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Abstract
In the context of product innovation, there is an emerging trend to use Machine Learn-
ing (ML) models with the support of Design Of Experiments (DOE). The paper aims
firstly to review the most suitable designs and ML models to use jointly in an Active
Learning (AL) approach; it then reviews ALPERC, a novel AL approach, and proves
the validity of this method through a case study on amorphous metallic alloys, where
this algorithm is used in combination with a Random Forest model.

Keywords Design of Experiments · Machine learning · Active learning · Industrial
statistics

1 Introduction

In the context of product innovation, there is an emerging trend to use Machine Learn-
ing (ML)modelswith the support ofDesignOfExperiments (DOE). In thisworkDOE,
often refers both to methods for experimental design generation and to regression
models, like polynomial models. These two topics have very different backgrounds.
DOE can be perceived as a classic technique, because there are industrial applications
involving this topic that date back to the 1950s and earlier Bisgaard (1992), while
use of ML in industry can be considered quite recent. Moreover, DOE has a precise
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and organised approach that leans on a vast and established body of literature, while
ML is still mainly application-oriented. Another relevant difference between these
two disciplines is the fact that while DOE tends to favour inference over predictions,
allowing the experimenter to understand the existing relationships between input fac-
tors and output responses, MLmodels tend to behave as black boxes. Especially when
the underlying phenomenon has a non-linear behaviour, the predictive performances
of ML models are not always met by the traditional approaches used in DOE. What
makes ML models very interesting is their ability to continuously learn and improve
as more data are supplied: this characteristic matches with the principle of sequential
experimentation in DOE. In ML literature, Active Learning (AL) is a kind of super-
vised learning technique devoted to the iterative collection of the most informative
data points, with the aim of maximising information gain Olsson (2009).

From the analysis of the literature, it is possible to affirm that ifwe considerDOEand
ML individually, their respective research areas are broad and have been intensively
investigated; but things change if we consider these two topics jointly. Two different
worksArboretti et al. (2022) and Freiesleben et al. (2020) state that there are fewpapers
that considerDOEandML jointly.Nevertheless, it is possible to identifyArboretti et al.
(2022) two main currents: one concerns the utilization of ML techniques in order to
analyse data that have been collected according to a DOE, and the other regards the use
ofDOE to optimize the training process ofMLalgorithms.As regards thefirst, in recent
years the application of DOE andML has begun to take hold, with several applications
in many fields. We will delve into the analysis of this category the next section. The
second current contains various contributions on the use of DOE as a method for
choosing the best combination of hyperparameters for ML models: the contributions
of Lujan-Moreno et al. (2018) and Staelin (2003) represent two examples of this. A
systematic literature review on ML and DOE for product innovation performed by
Arboretti et al. (2022c) showed that in recent years the interest on DOE+ML has
grown and, in 2019 and 2020 there was a spike in the publication of papers about
this topic. Moreover, Arboretti et al. (2022c) has shown that the typical application
of the DOE+ML framework is non-sequential; only 8 out of the 82 analysed papers
included the use of some features of the ML model to suggest the choice of the next
experimental configurations.

The aim of this paper is firstly to provide a solid review of some contributions in
the field of AL: to this purpose, Sect. 2 reviews a contribution about the choice of the
best design and ML method for a joint application in the context of the prediction
of a phenomenon of interest in physical experiments. Section3 describes ALPERC, a
recently-developedALapproach suitable for physical experiments. It is comparedwith
other AL approaches in Sect. 4. The main novelty element of the paper is discussed in
Sect. 5, that presents a real case study, in which this new AL approach is jointly used
with a Random Forest (RF) model. Conclusions are in Sect. 6.

2 Experimental designs andmachine learningmodels

In this section, the connection between experimental designs and MLmodels is inves-
tigated. The aim of this part is to carry out a review to understand which experimental
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Table 1 Summary of the experimental designs used in the simulation study

ID Description # Levels Replication

CCD Central composite design 3 0%

BBD Box-Behnken design 3 0%

FFD D-optimal full factorial design 6 0%

D_opt D-optimal design 6 0%

I_opt I-optimal design 6 0%

LHD_rand Random latin hypercube design 52 0%

MAXPRO MaxPro space-filling design 52 0%

MAXPRO_dis MaxPro discrete numeric design 6 0%

D_opt_50%repl D-optimal design 6 50%

I_opt_50%repl I-optimal design 6 50%

MAXPRO_dis_50%repl MaxPro discrete numeric design 6 50%

MAXPRO_dis_25%repl MaxPro discrete numeric design 6 25%

All designs have 6 factors and 52 runs

design is more suitable for a joint application withMLmodels when the global focus is
on the prediction of a phenomenon of interest. In the following sections, we will anal-
yse a study by Arboretti et al. (2022b), that considers 12 experimental designs, which
will be presented in Sect. 2.1 and 7 different ML models, presented in Sect. 2.2. These
will be tested considering 7 test functions (each test function is a computer simulator
which models a physical phenomenon) under 8 different noise settings, including both
homoschedastic and heteroschedastic noise.

