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ABSTRACT The design of renewable-based and collective energy systems requires consumption
data with fine temporal and spatial resolution. Despite the increasing deployment of smart
meters, obtaining such data directly from measurements can still be challenging, particularly
when attempting to gather historical data over a reasonable period for many end users. As a
result, there is a need for models to simulate or predict these consumption data (e.g., hourly
load profiles). Typically, these models rely on numerous specific and detailed observations, such
as load type, household size for residential customers, or operating hours for commercial ones.
However, gathering this level of detail becomes increasingly difficult as the number and diversity
of end users increase. Therefore, this paper proposes a data-driven approach to predict hourly load
profiles of heterogeneous end users using only their monthly time-of-use electricity bills as inputs.
We create a training set using a limited number of hourly measurements from diverse categories
of end users and, differently from other approaches aimed at classifying the end users, we develop
a regression model to map monthly electricity bills to typical load profiles. Experimental results
using one year of data from various end user categories demonstrate an average normalized mean
absolute error of approximately 26% for instantaneous consumption and less than 4% for time-of-use
values. Comparative analysis with standard load profiles and a two-step data-driven approach based
on classification reveals that our proposed method outperforms the others in terms of prediction
accuracy and statistical metrics.

INDEX TERMS
Energy consumption, electricity demand, load modeling, data-driven modeling, nearest neighbor
methods.

I. INTRODUCTION

THE decarbonization of electricity will play a rele-
vant role in the future, worldwide energy transition

to transform the electricity grid into less carbon-intense
or, potentially, carbon-free systems [1]. This transition
will require more Renewable Energy Sources (RESs) to
be integrated into the grid at both utility-scale and the
small and local scale on a more dispersed perspective,
as distributed generation [2]. The former, as large-
size installations, usually participate in the wholesale
markets, and hence their sizing does not dependent on
local energy consumption. The latter solutions, instead,
sustain local demand by increasing self-sufficiency and
reducing supply costs in many fields of application, from
the industrial [3] to the residential sectors [4].

Hence, RES-based distributed generation must be
properly sized according to the energy demand, to make
the installations affordable, profitable, and sustainable.
Practically, the match between production and con-
sumption at fine temporal resolution (at least hourly [5])
must be thoroughly assessed, e.g., through optimiza-
tion [6], to avoid potential over-sizing or underestima-
tion, regardless of the field of application.

For this reason, weather data are needed to estimate
RES production through proper modeling of the active
assets [7], while load (i.e., consumption) profiles of the
local demand need to be identified [8]. This last task can
become complex when the number and the typology of
end users increase significantly, due to limited access to
data measured by smart meters (SMs) and the conse-
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quent increase in the number of unobserved end users
(i.e., whose consumption data cannot be collected at fine
temporal resolution). In fact, collecting hourly (or sub-
hourly) consumption data from SM can be challenging
due to various factors, including privacy concerns and
technical limitations. Privacy regulations often restrict
the collection of granular consumption data, as they can
reveal sensitive information about individuals’ activities
and habits. Moreover, the roll out of new SMs to allow
measurements at fine temporal granularity for a large
number of customers can be logistically demanding and
time-consuming [9], [10]. Consequently, hourly consump-
tion profiles are not always available. Energy bills, in-
stead, provide aggregated consumption information and
are typically already collected as part of standard billing
procedures, making them readily available directly to
the end users or suppliers. Despite being at a coarse
temporal resolution, energy bills data provide valuable
information for the analysis and prediction of load
profiles, e.g., through data-driven modeling.

Unlike standard load profiles (SLPs) [11] or synthet-
ically generated ones [12], data-driven approaches use
measurements to build a model that relates attributes
of the end users to their load profiles. This knowledge
can then be extrapolated to predict load profiles of
unobserved customers. Previous studies [13], [14] have
utilized different attributes as input data. However,
these approaches often require intensive and intrusive
data collection, whereas the energy bill offers a potential
solution by enabling models that can handle limited
data [15].

Therefore, in this study, we propose a data-driven
approach to predict the electricity load profiles of unob-
served end users using only their electricity bills. Specif-
ically, we leverage time-of-use (ToU) tariffs [16], [17],
which divide the monthly bill based on varying consump-
tion patterns throughout the day and week. Then, by
applying a data-driven approach, our goal is to invert the
relationship between the ToU consumption and the load
profile that generated it. While it may be argued that
different load profiles can result in the same energy bill,
due to its integral nature, practical observations suggest
a limited number of distinct consumption patterns [18].
We assume that these identifiable patterns are associ-
ated with different energy bills. Unlike classification-
based approaches [13]–[15], we utilize a regression model,
specifically k-nearest neighbors (k-NN), to map energy
bills to hourly load profiles.

Notwithstanding its limitations, the proposed ap-
proach is easily exploitable in contexts where managing a
portfolio of end users is required, including unobservable
ones. In fact, once the model is trained using a limited
amount of measurements, it only utilizes aggregated
data from monthly energy bills, which can be collected
even for large numbers of heterogeneous end users. The
fields of application of the approach extend beyond RES-

based local energy systems to encompass the design and
evaluation of Demand Response programs, identification
of energy-saving opportunities, and creation of dedicated
offers from energy suppliers.

