behavior to feedback rates to end-hosts. NATCP [5],
HPCC [10], ABC [21] and Swift [22] are recent approaches
that leverage switches (or a centralized entity for NATCP)
to send information about bottleneck links. While ABC [21]
improves on ECN by sending accelerate and brake signals
instead of merely random early drop signals, High Precision
Congestion Control (HPCC) [10], instead, is a data center
network load balancing scheme based on INT to obtain precise
link load information.

Compared to all other solutions, HINT appears to be the less
invasive as possible, demanding a slight modification of the
network nodes that make it portable in a variety of contexts.
Moreover, it is the first INT for TCP integration that addresses
the new design and challenges posed by the new trend of TCP
congestion control: RL-based protocols.

III. SYSTEM DESIGN

We summarize in Fig. 1 the main components of our
solution. In particular, we can observe that HINT revolves
around modifying the traditional behavior of network switches
and introducing a custom header in the packet.
HINT switch. The network switches are INT-capable network
devices that participate in the INT data plane by inserting,
adding, removing or processing data from INT headers in

TCP
LogicHINT switch

Fig. 1: HINT overview. Network switches insert telemetry data
as additional header, then used by the TCP end-host program
to improve learning logic.

packets. Examples of INT Nodes may include devices such as
routers and switches, which we envision to be instructed using
P4 language [13]. These nodes need to insert their device-
internal state into incoming packets and forward them to the
destination defined in the packet.
HINT header. The INT Source Node does not need to mark
any telemetry packet, and only switches have to parse, read,
and write the network information that would be received by
the INT receiver. The HINT network feedback inserted by
each switch is composed of the following metrics: (i) switch
ID, containing the id number of each switched crossed (13
bits), (ii) queue occupancy, indicating the number of packets
queued in each switch buffer (13 bits), (iii) hop latency, the
switch processing time (6 bits), computed as follows:

hop latency = packet egress time−packet ingress time.
(1)

We designed this set of information as it can be easily obtained
in most switches. For example, P4 language provides these
metrics in the metadata fields egress global timestamp and
ingress global timestamp. Queue length and hop latency
give a specific overview of the network’s congestion level
while the switch ID helps detect the less-performing switch.
When these network signals indicate that congestion occurs,
it is easy to apply mitigation strategies to reduce sending
rate. Lastly, as can be seen, the feedback referring to each
switch is 32 bits, making the telemetry data compatible with
standards [17] and the variety of protocols considered during
design and prototype development (Section III-A).

A. Exploiting Programmability for Protocol Format and
Header Stack

We set the network nodes to work in two alternative modes:
(i) push, (ii) update. In the first approach, switch information,
which is viewed as a group of 32-bits, is stacked into the INT
header, allowing the receiver to process data with more oper-
ations, not only aggregated information as finding maximum
or minimum. For example, INT Sink, i.e., the INT endpoint
and data collector [17], can digest the information and perform
latency and INT packet loss analysis before sending aggregate
information to the final host or controller. Although we do not
consider the Sink in our architecture, letting the host receive
the metadata and process them (since the host already requires
socket modification) is a viable extension to further operations
(e.g., computing latency distribution in the path).



In the second approach, the HINT data of the header are
updated, reducing the network overhead. As this paper mainly
focuses on congestion control, we design this option as the
default and instruct switches to maintain the max value of the
queue depth and processing time in the path, and the switch
ID of the nodes that last updated the header. Having insight
into the worst network condition would help the host to solve
the network congestion [3], [20], [23].