2.1 Experimental designs

Table 1, contains a summary of the different DOEs settings which have been studied.
It is possible to distinguish three main categories of experimental designs: “classical
designs”, “optimal designs” and “space-filling designs”. There are six factors, with
three levels each. The same number of runs (52) was allocated to each DOE, in order
to provide a fair comparison between the different designs.

The data collected through the different experimental designs were used to predict
the behaviour of different test functions, that are deterministic functions, mainly simu-
lating some physical processes, described in Table 2. These test functions are detailed
in the supplemental material of Arboretti et al. (2022b). The dependent variables were
standardized:

ystdn = yn − y

sy
(1)

where ystdn is the standardized value corresponding to yn (the observed value for the
n-th observation), y and sy are the mean and standard deviation of y respectively. 100
random Latin Hypercube Designs (LHDs) with 500, 000 observations each are used
for computing y and sy .
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Table 2 Summary of the test functions chosen for the simulation study

ID Description

Borehole Models water flow through a borehole

OTL circuit Models an output transformerless push-pull circuit

Piston models the circular motion of a piston within a cylinder

Piston mod A modification of Piston, with increased non-linearity

Robot arm Models the position of a robot arm which has 3 segments

Rosenbrock function Is a popular test problem for optimization algorithms

Wing weight Models a light aircraft wing

The classical designs category includes Central Composite Designs (CCDs), Box-
Behnken Designs (BBDs) and Full Factorial Designs (FFDs), which are among the
most used designs when it comes to data collection in ML studies. The optimal design
category includes D-optimal and I-optimal designs. It is worth noting that

– both FFD and D_opt are 52-run D-optimal designs which have been generated
using a 66 full factorial design as candidate set. The difference lies in the algorithms
used for their construction;

– both D_opt and I_opt have been generated without adapting their criteria functions
to take into account heteroschedasticity.

Space-filling designs, namely Random Latin Hypercube Designs (LHD_rand) and
MaxPro space-filling designs (MAXPRO), are almost exclusively used in computer
experiments because they have too many levels for the factors. This makes the exper-
imentation too costly or unfeasible when it comes to physical experiments; however,
these designs were included in the analysis to provide a benchmark for researchers
working in computer experiments. Lastly, it is crucial to underline that in this analysis
also a “hybrid” design, derived from the space-filling literature but with character-
istics that enable its applications also on physical experiment, was considered. This
hybrid design is the MaxPro discrete numeric design (MAXPRO_dis) Joseph et al.
(2020). Also, the role of replication was investigated in the simulation study: addi-
tional D-Optimal, I-Optimal, MAXPRO_Dis designs with 50% level of replication
and a MAXPRO_Dis with 25% level of replication were included. The 50% level
of replication of D_opt, I_opt, and MAXPRO_dis (D_opt_50%repl, I_opt_50%repl,
and MAXPRO_Dis_50%repl, respectively) have been obtained generating optimal
26-run designs and replicating them twice. This type of procedure is often performed
in DOE studies concerning physical experiments. The 25% level of replication (MAX-
PRO_dis_25%repl) has been obtained generating a 39-run MAXPRO discrete design
and randomly choosing 13 runs out of the 39 to be replicated once.

2.2 Machine learningmodels

As regards machine learning models, from some evidence in the literature review
conducted by Arboretti et al. (2022c) it has emerged that Artificial Neural Networks
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Table 3 Noise settings used in the simulation study