The remaining sections are structured as follows. In
Section II, we review the literature on load modeling,
focusing on data-driven methods and presenting the
related works and contributions of this study. Section III
analyzes the load prediction from energy bills as an
inverse problem. Section IV describes the implementa-
tion methods for the proposed approach and benchmark
approaches from the literature. Section V discusses
the data set used for testing the proposed approach.
Section VI presents and compares the results obtained
with benchmark approaches, discussing the strengths
and limitations of the proposed approach. Finally, Sec-
tion VII provides the conclusions of this work.

II. LITERATURE REVIEW AND CONTRIBUTION

A. LOAD MODELING

This work pertains to the field of energy use/load
modeling [19], specifically focusing on the prediction of
fine-resolution electricity consumption data for heteroge-
neous end users (residential, commercial, public offices).

Traditionally, SLPs obtained from measurement cam-
paigns have been widely utilized. For example, the H0
SLP is employed by energy companies in Germany and
Austria for residential customers [11], [12]. Similarly,
non-residential customers are categorized and assigned
an SLP based on their assumed energy usage and/or
energy intensity [20], [21]. However, SLPs have faced
criticism due to their reliance on outdated data, ignoring
recent changes in consumption patterns, and overlooking
variations within the same category [12], [20], [22].
Moreover, SLPs struggle to accurately capture consump-
tion levels and dynamics at fine temporal and spatial
resolutions [11], [23]. Nevertheless, SLPs continue to be
widely used in industry and government bodies, such as
the Italian Manager of Energy Services (GSE), which
adopted SLPs for regulating end users under collective
self-consumption and energy communities to address the
absence of SM data [24].

Conversely, research has focused on modeling energy
usage to generate synthetic load profiles. Various mod-
els, classified as bottom-up and top-down (sometimes
hybrid), have been proposed [25]. Extensive reviews of
these models have been conducted by Grandjean et
al. [26] and Proedrou [12]. In essence, bottom-up models
can produce accurate and highly resolved load profiles
but require extensive and detailed input data, while top-
down models can work with fewer, large-scale data, but
they are generally more suitable for aggregate-level load
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profile modeling [12], [25]1.
Recently, data-driven models have flourished in the

literature thanks to the introduction of Advanced Me-
tering Infrastructure, of which SMs are a key com-
ponent [28]–[30]. These models typically treat hourly
or sub-hourly energy consumption data from SMs as
time series and employ data mining and machine learn-
ing techniques to extract knowledge from them [31].
While these models find applications in various areas
such as fault and anomaly/bad data detection, and
load forecasting [32], our focus is on the topic of load
management [29], which encompasses building energy
benchmarking and customer segmentation.

A significant portion of the literature is focused on the
latter field, which aims to group energy end users based
on similar characteristics. One approach is to cluster
buildings with similar energy usage patterns to identify
energy-saving opportunities [33]–[35]. Another approach
involves identifying groups of customers with similar
consumption patterns, enabling the provision of tailored
offers and the implementation of Demand Response
programs to enhance energy system operation [13]–[15],
[22]. Studies by Rasanen et al. [20], Mutanen et al. [36],
and, more recently, Parks et al. [18] and Zhan et al. [37]
demonstrate how data-driven methods analyzing SM
data yield more accurate results compared to traditional
approaches based on activity typology (e.g., residential,
commercial, government) and energy use intensity.

Clustering SM consumption data is a common char-
acteristic of these data-driven methods, which involves
unsupervised learning [38] to identify groups with sim-
ilar consumption patterns. Each group, or cluster, is
then associated with a representative load profile (i.e.,
the cluster center). Chicco [28], Zhou et al. [39] and
Rajabi et al. [21] provide comprehensive reviews of load
profile clustering, covering the methodologies, steps,
application to customer classification, and performance
evaluation metrics. It is important to note that only a
few cases include a post-clustering phase, which entails
supervised learning [38] to develop models such as classi-
fier systems or regressions for extrapolating the acquired
knowledge to new (or unobservable) customers.

B. RELATED DATA-DRIVEN APPROACHES
The post-clustering phase serves two opposing aims:
inferring the characteristics of buildings/end users from
their load profiles (used as predictive attributes) [40],
[41]; predicting the class (and, consequently, load profile)
of new or unobservable customers based on a series of
attributes. The latter problem, on which we focus, has
received little attention in the literature according to
previous studies [13], [15] and to our own review.

1It is worth noting that Duque et al. [27] recently developed a
probabilistic model using smart meter measurements to generate
synthetic load profiles for individual households, conditioned on
specific total yearly consumption values.

Typically, the classification of new customers and the
assignment of representative profiles rely on specific
attributes of the end users within each cluster. For
instance, Viegas et al. [14] utilized survey data, such
as the age and income of family members, and the
number of appliances, along with a limited amount
of SM measurements (0 to 10 weeks). In the case of
unobserved end users, the classification solely relies on
the available survey data. Vercamer et al. [13], instead,
classified non-residential consumers based on internal
company data (e.g., commercial code, number of em-
ployees), open data related to the municipality, and
cartographic information (e.g., building size). Piscitelli
et al. [15], on the other hand, classified commercial
and industrial end users based on easily collectible data
such as monthly consumption from energy bills and
information on opening/closing and lunchtime hours.
In contrast to the aforementioned methods, Granell et
al. [42] employed a regression approach using k-NN to
predict the hourly load profiles of new supermarkets in
different market areas, considering the floor area.

