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A Comparative Analysis of Three Computational-Intelligence Metaheuristic Methods

for the Optimization of TDEM Data

FRANCESCA PACE,1 ADAMANTIA RAFTOGIANNI,2 and ALBERTO GODIO
1

Abstract—We focus on the performances of three nature-in-

spired metaheuristic methods for the optimization of time-domain

electromagnetic (TDEM) data: the Genetic Algorithm (GA), the

Particle Swarm Optimization (PSO) and the Grey Wolf Optimizer

(GWO) algorithms. While GA and PSO have been used in a ple-

thora of geophysical applications, GWO has received little

attention in the literature so far, despite promising outcomes. This

study directly and quantitatively compares GA, PSO and GWO

applied to TDEM data. To date, these three algorithms have only

been compared in pairs. The methods were first applied to a syn-

thetic example of noise-corrupted data and then to two field surveys

carried out in Italy. Real data from the first survey refer to a TDEM

sounding acquired for groundwater prospection over a known

stratigraphy. The data set from the second survey deals with the

characterization of a geothermal reservoir. The resulting resistivity

models are quantitatively compared to provide a thorough over-

view of the performances of the algorithms. The comparative

analysis reveals that PSO and GWO perform better than GA. GA

yields the highest data misfit and an ineffective minimization of the

objective function. PSO and GWO provide similar outcomes in

terms of both resistivity distribution and data misfits, thus provid-

ing compelling evidence that both the emerging GWO and the

established PSO are highly valid tools for stochastic inverse

modeling in geophysics.

Keywords: Stochastic inverse modeling, time-domain elec-

tromagnetic data, particle swarm optimization, genetic algorithm,

grey wolf optimizer, computational swarm intelligence.

1. Introduction

Global search methods are well-known problem

solvers for the optimization of geophysical data. They

are based on stochastic inverse modeling and are

divided into two big families: Monte Carlo and

metaheuristic methods (Sen & Stoffa, 2013). The

main advantage of stochastic inverse modeling is that

it theoretically ensures the final solution to be found

as (or very close to) the global solution of the prob-

lem, thus overcoming the trap of the local minima

and the so-called ‘‘local minimum syndrome’’ (Sen &

Stoffa, 2013). Another striking advantage of the

global search is that the optimization process is ran-

domly initialized, so that the final solution is not

biased by the choice of the starting model, which can

significantly influence the result of the inverse prob-

lem (Miensopust, 2017). The key difference between

the Monte Carlo and metaheuristic methods is that

the former is based on the random sampling of the

solution space and a probabilistic approach (Sam-

bridge & Mosegaard, 2002), while the latter is based

on the strategical sampling and adaptive approach

inspired by the complex systems of natural phe-

nomena (Engelbrecht, 2007).

Nature-inspired metaheuristics are Computational

Intelligence algorithms based on biological systems.

They are divided into two main families: Evolution-

ary Computation (EC), that models the genetic

evolution in a population, and Swarm Intelligence

(SI), that models the social dynamics of organisms

living in groups. The most successful examples of EC

are the genetic algorithm (GA) and the differential

evolution (DE), while the main SI paradigms are

particle swarm optimization (PSO), grey wolf opti-

mizer (GWO), ant colony optimization (ACO) and
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the bat algorithm (BA). There is also a third group of

metaheuristics that are not population-based but

instead physics-based, such as the simulated anneal-

ing (SA) algorithm, which has been applied to

geophysics (Biswas, 2016; Biswas & Rao, 2021;

Dosso & Oldenburg, 1991).

The population-based methods have increasingly

been applied to solve the inverse problem of various

geophysical data (Everett, 2013; Sen & Stoffa, 2013).

There are continuous developments and applications

of GA (Sen & Mallick, 2018; Villa Acuna & Sun,

2020) and PSO (Essa et al., 2021; Pace et al., 2021;

Pallero et al., 2021). Both can be considered the

benchmark metaheuristic algorithms since they have

been introduced in the 90’s (Goldberg, 1989; Ken-

nedy & Eberhart, 1995). DE, ACO and BA have been

barely adopted in the geophysical literature (Balkaya,

2013; Bouchaoui et al., 2022; Essa & Diab, 2022;

Yuan et al., 2009), while GWO has recently been

introduced (Agarwal et al., 2018; Vashisth et al.,

2022). EC and SI methods have the advantage of

strategical sampling of the model space and theoret-

ical convergence toward (or, at least, very close to)

the global minimum (Sen & Stoffa, 2013). They have

shown to be extremely efficient in solving the inverse

problem in geophysics, which is underdetermined, ill-

posed and nonlinear.

The GA mimics the inheritance rules in nature,

where the individuals with the best chromosomes

survive (and the weakest individuals have to die)

(Goldberg, 1989). As only the selected chromosomes

are inherited by the new generations, the individual

survived after some generations (i.e., iterations)

thanks to the best genetic features represents the final

solution of the geophysical problem. The application

of GA in geophysics is wide (Everett, 2013; Sen &

Mallick, 2018) as it was one of the first metaheuristic

algorithms applied to the inverse problem (Sen &

Stoffa, 1992). Some representative examples are the

inversion of seismic waveform (Sambridge & Dri-

jkoningen, 1992), magnetotelluric data (Everett &

Schultz, 1993), elastic waves (Aleardi & Mazzotti,

2017), and direct current resistivity data (Balkaya

et al., 2012; Schwarzbach et al., 2005).

The PSO algorithm is inspired by the social

dynamics observed in group of animals adopting a

collective behavior, such as birds, schools of fish,

bees, etc.… (Engelbrecht, 2007; Kennedy & Eber-

hart, 1995; Kennedy et al., 2001). PSO has

successfully been applied to different geophysical

data, such as electromagnetic (Amato et al., 2021;

Godio & Santilano, 2018; Pace et al., 2017; Shaw &

Srivastava, 2007), electric (Fernández Martı́nez et al.,

2010; Pace et al., 2018), magnetic (Essa & Elhussein,

2020) and seismic data (Aleardi, 2019; Song et al.,

2012). A review of recent advances in PSO geo-

physical applications is given by Pace et al. (2021).

The GWO algorithm is based on the social

dynamics adopted by a group of wolves attacking a

prey while searching for food (Mirjalili et al., 2014).

Despite the recent promising outcomes, GWO has

been applied to geophysical data in few occasions

(Agarwal et al., 2018; Chandra et al., 2017; Song

et al., 2015).