ID Noise σ Type Description

0% σhom = 0sy – 0% noise, deterministic function

5% σhom = 0.05sy Hom 5% noise

12.5% σhom = 0.125sy Hom 12.5% noise

20% σhom = 0.2sy Hom 20% noise

50% σhom = 0.5sy Hom 50% noise

h50 σhet,min = 0.05sy Het. Moderate: 5% noise at min y

σhet,max = 0.5sy and 50% noise at max y

h100 σhet,min = 0.05sy Het. Intermediate: 5% noise at min y

σhet,max = 1sy and 100% noise at max y

h500 σhet,min = 0.05sy Het. Severe: 5% noise at min y

σhet,max = 5sy and 500% noise at max y

(ANNs) are the most used models for the analysis of DOE when the focus is on pre-
diction. Two different types of ANNs were used: ANN shallow (ANN_sh), which is
an ANN with one hidden layer and a number of neurons chosen in the range [3− 12]
and ANN deep (ANN_dp), which is an ANN with multiple (2 to 4) hidden layers, and
either 6 or 12 neurons per layer. Several other models were considered, including Sup-
port Vector Regression models (SVRs), Gaussian Processes (GPs), which are the most
used when it comes to computer simulation, Linear Models (LMs) based on quadratic
regressionwith interactions, RandomForests (RFs) and othermodels containedwithin
the Automated Machine Learning (aml) platform offered by H2O LeDell and Poirier
(2020). Both homoscedastic and heteroscedastic noise situations were considered
(Table 3). Let sy , min y, and max y be the standard deviation, the minimum, and the
maximum of y computed using the previously mentioned 100 random LHDs, respec-
tively.Thehomoschedatic case assumesnoise components in the form ε ∼ N (0, σ 2

hom)

where σhom = ksy with k = 0%, 5%, 12.5%, 20%, 50%; k = 0% corresponds to the
deterministic case. The heteroschedatic case assumes noise components in the form
ε ∼ N (0, σ 2

het ) where σhet increases linearly with the value of y = f (x). More
specifically, at a given value x of the input σhet = 0.05sy + a( f (x) − min y) where
a = (m − 0.05)sy/(max y − min y), m = 50%, 100%, 500%. The minimum value
of σhet is 0.05sy for all cases and the maximum values of σhet are 0.5sy , sy , and 5sy .
Each model has been implemented after a careful tuning of the hyperparameters with
the objective of minimizing the Root Mean Square Error (RMSE).

2.3 Results and discussion

In the paper by Arboretti et al. (2022b) a methodology based on nonparametric per-
mutation tests was used to evaluate the different designs and models. This approach
is also described in Arboretti et al. (2014).

123



R. Fontana et al.

Table 4 Final rank of the designs for the homoscedastic noise cases

Overall Design ID

ranking 0% 5% 12.5% 20% 50%

1 FFD 5 1 1 1 1

1 MAXPRO_dis 1 1 1 2 4

1 MAXPRO 2 1 1 4 1

4 I_opt 3 1 4 2 1

5 LHD_rand 3 1 6 6 8

5 BBD 6 6 4 4 4

7 D_opt 9 8 8 7 4

8 MAXPRO_dis_25%repl 7 7 7 8 8

9 MAXPRO_dis_50%repl 10 9 9 9 8

10 I_opt_50%repl 11 11 10 10 4

11 CCD 8 9 11 10 12

12 D_opt_50%repl 12 12 12 12 11

ID indicates the noise setting for each analysed scenario

Table 5 Final rank of the
designs for the heteroscedastic
noise cases

Overall Design ID

ranking h50 h100 h500

1 MAXPRO_dis 2 1 1

2 BBD 3 4 1

3 I_opt 3 1 6

3 MAXPRO 1 3 6

5 MAXPRO_dis_25%repl 6 4 1

6 MAXPRO_dis_50%repl 9 9 1

7 I_opt_50%repl 10 9 1

7 D_opt 8 4 8

7 FFD 5 7 8

10 LHD_rand 6 7 8

11 CCD 11 11 11

12 D_opt_50%repl 11 11 12

ID indicates the noise setting for each analysed scenario

2.3.1 Ranking of DOEs

Tables 4 and 5 report the final rankings of the experimental designs. The rankings
are based on RMSE. Table 4 reports the final ranks of the designs in the homoscedastic
noise settings, while Table 5 reports the final ranks of the designs in the heteroscedastic
noise settings. These tables should be read column-wise because the relative ranks are
computed for each noise setting. Then, by adding up all the different positions obtained
by each design for all noise settings we obtained the overall ranking. For example, con-
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Fig. 1 Visualization of the space-filling capability of D_opt (left figure), I_opt (center figure) and MAX-
PRO_dis (right figure)