Overall, previous models have been developed based
on category-specific end user attributes or through ex-
tensive data collection procedures. However, these ap-
proaches may not be suitable when dealing with a large
number of end users from diverse categories, as they can
become cumbersome and inefficient.

C. CONTRIBUTION
This paper introduces different key contributions to
the field of load modeling and, in particular, end user
load profile prediction. By building upon the existing
literature, we address the following aspects.

Utilization of ToU energy bills
The analyzed state-of-the-art approaches often rely on
end-user attributes that are category-specific or require
intensive data collection, which can be cumbersome
and impractical. Conversely, our approach utilizes only
the ToU energy bill for load profile prediction. While
Piscitelli et al. [15] also used energy bills, their approach
incorporated additional data, specific to commercial
and industrial customers. Furthermore, they focused
solely on weekdays, while we consider a more compre-
hensive set of typical days (also including Saturdays,
and holidays, according to the ToU tariffs described in
Section III).

Regression-based prediction
Unlike classification-based approaches employed in pre-
vious works, we adopt a regression-based methodology
to predict hourly load profiles. We frame the problem as
an inverse one since the input (energy bill) and output
(consumption profile) are linked by a direct analytical
relationship. SLPs, commonly used in the industry and
by government bodies [24], map energy bills to load
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profiles independently of the bill’s characteristics. In
other words, the same profile is indifferently adopted
for all end users (within a predefined category), while
re-scaling is used to preserve the total consumption
(see Fig. 1a). Alternatively, clustering-classification ap-
proaches map different energy bills to distinct load
profiles (i.e., the cluster centers) which can be seen
as a “discrete” mapping (see Fig. 1b). In contrast, our
approach leverages regression using k-NN, enabling a
more continuous mapping between energy bills and load
profiles (see Fig. 1c). In this way, similar ToU energy
bills are mapped into similar load profiles, reflecting the
supposed inverse relationship between the two quanti-
ties, which is described more in detail in Section III.

x1

x2

(a)

x3x6

x5

x4

x7

(b)

x1

x2

(c)

FIGURE 1. Visual representation exemplifying different ways of mapping
the energy bills (represented as points in the x-space) to their
corresponding typical load profile (i.e., their image in the y-space), which
is represented as a line (see Section III-A for the definitions of these
elements). These three methods of mapping are compared in the paper: in
(a) an SLP is used, and consequently the values of an energy bill can only
change the total consumption (‘‘magnitude’’) of the typical load profile
while the shape corresponds to the SLP; differently, in (b), the x-space is
divided into clusters, and hence depending on the values of the energy
bill (i.e., the position of a point in the x-space), it is mapped by with a
different typical load profile whose shape corresponds to the cluster
center; finally, in (c), each point is considered individually and mapped in
a more continuous way, in a regression-like approach, by means of k-NN.

Testing diverse end-user categories
We leverage the fact that our proposed approach pro-
vides a more versatile and scalable solution that can be
applied to a wide range of end-user categories. Therefore,

while previous studies focus on a single category, we test
the proposed approach on different customer categories,
involving residential, commercial, and public offices.
We also provide a comparison with two benchmarks,
respectively based on SLPs and the two steps clustering-
classification approach identified in the literature.

In summary, these contributions advance the field of
load modeling and prediction, in particular by providing
a streamlined and data-driven approach that utilizes
time-of-use energy bills for regression-based load profile
prediction.

III. INVERSE PROBLEM DESCRIPTION
We start by providing an overview of the ToU tariff
scheme implemented in the Italian regulation [43] since
we use a set of SM measurements of Italian end users for
testing our approach. In particular, three different tariffs
are defined for electricity (F1, F2, F3), respectively,
for on-peak, mid-peak, and off-peak hours, which are
arranged as shown in Fig. 2. According to these ToU
tariffs, three types of days can be identified, each charac-
terized by a different subdivision of the hours into ToU
tariffs: work days, from Monday to Friday; Saturdays;
and Sundays/holidays (just ‘holidays’, in the followings).

A. DEFINITIONS

Load profile

We refer to a load profile as a time series of the en-
ergy consumption over a sequence of uniformly-spaced
time steps, which in this paper have an hourly resolu-
tion. We use an average, uniform power demand asso-
ciated with the energy consumption in each time step
while using the term ‘energy’ for other quantities with
rougher granularity (e.g., daily or monthly).

Average load profile

An average load profile is the result of a time step-by-
time step average between load profiles that have the
same length and that share some feature(s). In this pa-
per, we evaluate average load profiles on a monthly basis,
for each day type (work days, Saturdays, holidays).

Typical load profile

A typical load profile provides a condensed represen-
tation of the three average load profiles in a month,
obtained by putting the latter in a sequence (see Fig. 3).