Although we set the default version of HINT to work with
IPv4 options, in what follows we describe in detail three
other possible protocols which our solution is compatible with,
highlighting the advantages and disadvantages of each of them.
Aside from the ones suggested in [17], we envision these
valid alternatives: (i) IPv4 Options, (ii) Multiprotocol Label
Switching (MPLS), (iii) Big Packet Protocol (BPP). (i) IPv4
Options are extra 32-bit words that can hold options about
packet treatment inside traditional IPv4 protocol. This piece of
header carries the information defined by HINT in the selected
format of Section III. IP Options result in a less invasive format
and are the most used approach for INT solutions. As such,
we set it as default but extended the final product with some
alternatives that can be used as the business demands change.
(ii) MPLS is a well-known routing technique based on the
key idea that packet-forwarding decisions are made on the
contents of labels assigned to data packets. Labels prefixed
by MPLS constitute the MPLS header and form a label stack.
Our MPLS-compliant version of HINT would use this field
to carry the network telemetry information. The popularity
of this protocol would favor considerable interoperability on
both switches and hosts, at the cost of an additional packet
header that, compared to IPv4 options, demands more extra
bytes. (iii) BPP is a newly defined approach to customize
packet-based networking behavior based on the introduction of
a piece of BPP Collateral into packets as an additional packet
header [24]. This block of data, traditionally used to provide
guidance to intermediate network devices on how to process
those packets, is used in our BPP-compliant version to acquire
switch details about congestion. We can easily observe how
this option, despite implying a larger amount of additional
bytes (almost 30 bits) compared to the IPv4 approach, can
be easily extended to offer an accurate quality of service
guarantees and to facilitate other traffic engineering operations
that are simply not possible in the IPv4 header.

Our network programming framework based on data plane
programmability in general, and P4 in particular, can indeed be
used to support these policies and easily adapt to applications
with different demands without needing to deploy custom
hardware in networking devices and without the intervention
of sophisticated controllers.

IV. END-HOSTS’ TCP INTEGRATION

Although our architecture can fit other network problems
(see Section VI), one scenario we specifically consider in this
paper is the TCP Congestion Control Algorithm (CCA). As
mentioned in Section II, the idea of using network information
for the end-host TCP decisions is not new. Especially in

challenged network scenarios such as cellular access links, it
may be convenient that end-hosts get help from the network
itself [3], [5]. These approaches are based on the periodic
collection of network information about bandwidth and delay,
sent to the host as digested feedback. This feedback is used to
set cwnd and pacing rate, and send data accordingly. However,
the new wave of CCAs is moving toward autonomous learning
techniques, such as Machine Learning (ML) and Reinforce-
ment Learning (RL), to define the sending rate [1]–[3]. On the
one hand, this new class of solutions enables new possibilities
in the decision process by incorporating many heterogeneous
signals. On the other hand, it poses new challenges in the
design to reach an accurate but feasible implementation.

In this regard, we considered a particular TCP solution to
prove how it can benefit from HINT. We integrated HINT
with a learning-based CCA, namely Owl [3] since it has
already been designed to receive some information from the
partially known network. Using an RL formulation, Owl learns
the best actions based on collected experience via interacting
with the training environments. Thus, it can adapt itself to
various conditions without the need to be tuned or manually
engineered for every unseen scenario. Moreover, it is built
upon the Cubic implementation in order to speed up the
learning process and improve generalizability.

Every reinforcement learning (RL) problem involves a
decision-maker (agent) attempting to learn the behavior of a
dynamic system through repeated interactions [25]. Specifi-
cally, an agent receives the current state and the reward from
the dynamic system at each iteration and outputs an action that
maximizes a specified objective. As a result, the agent receives
state and reward from the system, while the only input the
system receives from the agent is the action. The success of the
agent’s action decisions are indicated by a reward value, and
the agent learns which actions to choose to provide the highest
cumulative reward over time, i.e., the long-term revenue.

In Q-Learning [26] the value of executing an action from
a given state is estimated in a Q-value, stored in a Q-Table.
However, to deal with the large state and action spaces, such a
Q-Table is approximated through neural networks, originating
the deep reinforcement learning (DRL) and, specifically when
applied to Q-Learning, deep Q-learning.