sideringTable 4, by adding up all the positions in the different noise settings for FFDwe
get 9 (it is the sum of the values in the first row); this value is the lowest obtained among
all designs; that’s why the position of FFD in the ranking is the first one. It is possible
to observe that the choice of the experimental design has an impact on the quality of the
outcome of the analysis. Focusing on the homoscedastic case, the three best ranked
designs are FFD, MAXPRO_dis and MAXPRO, closely followed by the I-optimal
design. The presence of replicates makes the predictions worse; D_opt_50%repl,
I_opt_50%repl, MAXPRO_dis_50%repl and MAXPRO_dis_25%repl are among the
worst performers. The situation is different when it comes to the heteroscedastic noise
setting. The best performer is MAXPRO_dis, ranking first for the intermediate and
severe noise situations, and second in the case of moderate heteroscedasticity. In this
situation the two worst performers are the CCD and the D_opt_50%repl. If we jointly
consider the homoscedastic and the heteroscedastic noise settings, it is possible to state
that the best overall performer is the MAXPRO_dis. For this reason, we can affirm
that even if a heteroscedastic noise, not expected or initially detected, appears, the
best choice would be the MAXPRO_dis design, as it results among the best methods
in the homoscedastic case (as it may be observed in Table 4) and the best method
in the heteroscedastic case (Table 5). The results obtained by MAXPRO_dis may be
justified by the fact that it uses the space-filling criterion which leads to a combination
of the factor settings that maximises the ability of several different predictive models
to capture the non-linearity of the underlying functions. At the same time the limited
number of factors levels makes the design robust to the presence of noise and appli-
cable for physical experiments. This design performs better than all the other designs
with the same number of factor levels, FFD, D_opt and I_opt, particularly in the het-
eroschedastic setting. A possible explanation to this phenomenon is represented in
Fig. 1, which visually compares the ability of different designs to appropriately fill the
design space, while sharing the same characteristics for factor levels and runs. The
space-filling criterion at the basis of the MAXPRO_dis enables a better filling of the
design space favours flexible non-linear predictive models in capturing the behaviour
of the underlying function across the whole experimental region.

It is worth underlining the difference, in the performances, between two classical
designs: BBDs and CCDs. From this simulation study it has emerged that the BBDs
performs better than the CCDs, especially in settings influenced by large noise. If we
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Table 6 Final rank of the
models for the homoscedastic
noise cases

Overall Model ID
ranking 0% 5% 12.5% 20% 50%

1 GP 1 1 1 1 1

2 LM 2 2 2 2 3

3 SVM 4 3 2 3 2

4 ANN_sh 3 3 4 4 3

5 RF 5 5 5 5 5

6 aml 6 5 5 5 6

7 ANN_dp 7 7 5 7 7

ID indicates the noise setting for each analysed scenario

Table 7 Final rank of the
models for the heteroscedastic
noise cases

Overall Model ID
ranking h50 h100 h500

1 SVM 1 2 1

2 GP 1 1 3

3 LM 3 4 4

4 RF 5 5 2

5 ANN_sh 4 3 6

6 aml 6 6 5

7 ANN_dp 6 7 6

ID indicates the noise setting for each analysed scenario

analyse the performances of the replicated design, it is possible to observe that these
kinds of designs show some advantages only as the noise becomes larger and especially
in the input dependent noise case. A possible explanation for this phenomenon is that
the exploration of a smaller number of unique input configurations, in the replicated
designs, weakens the ability of the predictive model to learn the behaviour of the
underlying test functions; it seems that replicated design should only be preferred if
the underlying phenomenon is severely affected by heteroscedasticity.

2.3.2 Predictive models

The strategy used in order to rank the different predictive models is equivalent to the
one used to rank the designs, with the only difference that, in this second case, the
groups are dependent since for each experimental design the same data were used in
order to train the model.

From the results of the simulation, shown in Tables 6 and 7, it is evident that the
choice of a specific prediction model widely impacts the results of the analysis. In
the situation of homoscedastic noise, represented in Table 6, the best model is the
Gaussian Process, since it ranked first in all the five cases. The performances of this
model are also excellent in the situation of presence of heteroscedastic noise. This
model ranks first in the low and medium noise settings and third in the high noise
setting. It is also possible to state that LM is the second-best option when it comes to
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situation affected by homoscedastic noise, while SVM and ANN_sh are respectively
the third and the fourth options in this specific situation. RF, ANN_dp and aml behave
in an unsatisfactory manner in this situation. In the case of presence of heteroscedastic
noise, represented in Table 7, it is possible to observe that the SVMperforms verywell,
indeed it is the best performer in the case of low uncertainty (together with the GP)
and high uncertainty. The results obtained by LM, RF and ANN_sh can be considered
as acceptable, while aml and ANN_dp perform in an unsatisfactory manner also in
this situation. Lastly it is important to underline that in the simulation the focus was
only on the predictive performance, and that other fundamental aspects, such as the
quantification of uncertainty and the model interpretability weren’t considered, even
if these are two crucial factors to consider in order to obtain robust and trustworthy
results that may support decision making in real industrial applications. More details
about this simulation study can be found in Arboretti et al. (2022b).