Energy bill

An energy bill is a set of records of the energy con-
sumption (rather than the expenditure) in the three ToU
tariffs in one month. The components of the energy bill
can be evaluated from a typical load profile, considering
the ToU structure depicted in Fig. 2.
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FIGURE 2. ToU tariffs structure adopted in Italy. The central hours of work days are on-peak (tariff F1, in red); early morning and evening of work days
(Monday-Friday) and day hours of Saturdays are mid-peak (tariff F2, in yellow); night, Sundays, and major holidays are off-peak hours (tariff F3, in green).
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FIGURE 3. Visual example of the averaging process and creation of a typical load profile in one month. A month-long load profile is first chunked into
day-long sequences, which are arranged by day type (in red are the load profiles of all work days, in yellow those of all Saturdays, and in green holidays);
then, an average load profile is evaluated for each day type; these profiles are finally put in a sequence to obtain the typical load profile (the blue,
continuous line). [The data are from the data set described in Section V].

FIGURE 4. Visual example of the bill calculation from a typical load profile in one month. The blue line shows the typical load profile. The subdivision of
the time steps into ToU tariffs is also shown (F1, in red, F2, in yellow, and F3, in green). The colored bars are the three components of the bill, i.e., the
consumption in each ToU tariff. The width of the arrow is related to the number of days of each day type in the month.

Spaces of the energy bills and typical load profiles
An energy bill can be imagined as a point in a space with
three dimensions, i.e., one for each ToU tariff: we call this
the ‘x-space’. Similarly, we define a space of the typical
load profiles, the ‘y-space’, that has one dimension for
each time step in the profile.

B. DIRECT AND INVERSE MAPPING
Given the definitions provided above, the calculation
of the ToU energy bill from a typical load profile
provides the direct analytical relationship between the
two quantities. Fig. 4 provides a qualitative example
of this relationship, while the mathematical details are
reported in Section IV. On the other hand, the analysis
of measured data shows that it is possible to invert

this relationship. For instance, in Fig. 5, three different
pairs of energy bills are shown in the x-space, with the
related typical load profiles in the y-space. These have
been randomly chosen among the data available in the
testing data set (described in Section V) in order to be
pair-wise close in the bills space although from different
end users. Despite some differences in the instantaneous
consumption within the same ToU tariff time span, the
profiles that share similar energy bills also share many
similarities in the consumption patterns, e.g., the hours
of peak and base load, the number of spikes in the
consumption, and so on. In the following section, the
methods to leverage this inverse relationship to build
a model for the prediction of typical load profiles of
unobservable end users are described.
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FIGURE 5. Visual examples of the similarity between monthly ToU energy bills and typical hourly load profiles. In particular, three pairs of points (i.e.,
energy bills) are shown, which are pair-wise close in the x-space. The respective ‘‘lines’’ in the y-space (i.e., typical load profiles) in turn exhibit similar
shapes.

IV. METHODS
A. NOTATION AND BASIC CALCULATIONS
A load profile is represented as a vector:

p = {Ph}h=1,...,Nh
, (1)

whose elements Ph are the average, constant power
demand associated with the energy consumption Eh in
each time step th, i.e., Ph = Eh/∆th, where ∆th is one
hour; and Nh the length of the time series.

Given a month-long load profile, it can be chunked
into daily sequences, which can be arranged by day type
(work days, Saturdays, holidays). We call Lj the set
of load profiles of all days in the month belonging to
day type j. Then, the corresponding average load profile
p̄j can be evaluated, as follows:

p̄j =
{
P̄j,h

}
h=1,...,Nh

,

s.t. P̄j,h =
1

ndj

∑
l∈Lj

Pl,h.
(2)

where ndj is the size of the set Lj, i.e., the number of
days in the month of the j-th day type.

We call J the set of the three average load profiles in
a month. Then, the corresponding typical load profile,
y, is represented as follows:

y = {Yi}i=1,...,Ni
=

{
P̄j,h

}j=1,...,|J|
h=1,...,Nh

, (3)

Considering Nh = 24 and |J| = 3, the length of the
typical load profiles is Ni = 72.

An energy bill is also represented as a vector,

x = {Ef}f=1,...,Nf
, (4)

whose elements Ef are the monthly energy consumption
in the three ToU tariffs F1, F2, F3 (Nf = 3).

Given a typical load profile y the elements Ef of the
associated energy bill vector x are calculated as follows:

Ef =

|J|=3∑
j=1

ndj ·
Nh=24∑
h=1

P̄j,h · δf,j(th) ·∆th,∀f = 1, 2, 3, (5)

where δf,j is a binary auxiliary variable, defined as
follows:

δf,j(th) =

{
1, if th in day type j belongs to Ff

0, otherwise
, (6)

whose values, which depend on the hour and type of the
day, can be directly obtained from Fig. 2.

B. TRAINING DATA SET
The proposed approach requires a set of energy bills (x)
and corresponding typical load profiles (y) pairs. We
call these pairs the “training” data set, in compliance
with the conventional naming in the field of machine
learning. These {x, y} pairs can be obtained from an
end user’s year-long load profile, by:

i. dividing the time series into month-long profiles;
ii. repeating the steps in (2), (3) and (5) for each

month.
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Hence, twelve pairs (one per month) can be obtained
from each end user’s year-long load profile. Then, the
training data set is organized in rows, each correspond-
ing to one of these pairs.