The three methods GA, PSO and GWO have their

own advantages and weaknesses, but have been

indistinctly applied to the optimization of geophysi-

cal data because the quality of their outcome is

similar, that is, the global solution of the geophysical

problem. However, there are few geophysical studies

that have carefully investigated the performances of

GA, PSO, GWO and compared their outcomes. PSO

and GA were compared for gravity data and self-

potential inversion (Göktürkler & Balkaya, 2012;

Yuan et al., 2009), while PSO and GWO were tested

for the inversion of magnetic, gravity and self-po-

tential anomalies (Agarwal et al., 2018) and of

apparent resistivity and apparent chargeability data

(Chandra et al., 2017). Furthermore, the optimization

of EM data has been less explored than other data

(e.g., Alkan & Balkaya, 2018).

The objective of this work is to compare the

performances of the GA, PSO and GWO algorithms

through stochastic inverse modeling of time domain

electromagnetic (TDEM) data. The ensuing sections

explain the essential theory of GA, PSO and GWO,

and how they are applied to solve the TDEM inverse

problem (Sect. 2). Section 3 presents the test of the

three methods on a synthetic example of TDEM

noise-corrupted data. Then, the three approaches are

applied to two different TDEM surveys in Italy

(Sect. 4). The first case study is a TDEM sounding

acquired for groundwater prospection over a known

stratigraphy (Pace et al., 2019a). The second case

F. Pace et al. Pure Appl. Geophys.



study is located in the Travale geothermal area

(central Italy), where TDEM soundings were

acquired for the characterization of the uppermost

part of the geothermal reservoir (Pace et al., 2022).

The final results are quantitatively compared to

finally show a thorough overview of the algorithms’

performances.

2. The Metaheuristic Methods

2.1. The Genetic Algorithm

The optimization procedure of GA is the com-

puter implementation of the evolutionary

phenomenon of ‘‘survival of the fittest’’, that is, only

the selected chromosomes are inherited by the new

generations (Everett, 2013). This tenet is conveyed in

an algorithm where, over the iterations, the solutions

with the best value of the fitness or objective function

are kept, while the other solutions sampled are

discarded (Sen & Mallick, 2018).

The starting group of sampled solutions is

randomly chosen and represent a population of

individuals with a certain sequence of chromosomes.

Each candidate solution is coded as a binary bit

sequence that is iteratively modified following some

steps that replicate biological processes such as

reproduction, gene crossing and gene mutation

(Goldberg, 1989; Sen & Stoffa, 2013). After that, a

new generation of candidate solutions is created and

then evaluated by the objective function. As the

algorithm iterates, the fittest models tend to be

preserved in the subsequent generations, while the

less-fit models die off. The iteration of standard GA

consists of three steps (Gallagher et al., 1991). The

first step is the reproduction stage, in which a new

generation of models m is chosen from the previous

generation based on a probability distribution PR(m).

In our code, the parents were chosen according to the

‘‘roulette wheel’’ method, which is a random selec-

tion based on the fitness value. The fittest models are

likely to be included in the new generation, whereas

the least-fitting models are unlikely to be selected for

reproduction. The second step is the crossover step

that mixes the existing genetic information in the

population. The models are randomly paired off to

form couples. The members of the pair exchange a

randomly chosen contiguous bit substring, according

to the crossover probability PC. We adopted the

‘‘uniform’’ crossover, which is based on continuous

uniform random numbers for the selection of the

contiguous bits of the two parents. The result is the

creation of two new models with slightly different

genetic sequences than the original two parents. The

mutation step is the third step and contributes to new

genetic information for the current generation of

models. Mutation rarely occurs in nature, so it is

applied to GA following a certain probability, the

mutation probability PM, which is usually low.

Mutation is a fundamental step that ensures genetic

diversity and hence a broader space for the solutions.

Therefore, mutation prevents to fall in a local

minimum solution. However, PM is usually a low

value in order to drive the search towards the most

favorable region of the model space where the current

generation is evolving.

The input parameters of the GA are the population

size N and the reproduction (PR(m)), crossover (PC)

and mutation (PM) probabilities. The population size

is problem dependent, while the other settings are

suggested from the literature (Sen & Stoffa, 2013;

Villa Acuna & Sun, 2020). A high value of PC means

a rapid introduction of new solutions which are

similar to the parents so that the algorithm rapidly

converges towards the best individual (with possibly

a premature end). By contrast, a low value of PC may

cause a stagnation due to low exploration. The PM

controls the solution diversity and search space

exploration. A high value of PM in fact decreases

the chance to get trapped in a local minimum solution

but increases the number of iterations for conver-

gence. A low PM speeds up the convergence (Sen &

Stoffa, 2013). Typical values of PC are between 0.65

and 0.95 (Sen & Stoffa, 2013), while for PM between

0.02 and 0.05. To tune PC and PM for our

geophysical application we performed a sensitivity

analysis on different values. We explored the GA

performance by setting PC equal to 0.6, 0.7 and 0.8,

and PM equal to 0.01, 0.02, 0.03, 0.04 and 0.05. After

an accurate sensitivity analysis, the values of PC and

PM adopted in this work were 0.7 and 0.03,

respectively. The complete result of sensitivity anal-

ysis is provided in the Supplementary material. The

A Comparative Analysis of Three Computational-Intelligence Metaheuristic Methods



GA code used in this work was adapted from the

original code, which is available for free in the

website of the Yarpiz Project (Heris, 2020).

2.2. Particle Swarm Optimization

The PSO algorithm is based on the interactions of

agents sharing knowledge to pursue the common

objective of the group, such as escaping from a

predator or searching for food. The particles forming

the swarm represent the possible solutions of the

geophysical problem and are arrays composed of as

many components as the problem unknowns. The

behavior of the particles is ruled by a memory

component that is both cognitive, i.e., based on the

individual experience, and social, i.e., driven by the

group leader. The behavior of the particles is hence

extremely adaptive as it can change depending on the

external environment. These behavioral dynamics are

the theoretical tenets of the PSO applied to geophys-

ical data (Essa & Munschy, 2019; Essa et al., 2022;

Godio & Santilano, 2018; Pace et al., 2017, 2019a,

2019b, 2021; Roy et al., 2022) and to many other

scientific fields dealing with nonlinear problems

(Adhan & Bansal, 2017; Poli, 2008).

The particle changes its position x in the search

space of the solutions by means of the velocity vector

v, defined as:

vkþ1
i ¼ xkvk

i þ ak
1c1 Pi � xk

i

� �
þ ak

2c2 G� xk
i

� �
ð1Þ

xkþ1
i ¼ xk

i þ vkþ1
i ð2Þ

where: x is the position of the particle in the search

space; v is the velocity vector; i = [1, …, N]; N is the

number of particles; k is the iteration number; xk is

the inertia that weights the velocity remembered from

the previous iteration; a1
k is the cognitive accelera-

tion to the best individual position P (or the local

minimum); a2
k is the social acceleration to the best

global position G (or the global minimum), and c1

and c2 [ [0,1] are uniformly distributed random val-

ues for stochastic perturbation of the solution. The

particles are randomly initialized with null velocity.