3 The ALPERCmethod

In this section the aim is to firstly introduce some notions about AL, then to present
and review the theoretical aspects of ALPERC, an iterative approach based on non
parametric ranking and clustering suitable for physical experiments, recently proposed
by Arboretti et al. (2022a).

3.1 Active Learning

The general framework of the AL technique requires three core ingredients: (1) an
initial dataset �0 = [A0 Y0] where A0 is the n0 × d matrix whose rows are the
n0 input configurations xi = (x1i , . . . , xdi ), i = 1, . . . , n0, and Y0 is the n0 × c
response matrix whose rows are the vectors yi = (y1i , . . . , yci ) of the c dependent
variables corresponding to the input vector xi , i = 1, . . . , n0. (2) c predictive models,
developed on the dataset �0 and lastly (3) a criterion that uses some features of the
model to propose which experimental configurations should be added to the dataset at
the subsequent iterations. When this configuration is defined and added to the dataset,
the above described steps are iterated until a stopping condition is reached.

The idea underlying this process is that by collecting data on the most informative
input configurations it is possible to achieve the goal of the study more efficiently in
terms of time and required resources.

Among the first algorithms proposed for the emulation of complex functions by
sequential data acquisition there are the active learningMacKay (ALM) and the active
learning Cohn (ALC). ALM, Yue et al. (2021), adds the input configurations which
are characterised by the highest predictive uncertainty, maximising the expected infor-
mation gain; two important features of this algorithm favoured its wide diffusion: it
is intuitive and easy to be implemented. On the other hand, ALC, Gramacy and Lee
(2009) proposes for inclusion those data points that minimize the expected integrated
variance over the entirety of the input space. This results in the selection of those
x′ points that maximise the expected reduction in predictive uncertainty in the input
space as in the formula:
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∫
[σ 2(x) − σ 2

x′(x)]dx

where σ 2(x) represents the estimated variance in x given the currently available obser-
vations and σ 2

x′(x) is the expected predictive variance in x when the configuration x′ is
included. Other approaches are proposed in the literature, like the one in Binois et al.
(2019). One common characteristic between all the proposed AL criteria is that they
all exploit a quantification of the predictions of the uncertainty to select subsequent
experimental configurations. Another common trait between all the analysed criteria
is that they deal with the analysis of computer experiments, while in this article the
interest is on physical experiments.

3.2 ALPERC

Arboretti et al. (2022a) proposeALPERC, anAL approachwhich is based on nonpara-
metric Ranking and Clustering and is suitable in Physical Experiments. ALPERC can
be implemented for sequential data collection when three or more response variables
are investigated in the same experiment in noisy settings. This algorithm is based on
the combination of different building blocks:

1. an experimental design for collection of data at the first iteration and a set of
candidate points from which it is possible to choose new input configurations in
the subsequent iterations;

2. a predictive model developed on the available data which provides a quantification
of the uncertainty of candidate points;

3. a variable importance technique;
4. a ranking procedure to obtain an inferential rank of candidate configurations con-

cerning predictive uncertainty;
5. a clustering procedure that groups candidate configurations with respect to con-

tinguity in the design space.

The underlying idea is to propose a model-agnostic AL methodology, with the only
strict condition that the predictive models must provide an appropriate quantification
of uncertainty of predictions. In Arboretti et al. (2022a) the focus was on Gaussian
Process models, as they are themost common in the AL literature and they can directly
provide a quantification of uncertainty, but other models can also be used, as we will
see in the case study. As regards the variable importance, the choice of the appropriate
technique depends on the predictive model selected. In case Gaussian Process models
are selected, an appropriate strategy consists of the use of the Sobol’ indices. These
consider independent input variables and quantify the relative importance of one input
dimension as the partial variance of model output explained by this variableWei et al.
(2015).

Let’s consider an objective function f (x), that is assumed to be square-integrable;
Sobol’s method considers the functional decomposition of f (x):

f (x1, ..., xd) = f0 +
d∑

i=1

fi (xi ) +
d∑

i=1

d∑
j>i

fi j (xi , x j ) + · · · + f1,...,d(x1, ..., xd) (2)
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where f0 is a costant that represents the mean value of f (x), fi (xi ) is the main
effects of xi , fi j (xi , x j ) is the interaction effect between two different factors xi and x j ,
and fi1...ik (xi1 , . . . , xik ) is the interaction effect among the factors xi1 , . . . xik , k > 2,
and i1 < . . . < ik .