Data normalization
The training data set contains data from heterogeneous
end users, so they must be normalized to remove effects
related to the total consumption (“magnitude”). Given a
pair of x, y vectors, the elements of the energy bill are
normalized so that they sum to 1. Hence, the elements
Êf of the normalized vector x̂ are evaluated as follows:

Êf =
Ef∑
f Ef

. (7)

Concerning the load profiles, usually min-max [28] or
max normalization (e.g., in [37]) are performed to obtain
time series values in the range 0–1, or z-standardization
to obtain values with null mean and unitary standard
deviation (e.g., [18]). In our case, we want to keep the
relationship between the typical load profile and energy
bill in (5). Therefore, the elements Ŷi of the normalized
typical load profile, ŷ, are evaluated as follows:

Ŷi =
Yi∑
f Ef

. (8)

Hence, the resulting normalized typical load profiles
have unitary total consumption in the month.

When evaluating the normalized vectors x̂ and ŷ,
we perform a “row-wise” normalization of the training
data set so that all samples can be compared with each
other. Usually, also “column-wise” data normalization
is required, to make the different features comparable
to each other. This is not the case for the energy bill
(and the typical load profile), whose single elements are
already comparable with each other.

C. K-NN BASED PREDICTION
The training data set is used to predict the end users’
typical load profiles from their monthly bills, by means
of a k-NN algorithm. This is a well-known supervised
learning method [44]. Unlike other algorithms, it does
not have a training phase and it exploits the whole
training data set in each prediction. The only parameter
of the algorithm is the number of neighbors.

Given the training set of (x̂, ŷ) pairs, and a vector
x̂∗ whose corresponding ŷ∗ is unknown, the algorithm
works as follows.

i. Evaluate the distance between x̂∗ and all the x̂
vectors in the training data set. The Euclidean
distance is used.

ii. Identify the neighbors, i.e., the elements in the
training data set with a smaller distance from x̂∗.
We call the sets of the x̂ and of the ŷ vectors of the
neighbors, respectively, Kx and Ky. Their size |K|
is equal to the number of neighbors.

iii. Evaluate the prediction (ŷpred), as the element-by-
element weighted average of the vectors in Ky, as
in (9):

ŷpred =
∑
k

1

|K|
· ŷk, (9)

where ŷk is the typical load profile of the k-th
neighbor.

iv. Set ŷ∗ equal to the prediction ŷpred.
This is the basic implementation of the algorithm, in

which the neighbors have the same (uniform) weights
However, neighbors could also have different weights,
e.g., inversely proportional to the distance between their
x̂ vector and x̂∗ [45].

Fig. 6 provides an outline of the process that leads to
the k-NN-based prediction of ŷ∗. After this procedure,
y∗ is obtained by inverting (8), thus restoring the
actual magnitude. However, despite the proximity of
the neighbors in the x-space, the “predicted” energy bill,
evaluated applying (5) to y∗ may not coincide with the
original bill in the different ToU tariffs (see Fig. 6).

D. BENCHMARK APPROACHES
We present a general outline of the benchmark ap-
proaches against which we compare the proposed one.

Standard load profiles
This method is based on the SLP evaluated for different
categories of end users. In particular, we used the SLP
adopted by the GSE in [24], defined for two categories,
i.e., household and non-household (see Fig. 7). Given an
end user with a monthly bill x∗, the associated typical
load profile y∗ is evaluated by:

i. selecting a standard profile yref according the
end-user category;

ii. multiplying the SLP by a scaling factor to match
the actual total consumption in the month.

Clustering-classification
The detailed steps of this kind of procedure can be found
in works like [13], [14] and mainly [15], from which we
borrowed this method, therefore we present here only an
overview of the main steps and of the algorithms adopted
for each task.

The first step is the extraction of the representative
load profiles from the training data set, through a clus-
tering performed in the y-space (i.e., only the typical
load profiles, ŷ, are used). We use K-means, a well-
known unsupervised learning algorithm that has been
recently proven particularly effective in load profiles
clustering [34]. The number of clusters is the only
parameter of the algorithm. Based on the result of the
clustering, the (x̂, ŷ) pairs in the training data set are
divided into classes (i.e., the clusters), each with a rep-
resentative load profile (i.e., the cluster center). Then,
a classifier system can be trained using the elements of
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FIGURE 6. Graphical outline of the k-NN prediction process in the x and y-spaces (note that only two components of the bill are shown, to allow a
two-dimensional representation of the x-space.). First, the training set composed of (̂x, ŷ) pairs is initialized. A test pair of x̂∗ and ŷ∗ vectors is also shown
(normally ŷ∗ is unknown). To predict ŷpred from x̂∗, the k nearest neighbors (in the x-space) are evaluated and selected. Then, ŷpred is evaluated as the
element-by-element weighted average of the neighbors (in the y-space).

the energy bills x̂ as features and the cluster label as
targets. This supervised learning task is performed by
means of a Decision Tree classifier, as in [15]. At the
end of this procedure, a set of rules have been derived,
based on which an energy bill can be assigned to one
of these classes. When a typical load profile ŷ∗ must be
predicted from an end user’s energy bill x̂∗, a class label
is assigned based on the derived decision rules. Then,
the cluster center is set as the representative load profile
and (8) is inverted to add the magnitude effect so that
the total consumption matches the actual energy bill.

In both previous cases, similarly to the proposed
approach, while the total energy consumption matches
the value in the energy bill, it is not guaranteed that
the proportions between the different ToU components
coincide. The latter depend indeed on the shape of

the predicted load profile, which is imposed by the
SLP/cluster centers.