The majority of DRL-based CCA aims to continuously
select the next action, i.e., congestion window size, that
maximizes the cumulative reward. In the case of Owl, the
state space is composed of 10 features, namely: (i) congestion
window size (cwnd), (ii) round trip time (RTT), (iii) RTT
variation between two consecutive samples, (iv) maximum
segment size (MSS), (v) number of delivered packets, (vi)
packets lost during a transport session, (vii) current packets
in-flight, (viii) number of retransmissions, (ix) partial net-
work congestion, (x) the percentage of known network. The
action is the offset between the newly selected cwnd and
the current one. In particular, the action set is composed of
{−10,−3,−1,+0,+1,+3,+10}. The DRL model, by select-
ing one of these actions, learns how to make control decisions
from experience and eliminates the need for necessary pre-



H1 H2

S2

S1

S5

S6

S3

S4

Fig. 2: Network topology used in the experimental evaluation.

coded rules to adapt to the variety of network environments.
The reward function models the application-level goal of “high
throughput and few losses.” In particular, the reward Ri of
sender i is a function of throughput of client i ( λi), packet
loss rate for i (pi), as follows:

Ri = λi − δiλi

(
1

1− pi

)
,

where p ∈ [0, 1) and δ is an adjustable coefficient determining
the importance of the components. For further details on the
DRL model, we point this reference for the reader [3].

We modified its instance in order to integrate it with our
approach and make it able to accept information with this
new format. In particular, the Deep Reinforcement Learning
(DRL) model of Owl running on the host is thus fed with
these three more metrics from the network. The neural network
shape of the DRL is increased, and the original partial network
information is replaced by these three values. In this use
case, we only consider the update version of HINT where
the header contains the max values of queue occupancy and
hop latency. This operation limits the number of network
feedback always to three and makes HINT portable over larger
networks, as the header is limited in its growth. We thus
intervened in the kernel implementation to extract the data
and pass it to the machine learning model.

V. EVALUATION RESULTS

In this section, we illustrate our evaluation results showing
the advantages of our solution in terms of network efficiency
and TCP integration.
Experimental settings. We deploy HINT over Mininet, a
network emulator that enables the reproduction of arbi-
trary virtual networks for rapid prototyping.Supporting the
software-defined networking (SDN) approach, it can also cre-
ate switches that are P4 compliant thanks to Behavioral Model
Version 2 (bmv2), which enables translating P4 code into
C++11 software switches’ packet-processing operations. The
P4 compiler is built upon standard version p4-16. The topology
used for testing is shown in Figure 2, where all links have
100 Mbps of bandwidth, and packets crossing the network
are routed using Equal Cost Multi-Path (ECMP) strategy. H1
acts as a client transmitting data using iperf3, and H2 is the
server of the communication, and if not otherwise specified,
we create other traffic to have all the links 40% utilized.
Packet formats adaptation. First, we compute the RTT and
Flow Completion Time (FCT) (as suggested in [27]) of the

transmission for different durations of the flow, reporting
results in Figure 3 after 15 trials for each setting. We compare
the header formats compatible with HINT, i.e., IPv4, MPLS,
BPP, and the standardized INT-MD metadata header [17],
which has been recently used in other articles, e.g., [28].

We can easily observe how the IPv4 options-based version
is able to reduce the average RTT and FCT for all possible
durations of communication. The fewer bytes to be transmitted
and processed, along with the consequently more efficient P4
implementation, can significantly reduce the impact of INT.
Moreover, we can also note that none of these protocols
increase the impact of network congestion, having a limited
impact on both RTT and FCT. Therefore, we can conclude that
all options are valid, but the IPv4-compliant is less invasive
from the network and switch side. As such, we set this option
as the default version of HINT and use it in the following.
TCP integration evaluation. After observing efficacy in
design and P4 implementation, we now quantify the goodness
of metrics selected in the case of TCP CCA. We modified Owl
source code to assess the advantages of this new mechanism
to carry in-band information and deployed the new prototype
in the same network topology. We compare the traditional Owl
and this new version after training both models for 1 hour.