Sobol demonstrates that if the input variables are independent and f (·) is square
integrable, from Eq.(2) the variance associated to the model response Y can be written
as:

V (Y ) =
d∑

i=1

Vi +
d∑

i=1

d∑
j>i

Vi j + · · · + V1,...,d (3)

where Vi = V (E(Y |xi )), Vi j = V (E(Y |xi , x j )) − Vi − Vj and so on.
The first-order sensitivity indices Si are expressed as:

Si = Vi
V (Y )

= V (E(Y |xi ))
V (Y )

, i = 1, . . . , d (4)

The index Si measures the proportion of variability in the response that is
attributable to the i-th input variable. Another relevant indicator is the total partial
variance VTi associated to the i-th input variable, as it considers not only the main
effect of the i-th input, but also its interaction effects with all the other d−1 input vari-
ables x∼i = (x1, . . . , xi−1, xi+1, . . . , xd). From Eq.(3), VTi = V (Y ) − V (E(Y |x∼i ))

is obtained. The total sensitivity index Si can be computed as:

ST i = VTi
V (Y )

= V (Y ) − V (E(Y |x∼i ))

V (Y )
(5)

In practical applications Sobol’ indices can be obtained byMonteCarlo simulations.
Sobol (2001)

The problem of clustering, which is an unsupervised classification task, is related to
the grouping of objects based on somemeasure of similarity. In Arboretti et al. (2022a)
a hierarchical agglomerative clustering algorithm based on weighted Euclidean dis-
tance was proposed. The choice of this criterion was made because this algorithm
results more stable than other common choices, such as k-means clustering, as it is
insensitive to the initial seed selection, ensuring replicable results. A centroid-linkage
was considered and in order to estimate the similarity between two vectors x and x′
the weighted Euclidean distance was used:

(
d∑

i=1

wi (xi − x ′
i )
2

)1/2

(6)

where w=(w1,…,wd ) represent the vector of the weights assigned to the d dimensions.
To identify the best number of clusters the Silhouette index was chosen, as it has been
shown to be the best methods in most situations. Arbelaitz et al. (2013)
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3.3 How ALPERC works

The algorithm begins by considering an initial dataset �0 = [A0 Y0], where A0 is
often chosen in the class of Maximum Projection design with discrete numeric factors
and Y0, is the matrix of responses, assumed to be independent. Then an additional
designAcand that includes ncand candidate configurations is built. The number of ncand
have to guarantee an appropriate coverage of the design space, however it should be
remembered that the computational effort increases with the size of Acand , thus a
valid option may consist of the temporary augmentation of A0 at each AL iteration
by the selection from Acand of a limited number of combinations which minimize
the Maximum Projection criterion, and to use this subset as a candidate set at that
specific AL iteration. A commonly used value for the number of candidate points at
each iteration is 100.

The next steps of the procedure are the construction of c predictive models
f1(·), . . . , fc(·) that are trained on �0 and the quantification of the importance of
each feature xi , i = 1, . . . , d. As already mentioned, in Arboretti et al. (2022a), a
GP model was considered and the total Sobol’ indices were used in order to obtain a
quantification of the uncertainty for the candidates in Acand .

Then, the ranking procedure introduced by Arboretti et al. (2014), is employed,
where for ALPERC the groups G considered in the paper are the rows of Acand and
the dependent variables are the predictive uncertainty observed on the c responses. The
permutation tests use the difference in means as test statistics and consider c observa-
tions in each groupG. Therefore, a value c ≥ 3 is recommended to guarantee aminimal
sample size for the permutation tests. As a result, the procedure provides a synthetic
rank of candidates with respect to the uncertainty associated to all the responses. In
comparison to the application of ALMmethod, the main advantage of ALPERC is that
the ranks assign different positions only to those candidates whose global predictive
uncertainty is significantly different after the execution of permutation tests. It may
happen that some area of the design space is characterized by the highest uncertainty,
so the candidates from that region will rank high. If the predictive uncertainty is the
only indicator driving AL acquisition, the proposed points would all be close together
and located in that specific region of the design space, but in general, one prefers to
explore several areas of the experimental domain, in order to increase the global accu-
racy. For this reason, a clustering method is employed to group together candidates
that are close together in the design space. The weighted Euclidean distance is used as
a similarity measure for the generation of clusters, where the weights are given by the
rescaled relative importances of each variable. The adoption of this strategy increases
the possibility to put two candidates that differ with respect to "irrelevant" dimensions
in the same cluster, and in an opposite way two configurations that are spatially near
but differ with respect to a few decisive factors tend to be assigned to different clusters.
At this point, a batch of experimental configurations must be selected from the candi-
date set for inclusion in the next AL iteration. First, the size of the batch nadd has to be
set, and this is usually application-specific. A general guideline is to set ncand at least
one order of magnitude larger than nadd , in order to provide a reasonably large set
of candidates at each AL iteration. Two different rules to guide sequential candidate
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selection can now be chosen, one favoring the exploration of the design space, and
the other, more conservative one, that favors exploitation of the current knowledge.