E. VALIDATION

We validate our result using a test set of measured
hourly consumption data. Therefore, we first predict
typical load profiles using the described methods and
then compare them with the real ones. Kohler et al. [25]
provided an extensive review of metrics commonly used
to compare predicted (or synthetic) and real load pro-
files, focusing on the difference between “sameness” and
“similarity”. The former is the time step-by-time step
equivalence between two time series. For instance, the
mean squared error (MSE) and the mean absolute error
(MAE) measure the sameness [25]. The similarity is
a broader (and looser) concept that can be declined
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FIGURE 7. Typical load profiles evaluated from the SLPs adopted by the
GSE for household and non-household end users. The subdivision of the
time steps into ToU tariffs is also shown (in red, F1, yellow, F2, green, F3).
[Elaboration of data from [24]].

and assessed in different ways. Many metrics proposed
in [25] to assess similarity focus on the statistics of the
real and simulated profiles (e.g., minimum, median, and
maximum values, standard deviation, and error on the
duration curve). In the paper, they also propose metrics
based on complexity, such as the number of peaks and
the fractal dimension.

In this paper, we evaluate the normalized MAE
(NMAE) and the Pearson coefficient (r) between the
predicted and real load profiles to assess the sameness.
We prefer the MAE over other error metrics, such as
the MSE, because it directly quantifies the energy con-
sumption that is allocated in the wrong time steps [42].
The r coefficient instead evaluates the linear correlation
between two quantities. We also evaluate the ability of
the methods to reconstruct the statistics of the data by
measuring the NMAE between the duration curves of
the predicted and real typical load profiles [25]. We call
this metric the duration curve error (DCE).

In all cases, even if we use an artificial profile of 72
hours, we consider the weight of each day type in one
month (e.g. there are more work days than Saturdays).
As to the NMAE, we perform a weighted average (on the
number of days of each day type) of the metric evaluated
on the single day type. In the case of the DCE, instead,
we evaluate the duration curves of the equivalent month-
long load profile by assigning to each day the average
load profile of the related day type.

All methods guarantee that the actual total con-
sumption in a month is respected by properly scaling
the typical load profile. However, it is not guaranteed
that the proportions between the consumption in the
different ToU tariffs match the actual one. Therefore, we
also evaluate the NMAE between the real and predicted
energy bills. Similarly to the case of the load profiles,
this metric measures how much of the total monthly
consumption is allocated in the wrong tariff by the
prediction (more details are reported in Section VI).

V. CASE STUDY
We tested the proposed and benchmark approaches
on a data set consisting of 114 end users of different
types (i.e., household, DOM, and non-household, BTA),
classes (i.e., levels of contractual power, see Table 1), and
categories (see Fig. 8). The data were provided by a local
energy supplier, who measured the hourly consumption
for these end users over a time span of one year. The
samples are mostly uniformly distributed among classes
(around twelve end users each) and categories. The only
exception is represented by the class DOM1, which is
composed of only one user. For this reason, we created
the class DOM12 by merging DOM1 into DOM2.

TABLE 1. Codes assigned to the end-user classes according to the type
(household, DOM, and non-household, BTA) and level of contractual
power at the point-of-delivery defined by the Italian Regulatory Authority
for Energy, Networks and the Environment.

1 2 3 4 5 6

DOM ≤1.5 1.5–3 >3 ∀1 - -
BTA ≤1.5 1.5–3 3–6 6–10 10–16.5 >16.5

1 Non-resident

Fig. 9 shows the statistics of the consumption in
the typical load profiles of the end users in all months,
divided by classes. In some cases, consumption patterns
with good intra-cluster properties can be found in these
classes. For instance, in BTA1, BTA4, BTA5, DOM3,
and DOM4 the interquartile range (IQR) appears quite
narrow and it follows the median value, while in other
cases (e.g., BTA2) it is rather wide. However, even when
the IQR is narrow, the extreme values (min, max) can be
far from the median and also have different shapes (e.g.,
BTA1 and BTA4). Finally, Fig. 10 shows the distribution
of the three components of the energy bills in the
end users, divided by classes. Again, there are cases
(e.g., household end users) where the distributions are
narrow, but also cases in which they are very dispersed,
meaning that end users with very different energy bill
composition (hence, consumption patterns) can be found
in the same class.

The typical profiles and related energy bills were
evaluated from raw data, therefore they have been
analyzed in order to eliminate samples with evident
inconsistencies or extreme outliers (e.g., time steps in
which the consumption was more than five times higher
than the average one). This procedure removed about
5% of the original samples: from 114 yearly load profiles,
1368 pairs could be obtained, and 1294 remained after
data cleaning.

We used the data set for both testing and training the
data-driven approach. Therefore, in order to assess the
performance, we reconstructed the data set through a
leave-one-out cross-validation [46], where the samples of
one end user at a time served as testing while those of
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FIGURE 10. Statistics of the monthly energy bills evaluated for the end users divided by ToU tariff time slot and class. The whiskers are truncated at the
5th and 95th percentile.

the other end users served as training data. Accordingly,
the number of folds in the cross-validation procedure is

equal to the total number of end users in the data set
(i.e., 114, each consisting of around 12 profiles).
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We implemented all the methods in Python and
exploited the open-source library sklearn [47] for the
K-means, Decision Tree classifier, and k-NN algorithms.
We identified a number of clusters equal to 11 (for
the clustering-classification approach), and a number
of neighbors equal to 9 (for the proposed k-NN) as
those minimizing the average error on the predicted
load profiles, while we used the default settings from
sklearn for the training of the Decision Tree.