Then, the particle position xk
i is updated according to

the influence of the three terms of Eq. 1 (xk, a1
k and

a2
k). The inertia xk linearly decreases from 0.9 (first

iteration) to 0.4 (last iteration) (Shi and Eberhart,

1998). The values of xk, a1
k and a2

k influence the

convergence of the problem and the balance between

the global and local search, namely, the exploration

of the search space and the exploitation of the best

region found, respectively. To ensure the optimal

balance we adopt the hierarchical PSO with time-

varying acceleration coefficients (HPSO-TVAC). As

the optimization starts, it enables the exploration by

setting a1
k larger than a2

k and then the exploitation of

the best regions and final convergence towards the

global minimum by setting a2
k larger than a1

k (Rat-

naweera et al., 2004). Some sensitivity analyses have

been performed to assess the influence of the accel-

erations on the PSO final solution (Pace et al., 2019b;

Ratnaweera et al., 2004). The optimal values ensuring

the solution convergence have been determined for

PSO of electromagnetic data and are a1
k=1 =

a2
k=max(k) = 2 and a1

k=max(k) = a2
k=1 = 0.5 (Amato

et al., 2021; Pace et al., 2019a, 2019b). This means

that a1
k linearly decreases from 2 (first iteration) to

0.5 (last iteration) and vice versa for a2
k. The accel-

eration values must obey the stability solution

conditions described in Perez and Behdinan (2007).

The particles of the swarm change their position

in order to minimize the objective function and thus

find the best solution of the problem, that is, the

theoretical global minimum G. The link between

Eqs. 2 and 1 is that at the k-iteration the particle with

the minimum value of objective function is awarded

as the global best G and attracts the neighboring

particles depending on a2
k (swarming behavior). In

the end, the particle that most minimizes the objec-

tive function is selected as the final solution.

The main differences between PSO and GA are

that the unknown parameters of the problem are

represented by the particles of the swarm in PSO and

by the individuals of the population in GA. The steps

of the algorithm are called iterations in PSO and

generations in GA. The sampling of the model search

space is ruled by social and cognitive behavior in

PSO and by natural selection (mutation and repro-

duction) in GA.

The PSO code used in this work has been adapted

from the previously published works of the authors

(Amato et al., 2021; Pace et al., 2018, 2019a).

F. Pace et al. Pure Appl. Geophys.



2.3. Grey Wolf Optimizer

The GWO algorithm is an SI method that mimics

the leadership hierarchy and hunting mechanism of

grey wolf (canis lupus) packs in nature (Mirjalili

et al., 2014). Grey wolves are considered apex

predators, which means they are at the top of the

food chain. In the algorithm, the leadership hierarchy

is simulated by means of four types of grey wolves,

that are referred to as the alpha (a), beta (b), delta (d),
and omega (x) wolf. The optimization reproduces the

three main steps of hunting, namely, tracking,

encircling and attacking the prey. The tracking

process represents the exploration of the search space

to sample the possible solutions and find the region of

the possible global solution (global search). The

encircling and attacking processes represent the

exploitation of the best regions found in the search

space in order to converge and select the best solution

(local search).

The alpha wolf, often known as the dominating

wolf, should be followed by the pack. The beta wolf

is the second rank of the grey wolf hierarchy. The

grey wolf with the lowest ranking is the omega wolf.

If a wolf is not an alpha, beta, or omega, it is referred

to as the delta or subordinate wolf. The leader of the

social structure, the a wolf, represents the best

solution of the problem because it best minimizes

the objective function. The second and third best

solutions are represented by the b and d wolves,

respectively. The remaining possible solutions are all

called x solutions. The optimization process is led by

the a, b and d solutions and mimics the hunting

action. The a (best candidate solution), b and d
wolves have better knowledge of the potential

location of the prey. Therefore, these solutions are

saved and the other wolves (x) are forced to follow

them.

The grey wolves encircle the prey during the hunt.

This action is mathematically modeled by means of

the following equations (Mirjalili et al., 2014):

D
!¼ C

!� X!p tð Þ � X
!ðtÞ

���
��� ð3Þ

X
!

t þ 1ð Þ ¼ X
!

p tð Þ � A
!� D! ð4Þ

where D is the distance between the solution found

and the a, b and d solutions, t denotes the current

iteration, A
!

and C
!

denote the coefficients, X
!

p tð Þ
denotes the vector of the prey position, and X

!ðtÞ is

the vector of a grey wolf position. The coefficients A
!

and C
!

control the smooth transition from exploration

to exploitation and are calculated as follows:

A
!¼ 2 a!� r1

!� a! ð5Þ

C
!¼ 2 � r2

! ð6Þ

where r1 and r2 are random vectors in [0,1] and a!
linearly decreases from 2 to 0 over the iterations.

The optimization begins with the creation of a

random population of grey wolves (possible solu-

tions). The objective function is computed for each

candidate solution of the problem. Then, the a, b and

d wolves are elected and estimate the optimal

location of the prey (the global solution) at each

iteration. Each candidate solution updates its position

in relation to the estimated position of the prey. If

|A
!
|[ 1, the candidate solutions tend to diverge from

the prey location (exploration of the search space),

while if |A
!
|\ 1 they tend to converge towards it

(exploitation of the search space). Thanks to the

adaptive value of |A
!
|, GWO ensures high local

optima avoidance (Mirjalili et al., 2014). Finally, the

grey wolves end the hunt by attacking the prey, which

stops moving. To mathematically model the attack

and balancing the global and local approaches, the

value of a! is reduced. The GWO algorithm stops

when of an ending criterion is satisfied, e.g., when the

maximum number of iterations is reached.

The main scientific applications of GWO deal

with economic dispatch problems (Wong et al.,

2015), feature selection for text classification (Chan-

tar et al., 2020), inversion and joint inversion of

geophysical data. In detail, GWO has been applied to

electromagnetic and gravity data (Agarwal et al.,

2018; Chandra et al., 2017), surface wave data (Song

et al., 2015; Vashisth et al., 2022) and machine

learning for seismology (Sharma et al., 2021).

The GWO code used in this work has been

adapted for geophysical data from the source code

available at MATLAB Central File Exchange (Mir-

jalili, 2022).