Let’s consider a situation in which two candidate experimental configurations both
share the highest rank position and are in the same cluster. In the case of exploration
of the design space, only one of these candidate configurations is selected (the one
with highest mean uncertainty) and then the rank is descended until a new candidate
is found in another cluster and/or has a different position in the rank. In the case of
exploitation, the idea is to perform some replicates of the experimental configuration
characterized by the highestmean uncertainty, while sharing the same ranking position
and cluster with others. The number of required replicates should be equal to the
number of candidates which share the same position in the ranking and cluster. In
practice, the exploration strategy is preferable in most situations, but in presence of
severe heteroscedasticity the predictive models greatly benefit from the execution
of replicates, as a separation of noise from signal can be achieved more easily. In
the end, nadd configurations are selected from Acand in accordance to one of the
principles already explained, and the new runs canbe executed.Once the new responses
are collected, the new dataset �add,0 is concatenated to �0 and the procedure can
be iterated niter times, i.e. until a certain accuracy threshold is reached or until the
company has exhausted the resources allocated for the project.

4 Simulation study: ALPERC vs competitors

In this section the aim is to review a simulation study about different AL algorithms,
including ALPERC and a non-active-learning (non-AL) approach, in order to under-
stand the validity of the AL approaches and more specifically of ALPERC. In order to
achieve this goal, we have analysed the simulation study conducted in Arboretti et al.
(2022a) that compares the predictive accuracy of ALPERC against some competitors
from the literature. This simulation is based on several test functions, that are those
already presented in Table 2, together with multiple noise settings, considering both
homoscedastic and heteroscedastic situations, and two different sparsity levels: 0%
sparsity and 25% sparsity, where sparsity is the ratio of the number of inactive fac-
tors with the number of factors which are considered in the experiment. As regards
ALPERC, the exploration strategy was preferred in all noise situations, except the one
with the highest heteroscedasticity. The others sequential data acquisition techniques
which have been analysed are:

– a variation of ALPERC (ALPERC_unw), that considered all the weights equal 1,
w=1, so the attribution of each candidate configuration to a cluster wasn’t adjusted
by variable importance;

– a selection based on optimisation of the Maximum Projection criteria (Max-
Pro_aug);

– an augmentation based on D-optimality (D_opt);
– an iterative data acquisition based on the principle of maximum variance (ALM);
– a sequential sampling based on the expected variance reduction throughout the
design space (ALC);
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Table 8 Rank of the different
methods in the homoscedastic
noise setting

Overall Method 0% sparsity 25% sparsity
ranking 20% 50% 20% 50%

1 ALPERC 1 1 1 2

2 MaxPro_aug 1 1 3 5

3 ALPERC_unw 6 1 4 1

4 ALC 4 6 2 2

5 D_opt 1 5 5 5

6 ALM 5 4 6 2

7 non-AL 7 7 6 7

– a non-active-learning approach in which the models are retrained at each iteration
on a newdesign of suitable size (non-AL).A newMaximumProjection designwith
a limited number of levels was built at each iteration and its size that matched the
other AL counterparts. This is the reference approach that shows the performance
of non-sequential methods, which are, as previously seen, the most employed in
the literature on DOE+ML.

From the simulation it emerges that for the homoscedastic noise setting ALPERC
performs as the best method in three out of four situations, and as the second best
method in the remaining one, as it is possible to observe in Table 8. In the remaining
case, the one with the highest levels of uncertainty and sparsity, the best method
results the ALPERC_unw. It is also important to underline that the performances of
the MaxPro_aug are equal to the ones of ALPERC, when the level of sparsity is low,
while, if the level of sparsity increases the perfomances of this method decreases.