VI. RESULTS AND DISCUSSION
Fig. 11 shows the distributions of the NMAE between
the real and predicted data for the three methods tested.
In particular, Fig. 11a shows the NMAE on the ToU
components of the energy bill. Thanks to the procedure
based on the proximity in the x-space, the k-NN method
obtains the smallest error. In the case of the clustering-
classification approach, the composition of the predicted
energy bill is more “rigid” since it depends on the shape
of the cluster centers. This effect is more pronounced in
the SLP approach, where only two shapes are possible
(household and non-household). Fig. 11b shows the same
error metric evaluated on the typical load profiles. In
this case, the errors are larger since they are evaluated
instantaneously time step by time step. Also in this
case, the k-NN shows the best performance, allowing
for an error reduction, on average, of 6.5% and 13.8%
if compared, respectively, to the clustering-classification
and to the SLP approaches.

Fig. 12 shows two different metrics evaluated on
the reconstructed yearly load profiles of each end user.
Fig. 12a reports the error between the real and predicted
duration curves (DCE), while Fig. 12b shows the cor-
relation coefficient between the two load profiles. The
former measures the sameness of the statistics of the
real and predicted load profiles. Therefore, the DCE is
smaller than the NMAE on the typical load profiles.
The correlation coefficient instead measures how the real
and predicted profiles are linearly correlated. The k-NN
approach shows the closest values to 1, which means
perfect linear correlation. However, in certain cases, the
values of r are significantly smaller than 1.

The radar plots in Fig. 13 show, respectively, the
NMAE and r metrics between the real and predicted
typical load profiles, divided by end-user classes. In the
case of household end users, the performances of the
SLP approach are comparable to those of the data-
driven ones. However, the SLP reveals to be inade-
quate to characterize the load profiles of non-household
end users, where instead the data-driven approaches,
in particular the k-NN, show significantly better per-
formance, comparable to the ones they obtain with
the household end users. This means that an SLP is
able to characterize the typical load profiles of house-
hold end users, where lower within-class variability is
found (see Fig. 9). On the other hand, non-residential

customers have more diversified consumption patterns,
which a unique SLP fails to represent, while data-driven
methods can better identify the different shapes based
on the energy bill.

The radar plots in Fig. 14, where the NMAE and r
are divided by day type, show that all methods perform
significantly better on work days than on Saturdays and
Sundays/holidays. This can be related to the fact that
the consumption in work days is mostly under the ToU
tariff F1, which does not appear in other day types. On
the contrary, Sundays are completely in ToU tariff F3,
which also belongs to night hours of work days and Sat-
urdays therefore, it is more difficult to properly divide
the consumption in F3 between the correct time steps.

Discussion
The general trend that emerged from the previous
results is that data-driven methods can increase the
performances of the prediction of typical load profiles
from the ToU energy bill, with respect to SLPs. In fact,
they can map the similarity between bills (x) to the
similarity between consumption patterns (y). This is
particularly true for non-residential end users. Between
the two ways of tackling the problem, i.e., the clustering-
classification approach that creates a discrete mapping
between the x and y-spaces, and the k-NN approach that
tends to create a continuous mapping, the latter shows
the best performances. As to the different metrics ana-
lyzed, worse performances are obtained when comparing
the real and predicted data time step by time step, as
opposed to the comparison between the statistics of
the consumption or the “coarse” granularity data of the
ToU bills. Concerning the latter comparison, it should
be noted that more sophisticated scaling procedures
could be implemented to guarantee that the predicted
consumption in each ToU tariff matches the actual one
(see for instance [48]). However, these procedures scale
the profile with a different factor for each ToU tariff, and
therefore they can introduce a distortion of the shape of
the predicted load profile. In particular, they can give
rise to unrealistic changes in consumption in the hours
on the interface between different ToU tariffs.

Limitations and further improvement
The proposed approach allows the prediction of typical
load profiles from minimal data that can be easily
obtained for a large number of customers, independently
from the category of end users. In general, thanks to the
k-NN regression, we obtained an average error of less
than 4% on the monthly consumption in the different
ToU tariffs and of around 26% on the predicted typical
load profiles. This means that a quarter of the total
consumption is allocated in the wrong time step. The
smallest errors are obtained in the prediction of load
profiles during work days, which are more frequent than
other day types. It is up to the final user of the method
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profiles, for all the samples and the different methods, broken down by end-user categories.

TABLE 2. Median value (and interquartile range) of NMAE on typical load profiles between the real and predicted data, broken down by end user
categories, obtained with the different methods: A. Standard Load Profile; B. Clustering-classification; C. k-NN.