A Comparative Analysis of Three Computational-Intelligence Metaheuristic Methods



2.4. Common Features of the Algorithms

The candidate solutions found by the metaheuris-

tic methods are evaluated with the objective function,

whose value has to be minimized to find the global

solution. The solution that most minimizes the

objective function is the last generation in GA, the

swarm leader (G) in PSO and the a wolf in GWO.

For the optimization of TDEM data, the objective

function to be minimized could be defined as:

FðmÞ ¼ 1
ffiffiffiffiffi
M

p k/o � /c

r/
k þ k k om k ð7Þ

where: /o is the array of the observed/synthetic data;

/c is the calculated response; the difference inside the

L2-norm k � k is normalized by the corresponding

data errors (r/); M is the number of evaluated data; k
is the Lagrange-multiplier acting as a smoothing

parameter on the first derivative of the model m. The

first term of the right-hand side of Eq. 7 measures the

normalized difference between the observed/syn-

thetic data and the calculated responses. The second

term acts on the roughness of the model by means of

k, which is usually identified according to the L-curve
criterion (Farquharson & Oldenburg, 2004). The k
multiplier is chosen as a tradeoff between a minimum

data misfit on a rough model (low k) and a smooth

model with high misfit (high k). The k multiplier is

problem dependent and was defined by means of a

sensitivity analysis for each example of the following

sections.

The input parameters that are specific of the three

algorithms drive the global- vs. local-search balance

and have strong influence on the outcome as well as

on the speed of convergence. The advantage of GA,

PSO and GWO is that they do perform both local and

global search, but these opposite approaches need to

be balanced. To avoid the optimization being com-

promised towards either a pure global search or a

plain local search, the algorithm input parameters

need to be tuned, as described in the previous

sections. The optimal values were identified after an

accurate sensitivity analysis that was performed in

this work for GA (see Supplementary Material),

while it has already been performed for PSO (Pace

et al., 2019b) and GWO (Mirjalili et al., 2014).

While each algorithm had specific values for the

input arguments, other input parameters were kept

identical for GA, PSO and GWO in order to

quantitatively compare the three algorithms. These

common settings are:

1. The stopping criterion. The number of iterations to

be executed should be enough to ensure an

effective minimization of the objective function,

that is, a flat trend of it at the last iterations,

meaning convergence. Since the iterations needed

are problem dependent, it is recommended to

consider more than one stopping criterion (Engel-

brecht, 2007; Pace et al., 2021), for example, the

maximum number of consecutive iterations with-

out further decrease of the objective function (or a

preselected threshold reached by the objective

function) (Pace et al., 2019a). However, for this

comparative study, the three algorithms GA, PSO

and GWO were executed for the same number of

iterations in order to quantitatively assess their

performance for a given case study.

2. The number of candidate solutions sampled. The

candidate solutions are called individuals in GA,

particles in PSO and wolves in GWO. This

number is problem dependent because if it is too

low the search space is not completely sampled

and the global minimum potentially missed, while

if it is too high the computational cost increases.

Some studies on PSO have demonstrated that the

swarm size should be proportional to the number

of the problem unknowns, namely, between 8 and

12 times (Fernández Martı́nez et al., 2010; Pace

et al., 2019b). In the following examples, the

number of candidate solutions was set equal to 9

times the unknowns.

3. Initialization. The strategic sampling of meta-

heuristic methods starts as default with a

uniformly random distribution of the initial solu-

tions. Then, the search of the global minimum is

carried out by evolutionary rules for GA and

swarming behavior for PSO and GWO. This

standard initialization ensures the global search

and hinders the ambiguity of the solution because

the search space is initially sampled in an effective

way. Even though it is theoretically possible to

initially constrain the optimization by means of an

F. Pace et al. Pure Appl. Geophys.



a priori starting model, the great advantage of

metaheuristic methods is that they do not need for

a priori initialization because the strategic sam-

pling is able to adjust the random initialization of

the solution (Pace et al., 2019b). It has been

demonstrated for PSO that if part of the swarm is

initialized with a priori information, the result is

independent of it, that is, highly comparable to

that obtained with random initialization (Pace

et al., 2019b). Therefore, PSO does not require an

a priori starting model and can be successfully

used for the interpretation of data from areas

where a priori knowledge is unavailable or

unreliable. Differently from what happens for the

deterministic inversion methods, introducing a

priori information in metaheuristic methods does

not solve the ambiguity of the solution, but instead

introduces a strong bias in the optimization

process, which can prematurely be trapped in a

local minimum.

4. Boundaries of the search space. Dealing with the

optimization of TDEM data, the problem

unknown is the array of the electrical resistivity

of the layered 1D model, because the thickness of

the layers is defined in advance with the Occam’s

inversion approach (deGroot-Hedlin and Consta-

ble, 1990). The boundary conditions of the

problem are the minimum and maximum values

of electrical resistivity that the solution can

assume. They act as bound constraints when the

solution violates the search space limits during the

optimization. These values were the same for all

the layers of the 1D model and did not change

during the optimization. The boundaries were

chosen according to the data of each case study

and were kept the same for the different runs of

the algorithm.

5. Solution assessment. Each run (or group of

iterations) of the algorithm was repeated several

times, or ‘‘trials’’, with the same settings, because

it has been demonstrated that the results of

different random initializations are similar but

not identical (Amato et al., 2021; Pace et al.,

2019b). The inverse problem suffers from the non-

uniqueness of the solution and hence the outcome

of the three algorithms is represented by equiva-

lent solutions. In the following examples, the three

algorithms were executed for 10 different trials in

order to show the set of equivalent final solutions

and highlight the solution with the minimum

nRMSE (normalized root mean square error) that

can solve the solution ambiguity. In fact, being

GA, PSO and GWO global search methods, it is

recommended to perform a-posteriori assessment

of the uncertainty of the final model (Pace et al.,

2021; Pallero et al., 2018). It is also important to

inspect the different outcomes from the 10 trials of

the same algorithm in order to assess the similar-

ity/dissimilarity of the solutions and hence infer

about the algorithm convergence.

Our codes were parallelized in Matlab environ-

ment to run on the high-performance-computing

(HPC) cluster for academic research at Politecnico

di Torino. Ten cores were used from a node

belonging to a cluster with a sustained global

performance of 20.13 TFLOPS. The forward operator

for the modeling of TDEM data was adapted from the

CR1Dmod algorithm (Ingeman-Nielsen & Baumgart-

ner, 2006).