Figure 4 shows the evolution of (a) RTT and (b) throughput
for the two Owl versions during a 2 minutes transmission.
We can clearly observe how HINT is optimally integrated
into CCA and allows the latency reduction and an increase of
the throughput jointly. In particular, the INT-based approach
can deliver network information to the host in a faster way
compared to the original interval-based approach. While tra-
ditional Owl uses network information every time interval (1
second in our implementation as suggested by the authors), the
decision logic uses periodic feedback that is unaligned with
the packet transmission. Instead, having the feedback directly
in the packet allows associating the statistics to the packets,
resulting in a more accurate learning and more responsive
cwnd adjustment.

For example, nearly from second 30 to 60, the original
Owl algorithm is slower in detecting congestion and then
reacting to this event (Figure 4a). The modification based on
INT, on the contrary, helps towards the reactive response of
the host, keeping the RTT always limited. The same occurs
for throughput (Figure 4b), interval 40-60 seconds, where
throughput reduction because of high network congestion only
partially affects the transmission, which continues without
excessive throughput downgrade. The feedback received by
the network helps the host to follow the congestion in the
path and properly adapt the cwnd mechanism.
Network utilization impact. Clearly, throughput and RTT
depend on the network utilization, and we measure the effect
of traffic in Fig. 5a-b. We quantify the advantages oh HINT
compared to other CCAs, namely: (i) Cubic [29], a traditional
protocol, which is the default on Unix systems, (ii) Aurora [1],
an RL-based CCA, which learns without network feedback,
(iii) Owl, the reference CCA, which lacks an INT mechanism,
(iv) ABC [21], a CCA employing in-network control, i.e., the
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network delay.
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Fig. 4: (a) RTT evolution and (b) throughput of 120 seconds transmission. The Owl version based on HINT leads to minor
RTT and higher throughput compared to the traditional version of Owl.
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Throughput performance over different network topologies and increasing number of informing switches. .

network devices send congestion information and command
to accelerate or break. We define network utilization as the
ratio between consumed bandwidth and total capacity in the
environment. We can observe that other in-network congestion
control mechanisms, e.g., ABC and Owl, are ineffective with
low network utilization, to the point that a simple CCA as
Cubic leads to a higher throughput. The advantages of a
network feedback are more visible when network utilization
touches 70%, both in terms of throughput and RTT. At this
point, Cubic and Aurora can not properly handle network
congestion. We can however observe that HINT consistently
increases the throughput and lowers the latency compared to
all alternatives, given the limited overhead introduced in the
network.

Network size impact. We now compare the two versions of
HINT against a few representative protocols when increasing
the number of switches over randomly generated topologies,
i.e., links are randomly generated while we fix the network
size. The link capacity is also uniformly distributed at random
between 50 and 100 Mbps. We measure the perceived through-
put when our solution runs the update version of telemetry and
push version, reporting results in Fig. 5c. It can be observed
that the completeness of knowledge brought by HINT-push is
beneficial when the number of switches is limited, around 10
switches in the topology. When the network size grows, HINT-
update appears as the preferred option that is also able to
outperform alternatives. This result is extremely important to
understand how the HINT information helps the TCP CCA to



maximize the throughput and that both versions of our solution
are well-designed, but HINT-update must be used for larger
networks.

VI. CONCLUSION

This paper presented HINT, a novel solution that, using
In-Band Network Telemetry, delivers valuable and timely
information to the end-hosts in order to handle congestion. In
particular, we studied how different protocols, i.e., IP Options,
BPP, and MPLS, can gather the status of traversed P4 switches
and inform the TCP module of hosts to properly adjust sending
rate. Results in our P4 implementation confirmed how a
limited set of information could effectively obtain an indicative
network congestion level and help TCP process on hosts. We
plan to extend this work in the near future in several directions:
more realistic workloads and alternative TCP protocols.

In the future, we plan on extending HINT to other TCP
protocol. While this paper presented a specific set of network
metrics and a particular TCP use case, this system can be
easily extended to work with more packet formats or with
a different set of statistics, and can cooperate with other
transport protocols and congestion control algorithms, e.g.,
NATCP, Swift, or DCTPC, to name a few.
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