Method BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 DOM12 DOM3 DOM4

A 43.7 (19.4) 95.2 (68.5) 47.1 (36.8) 41.9 (18.9) 39.1 (28.6) 46.2 (22.8) 30.5 (9.0) 30.3 (10.6) 27.2 (9.4)
B 24.8 (19.4) 44.4 (28.2) 48.6 (26.2) 24.6 (14.1) 34.4 (17.7) 31.5 (14.7) 30.9 (7.3) 31.3 (11.3) 30.0 (6.3)
C 17.6 (6.8) 29.6 (18.9) 34.4 (20.0) 17.3 (6.9) 27.6 (15.4) 23.1 (10.8) 26.0 (7.0) 27.6 (5.8) 28.7 (6.8)

to decide whether the compromise between accuracy
and ease of data collection is acceptable. However, the

proposed approach leaves room for further improvement.
In particular, given the size of our test data set, we
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profiles, for all the samples and the different methods, broken down by day type.

TABLE 3. Median value (and interquartile range) of NMAE on duration yearly reconstructed duration curve (duration curve error, DCE) between the real
and predicted data, broken down by end user categories, obtained with the different methods: A. Standard Load Profile; B. Clustering-classification; C.
k-NN.

Method BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 DOM12 DOM3 DOM4

A 21.0 (12.4) 48.9 (35.4) 31.1 (33.0) 24.2 (13.8) 18.8 (10.2) 16.2 (13.2) 19.1 (10.1) 18.7 (19.3) 16.6 (10.5)
B 10.3 (13.9) 24.0 (15.6) 17.2 (8.4) 8.2 (8.1) 13.3 (6.7) 17.4 (10.3) 15.4 (6.4) 13.8 (13.7) 15.0 (5.3)
C 5.5 (9.2) 13.0 (8.8) 12.7 (14.9) 4.0 (8.2) 13.0 (8.5) 11.3 (9.4) 11.3 (4.3) 10.7 (6.0) 11.3 (2.5)

TABLE 4. Median value (and interquartile range) of NMAE on ToU energy bills between the real and predicted data, broken down by end user categories,
obtained with the different methods: A. Standard Load Profile; B. Clustering-classification; C. k-NN.

Method BTA1 BTA2 BTA3 BTA4 BTA5 BTA6 DOM12 DOM3 DOM4

A 36.9 (17.9) 49.4 (46.0) 32.5 (16.0) 31.3 (16.7) 33.7 (14.7) 28.9 (14.2) 14.2 (4.8) 13.6 (6.2) 11.5 (2.7)
B 10.6 (5.5) 15.3 (11.1) 15.7 (6.4) 13.7 (8.0) 15.3 (9.8) 14.3 (4.9) 10.8 (5.5) 9.7 (5.1) 11.0 (4.8)
C 3.6 (0.7) 3.8 (1.5) 4.2 (1.2) 3.3 (0.6) 3.3 (0.5) 3.9 (2.1) 3.8 (0.4) 3.8 (0.3) 3.9 (0.6)

deployed a single model for all end-user categories and
all months/seasons. Different k-NN regressions could be
used to predict the typical load profiles of end users
from different categories/seasons when a richer data set
is available (so to cover uniformly the spaces of the
energy bills and typical load profiles). It should be noted
that the further loss of detail related to the use of
typical load profiles is not considered here. Finally, the
methods have been tested on a set of end users located
in the same geographical area, thus temperature-related
effects are compensated by similar weather conditions.
It is still to be assessed whether a single model or more
models (hence, more data set) are needed to work with
end users of different regions. Nonetheless, we believe
that the proposed method provides a valid option for
the prediction of a large number of different end users’
load profiles when few input data are available.

VII. CONCLUSION
In this work, we proposed a data-driven approach to pre-
dict load profiles in typical days (work days, Saturdays,
holidays) for end users of heterogeneous categories, and
from few and easy-to-collect input data. In particular,
we proposed a method that predicts typical load profiles
based on the similarity between monthly time-of-use

energy bills, using a k-nearest neighbors algorithm. We
assessed the performances of the proposed method in
comparison to two benchmarks: an approach based on
Standard Load Profiles and a data-driven method based
on the identification of similar load profiles (clustering)
and of decision rules to assign new customers to one
cluster, hence to its representative load profile, based on
their time-of-use energy bill (classification).

All methods allow the prediction of typical load pro-
files of end user of different categories from a few input
data (i.e., only the monthly bill). The results obtained
on a data set of measured hourly consumption show
that the methods have poorer performances on error
metrics evaluating the sameness of the predicted load
profiles to the real ones, while better performances are
achieved in the error metrics that measure the statistics
of the consumption (e.g., duration curve). The results
also highlight that the proposed method outperforms
the other ones basically in all error metrics and for each
end-user category (with few exceptions).

In future works on the load profile prediction from
electricity bills, the analysis of the results can be
deepened both in terms of diversity of the similar-
ity/sameness metrics and in terms of benchmark meth-
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ods to further assess where the proposed method stands
in terms of the trade-off between accuracy and ease of
data collection. Furthermore, the adoption of multiple
k-NN models to be used for different end-user cate-
gories and/or different seasons can be explored, if richer
data set are available. Furthermore, it should be noticed
that in this work we preferred to utilize well-known and
easily-interpretable methods for our analysis. However,
different and more advanced methods from the field of
machine learning [38] could be explored to better assess
the potentiality of the proposed approach.

DATA AND CODE AVAILABILITY
The processed data set used for training and testing
the proposed and benchmark approaches is available
at: https://github.com/cadema-PoliTO/Bill2Watt un-
der CC-BY-NC 4.0 License. Upon publication, the code
will eventually be made available under CC-BY-4.0
License at the same address.
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