3. GA, PSO and GWO Applied to Synthetic TDEM

Data

The TDEM method is based on the propagation of

an induced electromagnetic field. The acquisition is

performed by forcing a steady current to flow through

a loop of wire for some milliseconds in order to allow

a turn-on transient to be dissipated in the ground. The

induced eddy currents generate a secondary magnetic

field, which is proportional to their decay. The

receivers that acquire the response are composed of

one or more coils. The decay of the secondary mag-

netic field is a function of the electrical resistivity of

the subsurface; the electrical resistivity distribution

with depth is hence estimated by analyzing the tran-

sient decay of the secondary field with time (McNeill,

1990). The inversion of TDEM data results in a 1-D

resistivity profile under the receiver position. The

method is sensitive mainly to conductive formations.

We tested the three algorithms on synthetic

TDEM data. The synthetic model is composed of five

layers with contrasting resistivity and different
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thicknesses (red-dashed line in Fig. 1b). The resis-

tivity of the five layers is 70, 150, 30, 100, 50 Xm.

The bottom depth of each layer is 10, 30, 100, 140

and 345 m. The TDEM signal corrupted with 10%

Gaussian noise is shown in Fig. 1a with red dots and

error bars. The signal was computed using the for-

ward solver mentioned before and adopted for the

optimizations. This synthetic model has been adopted

in Pace et al., (2019a) for another study on multi-

objective optimization.

The solution to be found is a 1D model discretized

into 19 layers, whose thickness was parametrized

coherently with the concept of electromagnetic dif-

fusion depth. The number of iterations was 300 for

GA, PSO and GWO. However, after some tests, it

was evident that GA needed more iterations than PSO

and GWO to converge. Therefore, we had to increase

the computations of GA up to 800 to find a result

comparable with those of PSO and GWO. The pop-

ulation size was 170, because, as explained before, it

is set around 9 times the unknowns. The runs were

repeated 10 times or trials for the solution assess-

ment. The Lagrangian multiplier for the synthetic

data was estimated using the L-curve criterion and

was 0.001 for all the algorithms since it depends on

the data. The minimum and maximum boundary

conditions of the search space of solutions were 1 and

300 Xm, respectively.

The GA result is shown in Fig. 1. The observed

data (red dots) and model response (blue line) are

plotted in Fig. 1a. The 10 models of the 10 trials are

plotted in green in Fig. 1b, while the best model (with

the minimum nRMSE) is marked in blue. The true

model corresponds to the red dashed line. The best

model gave a final nRMSE on the data normalized by

the errors equal to 0.0972, while the RMSE with

respect the true model was 0.6667 (see Table 1). The

final models obtained by GA are fairly dissimilar at

both shallow and deep layers. The resistivity of the

best model is overestimated with respect to that of the

true model below 50 m of depth.

The PSO outcome is shown in Fig. 2. The com-

parison between observed data (red dots) and model

response (blue line) is shown in Fig. 2a. The results

after 10 trials are plotted in green in Fig. 2b, together

with the best model that is marked in blue. The

minimum nRMSE on the data was 0.0391, while the

model RMSE was 0.4276 (see Table 1). All the

Figure 1
The result of GA applied to the synthetic example: a TDEM theoretical signal (the red dots with error bars) and predicted response (blue line);

b the true model (the red-dashed line), the final resistivity models after 10 trials (the green lines) and the best solution highlighted in blue

F. Pace et al. Pure Appl. Geophys.



models present the same resistivity distribution of the

best model, thus showing good convergence of the

solutions and coherence with respect the global

solution found. The resistivity of the best model is

underestimated with respect to that of the true model

in the high-resistivity layers (the upper 150 Xm and

the lower 100 Xm layers), while the other layers are

in good agreement with the true model.

The GWO result is provided in Fig. 3a for the

data fitting and in Fig. 3b for the resistivity models.

The best solution (in blue) is highly comparable with

the conductive layers of the true model, but the 150

Xm and the 100 Xm layers are underestimated, as in

PSO (Fig. 2b). The final nRMSE on the data was

0.0502, while the RMSE on the model was 0.4120

(see Table 1).

Uncertainty analysis was performed to assess the

reliability of the solutions. Table 1 provides the

resistivity values (mean and standard deviation) at

two representative depths (19 and 50 m) at the last

iteration of the 10 trials. The layer at 19 m of depth

lies in a resistive region (150 Xm), while the layer at

Table 1

Settings and performance of GA, PSO and GWO for the TDEM synthetic example

GA PSO GWO

Iterations 800 300 300

Boundaries (Xm) 1–300

Runtime per trial (hours) 2.7 1.5 1.6

Data misfit (nRMSE) 0.0972 0.0391 0.0502

Model misfit (RMSE) 0.6667 0.4276 0.4120

Mean and std resistivity over 10 trials at 19 m (true value = 150 Xm) 85.2 ± 34.7 101.6 ± 5.2 106.2 ± 4.7

Mean and std resistivity over 10 trials at 50 m (true value = 30 Xm) 44.2 ± 19.3 21.6 ± 0.8 22.1 ± 0.7

The misfit is calculated for the best solution with respect to the true model. Uncertainty appraisal is provided for two representative layers at

19 m and 50 m of depth

Figure 2
The result of PSO applied to the synthetic example: a TDEM theoretical signal (the red dots with error bars) and predicted response (blue

line); b the true model (the red-dashed line), the final resistivity models after 10 trials (the green lines) and the best solution highlighted in blue
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50 m in a conductive region (30 Xm). This analysis

highlights the values of a possible mean model with

respect to the true value.

The fewest nRMSE for the data was accomplished

by the PSO algorithm, while the lowest model misfit

by the GWO. The three algorithms can also be

compared through the curve of the objective function

F(m) in Fig. 4. In fact, the inspection of this curve

reveals the effectiveness of the minimization along

the iterations. Figure 4 shows the decrease of the

objective function over the iterations for GA (black

dots), PSO (blue dots) and GWO (pink dots). The

trend of the PSO curve is gradual from the highest to

the lowest value, meaning good balance between

exploration and exploitation of the search space. GA

and GWO show a stepped trend that decreases rapidly

and becomes flat earlier than PSO, meaning a possi-

ble premature exploitation phase.

4. Field Data Optimization

This section presents two case studies for the

optimization of TDEM field data. The first case study

deals with a single TDEM sounding acquired in

Stupinigi, northwest Italy, for groundwater prospec-

tion over a known stratigraphy. The second case

study is more challenging than the first because it is

composed of a set of TDEM soundings acquired for

the characterization of a geothermal reservoir in

Travale (central Italy), which is a geologically com-

plex area.

4.1. Case study 1: Stupinigi Site

The Stupinigi TDEM sounding represent an ideal

case study for the assessment of GA, PSO and GWO

because geological information is available thanks to

a borehole located very close to the investigated site.

Moreover, the area of Stupinigi has largely been

investigated for groundwater exploration and hence

the stratigraphic sequence is well-known. The site is

characterized by a flat morphology and by sand and

gravel deposits of an alluvial plain. The shallow

subsurface is composed recent coarse gravel deposits,

while at depth there is an alternation of gravel and

(well consolidated and cemented) sand, that host two

Figure 3
The result of GWO applied to the synthetic example: a TDEM theoretical signal (the red dots with error bars) and predicted response (blue

line); b the true model (the red-dashed line), the final resistivity models after 10 trials (the green lines) and the best solution highlighted in blue

F. Pace et al. Pure Appl. Geophys.



different aquifers separated by clayey layers (Pace

et al., 2019a; Piatti et al., 2010).

The TDEM acquisition was a coincident-loop

configuration adopting a wire of 50 m length. The

injected current was 3 A and the turn-off time was

4 ls. Time range of acquisition was between 10-5

and 10-3 s.

The resistivity model to be found was discretized

into 19 layers, whose thickness logarithmically

increased with depth. The number of iterations was

500 for PSO and GWO (a bit larger than in the

synthetic case to ensure convergence), while it was

increased up to 800 for GA (like in the synthetic

case). The population size was 170. The runs were

repeated for 10 trials for each algorithm. The

Lagrangian multiplier was 0.001. The boundary

conditions were 1 and 500 Xm.

The outcomes of GA, PSO and GWO are plotted

in Figs. 5, 6 and 7 respectively. The final data misfit

(nRMSE) and runtime are supplied in Table 2. The

lowest runtime and nRMSE were achieved by PSO,

while GA had the worst performance. Generally, the

data fitting is satisfactory for the three methods (see

Figs. 5a, 6a and 7a).

As for the synthetic example, there is similarity

among the solutions of the PSO and GWO trials,

while they significantly differ for GA. Particularly,

we noted that in the depth range between 20 to 40 m

of depth, the resistivity models identify a conductive

region (\ 40 Xm), whose thickness is minimum

(around 5 m) for GA and larger for PSO and GWO

(around 20 m). This evidence can be appreciated in

Fig. 8, where the data are depicted together with the

stratigraphy available from a borehole close to the

TDEM sounding. The minimum resistivity was

imaged in correspondence to the clay layer and is

coherent with its expected resistivity. It is straight-

forward that the TDEM methods is biased toward

conductors, so it is not surprising that the calculated

resistivity of the superficial gravel layers can be

underestimated.

4.2. Case study 2: Travale Sites

The Travale geothermal area is placed in central

Italy (Tuscany) and belongs to the Larderello-Travale

geothermal system. This is the place where geother-

mal exploration is said to be born in 1913 (Arias

et al., 2010) and one of the most productive

geothermal areas of the world (Bertani et al., 2005;

Manzella et al., 2019). The Travale area has been

investigated by numerous geophysical surveys over

the last decades, but the electromagnetic methods

have been of pivotal importance to detect the

Figure 4
The curves of the objective function evolution with the iterations for the GWO (pink), PSO (blue) and GA (black) algorithms for the synthetic

example
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resistivity distribution of the deep features of the

geothermal system (Manzella, 2004; Manzella et al.,

2010; Muñoz, 2014; Pace, 2020; Pace et al., 2022;

Santilano, 2017).

Figure 5
The result of GA applied to Stupinigi site: a TDEM observed signal (the red dots with error bars) and GA predicted response (blue line); b the

final resistivity models after 10 trials (the green lines) and the best GA solution highlighted in blue

Figure 6
The result of PSO applied to Stupinigi site: a TDEM observed signal (the red dots with error bars) and PSO predicted response (blue line);

b the final resistivity models after 10 trials (the green lines) and the best PSO solution highlighted in blue

F. Pace et al. Pure Appl. Geophys.



The TDEM soundings were acquired in Travale to

be jointly interpreted along with magnetotelluric

soundings and hence to improve the characterization

of the geothermal field (Pace, 2020; Pace et al.,

2022). The eight TDEM sites (a1, b2, b6, e1, g1, k1,

k4, and k5) were located on different geological

settings and are shown in Fig. 9. The instrument

adopted was the TEM-FAST 48 system (AEMR

company). The configuration of the wires was a

coincident loop of 100 9 100 m or 75 9 75 m,

depending on the site accessibility. The injected

current was 3 A, the turn-off time was 7–8 ls and the

samples were acquired in the range 4–4000 ls.

These TDEM soundings represent a challenge to

be tested by GA, PSO and GWO due to the complex

geology of the Travale area and also the lack of direct

Figure 7
The result of GWO applied to Stupinigi site: a TDEM observed signal (the red dots with error bars) and GWO predicted response (blue line);

b the final resistivity models after 10 trials (the green lines) and the best GWO solution highlighted in blue

Table 2

Settings and performance of GA, PSO and GWO for the Stupinigi

case study

GA PSO GWO

Iterations 800 500 500

Boundaries (Xm) 1–500

Runtime per trial (hours) 2 1.8 1.9

Data misfit (nRMSE) 0.0764 0.0618 0.0619

Figure 8
Comparison between the best models of the Stupinigi data set

obtained from GWO (pink), PSO (blue) and GA (black). On the

right, the stratigraphy from the borehole located close to the TDEM

sounding

A Comparative Analysis of Three Computational-Intelligence Metaheuristic Methods



information on the subsurface resistivity. In fact, this

area is highly exploited by industrial companies and

hence borehole data are not publicly available. For

this work, we selected four out of eight TDEM

soundings belonging to different geological settings

(Arias et al., 2010): k1, k5, b2 and g1. Sites k1 lies on

the Tuscan Nappe basal evaporites (Late Triassic),

which are characterized by high resistivity (up to

1000 Xm) (Manzella et al., 2010; Pace et al., 2022).

Site k5 belongs to the geological unit of Ligurian and

sub-Ligurian flysch complex (Jurassic-Eocene). Site

b2 belongs to the Quaternary deposits, that are

electrically conductive (10–20 Xm) (Manzella,

2004). Site g1 belongs to the Tuscan Nappe sedi-

ments (Late Triassic-Early Miocene) that have been

associated to moderate resistivity in the literature

(Manzella, 2004).

The resistivity model was discretized into 19

layers with increasing thickness. The maximum depth

of each model was calculated depending on the

maximum acquisition time of the sounding in order to

obey the concept of skin depth. The population size

was 170 individuals/particles/wolves. The boundary

conditions were 1 and 300 Xm. The Lagrange

multiplier was 10–4. The input arguments of the three

algorithms were specified in Sect. 3. The number of

iterations was 150 for PSO and GWO. After few

tests, we realized that GA needed more iterations than

the PSO and GWO, that is, 800, because the GA

objective function did not minimize enough after

only 150 iterations. The decrease of the objective

function with the iterations is reported in Fig. 10 for

GA (black), PSO (blue) and GWO (pink) applied to a

representative site (k1). While the objective function

of PSO and GWO rapidly decreased to 0.106, that of

GA flattened at 0.127 after 150 iterations and reached

0.126 after 800 iterations. The PSO and GWO

runtimes for 150 iterations was around 0.8 h, while

the GA runtime was 3 h for 800 iterations.

The results of the optimization of site k1 are

shown in Figs. 11, 12 and 13 after the application of

GA, PSO and GWO, respectively. The final nRMSEs

are listed in Table 3 and are 2.1223 for GA, 1.8684

for PSO and 1.9080 for GWO. PSO yielded the

lowest nRMSE, as well as the best minimization of

the objective function (Fig. 10). The resistivity

models from GA, PSO and GWO imaged a resistive

region (120 Xm) in the shallow subsurface, a

conductive layer at about 50 m of depth and then

an increasing resistivity trend up to 230 Xm. The

shallow resistive region is in agreement with the

expected resistivity of the outcropping rocks of the

Tuscan Nappe evaporites. It is peculiar that while the

PSO and GWO best solutions (blue models in

Figs. 12b and 13b) are similar and in agreement with

the solutions from the other trials (green models in

Figs. 12b and 13b), the GA best solution is a bit

different from the solutions at higher nRMSE (mod-

els in Fig. 11b).

The results for sites k5, b2 and g1 are depicted in

Figs. 14, 15 and 16, respectively. For an effective

comparison among the outcomes of GA, PSO and

GWO, the best model of each algorithm was selected

and plotted, while the other trials were not displayed

since they had higher nRMSE.

The data fitting of the best GA, PSO and GWO

solutions for site k5 was satisfactory (Fig. 14a) and

the final nRMSEs were between 0.0770 (GWO) and

0.0902 (GA) (Table 3). The final best models are

reported in Fig. 14b and present some dissimilarities

even though the predicted responses overlap. It could

only be said that there is a conductive region above

50 m of depth and a resistive region (100–150 Xm)

below 50 m. Unfortunately, the GA and PSO solu-

tions are fairly dissimilar, while the PSO solution

compares well with that of GWO. The resistivity

distribution of the upper layers is in line with mild

Figure 9
Location of the TDEM soundings (in blue) acquired in the Travale

geothermal area (Italy)

F. Pace et al. Pure Appl. Geophys.



resistivity expected for the outcropping flysch

complex.

The final GA, PSO and GWO models for site b2

are shown in Fig. 15b. GA gave the worst nRMSE

(Table 3) even though it ran for more iterations than

PSO and GWO. All the predicted responses are

acceptable if compared with the observed data. The

GA model is largely different from—and more

resistive than—the PSO and GWO models (Fig. 15b).

These are substantially low resistivity models (\ 50

Figure 10
The curves of the objective function evolution with the iterations for the GWO (pink), PSO (blue) and GA (black) algorithms applied to site k1

Figure 11
The result of GA applied to the k1 Travale site: a TDEM observed signal (the red dots with error bars) and GA predicted response (blue line);

b the final resistivity models after 10 trials (the green lines) and the best GA solution highlighted in blue
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Xm), except for a 100-Xm shallow layer (at 15 m of

depth). This result is not perfectly aligned with the

expected resistivity 10–20 Xm at surface of, maybe

due to the poor data fitting at early times (Fig. 15a).

Figure 12
The result of PSO applied to the k1 Travale site: a TDEM observed signal (the red dots with error bars) and PSO predicted response (blue

line); b the final resistivity models after 10 trials (the green lines) and the best PSO solution highlighted in blue

Figure 13
The result of GWO applied to the k1 Travale site: a TDEM observed signal (the red dots with error bars) and GWO predicted response (blue

line); b the final resistivity models after 10 trials (the green lines) and the best GWO solution highlighted in blue

F. Pace et al. Pure Appl. Geophys.



For site g1, the data fitting was appropriate

(Fig. 16a), except for the GA predicted response that

explains the highest nRMSE (0.2451). The nRMSEs

of PSO and GWO are 0.0503 and 0.0431, respec-

tively (Table 3). The resistivity models are plotted in

Fig. 16b. The GA model is poorly interpretable due

to its high contrasts, while the PSO and GWO models

present a smooth distribution and moderate resistivity

values, in agreement with the geology.

5. Discussion

The preliminary analysis of the performance of

GA, PSO and GWO applied to synthetic data

demonstrated the effectiveness of the methods to

converge toward the best global solution. The three

algorithms GA, PSO and GWO can be evaluated by

means of both the evolution of the objective function

and the outcome of the resistivity models.

The minimization of the objective function can be

inspected from Figs. 4 and 10, that are related to the

synthetic and field case studies, respectively. In both

cases, the curves of GA and GWO steeply decreased

at early iterations and then flattened to a minimum

value that substantially did not decrease further. The

PSO objective function instead decreased gradually

over the whole iterations and reached a value lower

than GA and GWO at the last iteration. This could be

related to the different convergence process and

shows that a slow and gradual convergence ensures

an effective exploration of the solution space. PSO is

known for its speed of convergence and robust min-

imization and has proved to outperform GA in other

Table 3

Performance of GA, PSO and GWO for the TDEM sites at Travale

Site Data misfit (nRMSE)

GA PSO GWO

k1 2.1223 1.8684 1.9080

k5 0.0902 0.0789 0.0770

b2 0.0896 0.0669 0.0621

g1 0.2451 0.0503 0.0431

Figure 14
Comparison between the three best models of the k5 site: a observed signal (red dots with error bars) and predicted responses (continuous

line); b resistivity models from GA (black), PSO (blue) and GWO (pink)
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Figure 15
Comparison between the three best models of the b2 site: a observed signal (red dots with error bars) and predicted responses (continuous

line); b resistivity models from GA (black), PSO (blue) and GWO (pink)

Figure 16
Comparison between the three best models of the g1 site: a observed signal (red dots with error bars) and predicted responses (continuous

line); b resistivity models from GA (black), PSO (blue) and GWO (pink)

F. Pace et al. Pure Appl. Geophys.



geophysical applications (Fernández Martı́nez et al.,

2010; Pace et al., 2019a; Song et al., 2012; Yuan

et al., 2009). In the synthetic and Travale case stud-

ies, we demonstrated that GA was not able to pair the

performances of PSO and GWO even with more than

two times the number of iterations (Figs. 4 and 10).

This was unexpected because we performed a tar-

geted sensitivity analysis on the parameters of GA

applied to TDEM data. After the optimal GA input

parameters were identified (see Sect. 2.1 and Sup-

plementary material), the GA did not converge and

needed more iterations than PSO and GWO to find a

solution that could be comparable to those of PSO

and GWO in terms of data misfit (and model misfit

for the synthetic data). This may represent a valid

argument to prefer other algorithms than GA.

The GA usually found resistivity models that were

quite different from those found by PSO and GWO

(see Figs. 1, 8, 15 and 16). Given that the sensitivity

analysis allowed the best parameters to be adopted

for the GA optimization, it can be concluded that the

difference in the three models relies on the different

principles of the strategic sampling, that is, on EC for

GA and on SI for PSO and GWO. The resistivity

models obtained with GA were characterized by a

certain level of contrast between consecutive layers.

This cannot be owed to the smoothing parameter k
because PSO and GWO gave smooth models with the

same k value used in GA. It is possible that the GA

parameters yielded the objective function to mini-

mize more the data misfit than the model roughness.

For the synthetic example, the GA model had the

worst misfit for both the data and model fitting

(Table 1). The GA model of the Stupinigi site (Fig. 5)

gave the highest nRMSE on the data and was dif-

ferent from the PSO and GWO models (Fig. 8).

However, the high resistivity values of the shallow

subsurface (around 250 Xm) were in line with the

expected values of the gravel layer known from the

stratigraphy and were underestimated by the PSO and

GWO models (Fig. 8).

The similar performances of PSO and GWO have

been recognized before (Chandra et al., 2017), but

were here demonstrated in both the synthetic and

field case studies. For the synthetic example, the PSO

and GWO resistivity models were largely comparable

(Figs. 2 and 3) and the GWO nRMSE was slightly

higher than that of PSO (Table 1). For the Stupinigi

case study, the PSO nRMSE was practically the same

as that of GWO (Table 2) and the resistivity models

were not only almost identical but also in good

agreement with the known stratigraphy (see Fig. 8).

For the four TDEM soundings in Travale (Figs. 11,

12, 13, 14, 15, 16), the PSO and GWO outcomes gave

similar results for sites k1 and b2 (Figs. 12b, 13b and

15b), while the best PSO and GWO models of sites

k5 and g1 (Figs. 14b and 16b) were a bit different.

The nRMSE was the lowest for GWO except for site

k1 (Table 3). The interpretation of the Travale models

is not the focus of this paper and can be found in

other works (Pace et al., 2022). Generally, the resis-

tivity distributions of the four models were in line

with the expected resistivity of the outcropping rocks

of the geological formations they belonged to, except

for site b2 (Manzella, 2004).

In terms of clustering of the solutions obtained

after the ten trials, the GA solutions were often dis-

similar to the ‘‘best solution’’, while PSO and GWO

succeeded in clustering around the ‘‘best’’ solution.

The GA always gave a set of final solutions (the best

plus the other trials) that were not in total agreement,

especially in the shallow layers (see Figs. 1, 5 and

11). A possible reason is that each trial had a random

initialization of the solutions and then a different

evolution of the exploration and exploitation mech-

anisms, that led to different final models. Moreover,

even though the convergence of GA is proved by the

flatness of the objective function at final iterations

(Figs. 4 and 10), this convergence came earlier than

PSO and GWO, thus causing a possible collapse in a

local minimum, from which GA was unlikely to get

out. This also explains the different resistivity models

found by the ten GA trials in Figs. 1, 5 and 11.

It could be possible that the convergence and

clustering issues of GA can be solved by adopting

some modified versions of the classic GA, such as a

hybrid GA that incorporates the concepts borrowed

from the SA algorithm (Sen & Stoffa, 2013), or from

the Gibbs sampler approach (Aleardi & Mazzotti,

2017) or other variants specifically designed to
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improve the efficiency of GA (Villa Acuna & Sun,

2020).

The comparison of the runtimes (Tables 1–2)

suggests that GA was more efficient than PSO and

GWO, but this is not a core factor because the run-

time is strongly affected by the forward modeling

code and not by the specific optimization procedure.

A possible drawback of the adoption of metaheuristic

methods on a high number of soundings is the large

runtime required. However, the time-consuming

nature of these algorithms can be easily overcome by

means of code parallelization (on clusters or work-

stations) or cloud computing, that nowadays are

increasingly within everyone’s reach.

6. Conclusions

The main purpose of this work was to test the

performance of three metaheuristic algorithms that

have increasingly been applied to geophysical data,

namely, the Genetic Algorithm (GA), the Particle

Swarm Optimization (PSO) and the Grey Wolf

Optimizer (GWO). To the best of the authors’

knowledge, this is the first work that directly and

quantitatively compares GA, PSO and GWO applied

to geophysical data, which have previously only been

compared in pairs (i.e., GA-PSO or GWO-PSO).

The three methods were firstly validated on a

synthetic model of TDEM data and then applied to

two field data sets from Italy. The first data set was

acquired from an area with known stratigraphy and

the second set from a geothermal area with complex

geology. In general, the performance of GA was

significantly worse than that of PSO and GWO, as

demonstrated by the ineffective minimization of the

objective function and by the highest data misfits in

all the case studies. PSO and GWO led to similar

outcomes in terms of both resistivity distribution and

data misfits, possibly because they are based on the

same computational principle known as Swarm

Intelligence.

This study reveals that the emerging algorithm

GWO is a valid tool for geophysical applications,

even though it has received scant attention so far,

while GA and PSO have extensively been adopted.

We demonstrate that GWO has the same

performances as PSO and hence deserves considera-

tion in future applications of metaheuristics to

geophysical data. Moreover, we point out that mod-

ern Swarm Intelligence methods considerably

outperform GA, that appears to be less competitive

than PSO and GWO.

Dealing with global search methods is known to

be time-consuming. A main disadvantage is the need

for large computational resources to run the opti-

mization modeling. However, the current advances in

computer performance and the availability of com-

putational resources are expected to mitigate the

impact of time-consuming computations.

The findings of this work are encouraging and

strongly support the validity of GWO for future

geophysical studies, where it could usefully be

applied to further geophysical data. A worthwhile

direction for future research could be to improve the

cost-effectiveness of existing metaheuristic methods

and to investigate innovative metaheuristics that are

more efficient in solving the inverse problem.
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