As regards the heteroscedastic noise settingsALPERCalways ranks first, regardless
of the sparsity and noise levels, as it is possible to observe fromTable 9.The unweighted
version of ALPERC always ranks second, except in the case of high sparsity level and
high heteroscedastic noise, when it matches the results of ALPERC. ALPERCwas the
only strategy including replicates at themost severe level of heteroscedasticity, because
of the exploitation approach. In Arboretti et al. (2022a) it is underlined that even if at
each AL step, the experimental configuration selected by the closest competitors had
been replicated three times, to match the level of replication of ALPERC, this strategy
would perform worse than ALPERC. This demonstrates that at the highest level of
uncertainty, the benefits provided by the ALPERC methodology don’t exclusively
depend on the presence of replicates, but are a result of the essential principles of the
methodology. ALPERC is a sequential algorithm that allows to reassess the situation at
each iteration, so if a heteroscedastic noise not initially expected or detected appears,
the most obvious choice would be to favour the exploitation strategy. Lastly, it is
possible to state that the results of the non-active-learning approach (non-AL) can be
considered as unsatisfactory, because this methodology ranks last in all noise settings.
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Table 9 Rank of the different
methods in the heteroscedastic
noise setting

Overall Method 0% sparsity 25% sparsity
ranking h100 h500 h100 h500

1 ALPERC 1 1 1 1

2 ALPERC_unw 2 2 2 1

3 D_opt 2 2 2 4

4 MaxPro_aug 2 2 2 5

5 ALM 2 2 6 3

6 ALC 2 6 2 7

7 non-AL 7 7 7 6

5 Case study: amorphousmetallic alloys

5.1 Overview

This section presents a case study about the costruction and refinement of a multi-
response emulator to estimate three critical temperatures in some innovative metallic
alloys. To achieve the desired goal, data from real experiments are used, along with
ALPERC, which results useful in the sequential data collection for iteratively refining
the predictive algorithms.

As already mentioned, the case study is about innovative metallic alloys: the amor-
phous metals. These materials mantain, even at solid state, the typical disordered
structure of the liquid state, so they don’t have a cristalline structure, and for this
reason they are also known as metallic glasses. The particular structure of these mate-
rials results in some very interesting properties, like high strength and wear resistance
Jafary-Zadeh et al. (2018), high hardness and elasticity Chan and Sort (2015), high
magnetic permeability Khan et al. (2018) and high corrosion resistance Nair and
Priyadarshini (2016). Moreover, the unique characteristics of these metallic glasses
make them interesting for different applications in various industries such as sporting
good, advanced aerospace applications and medical and electronic devices Chan and
Sort (2015).

A limit to the pratical application of these materials is caused by the fact that it
is difficult to obtain amorphous alloys with a thickness greater than 1mm. Another
limit is represented by the high number of elements that are necessary to achieve
an appropriate alloy structure; this also makes the size of the combinatorial space
prohibitive.

The process of solidification results critical in obtaining the desired structural
features of the material and the cooling process is governed by some critical transfor-
mation temperatures (CTTs):

– the glass transition temperature Tg;
– the onset of crystalizzation temperature Tx ;
– the liquidus temperature Tl .

A rapid and precise prediction of the CTTs of candidatematerial is required to improve
the properties of amorphous metallic alloys. That’s why this case study regards the
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Fig. 2 The elements forming the alloys in the metallic glasses dataset

construction and the refinement of predictive models to emulate the three CTTs given
both the alloy elements and the composition.

5.2 Dataset and ALPERC implementation

In the case study the data collected byXiong et al. (2020) are employed.After the clean-
ing phase, the dataset consists of 555 measurements from differential thermal analysis
or differential scanning calorimetry at a constant heating rate. The alloys investigated
in the dataset include 44 elements, as highlighted in Fig. 2. All the observations were
rescaled to [0 − 1], using

zn = yn − ymin

ymax − ymin
(7)

where zn is the rescaled value corresponding to yn (the observed value for the n-th
observation), ymin represents the minimum value in the dataset, while ymax represents
the maximum value in the dataset.

This rescaling was performed to allow a fair comparison between variables that
may have different orders of magnitude. Both the responses (Tg , Tx , and Tl ) and the
44 explanatory variables have been rescaled.

It is important to underline that the data used in this case study are unstructured.
A random partitioning of the experimental data into training and test sets (80%

and 20% of the data respectively) is operated, and repeated 10 times for robustness.
ALPERC is applied to each initial dataset, with the following starting conditions:
n0 = 40, ncand = 100, nadd = 10, niter = 20 and the exploration strategy. A0 is
composed by observations randomly selected from the training data. A random design
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Fig. 3 Results of the average MSE at each AL iteraction. The black dotted line corresponds to the median
mean(RMSE) when all training data are used for training the models

A0 has been chosen to focus on the behaviour of ALPERC in the active learning
phase when the starting design is non-optimal, i.e. potentially worse than it could be.
At each AL iteration, Acand is constructed including the ncand data configurations
that optimize the Maximum Projection criterion given the experimental trials already
included in the design. Considering the large number of predictors, a RF model was
chosen and it has been trained using 5-fold Cross Validation Gareth et al. (2013).
The uncertainty quantification associated with this ML model used in the case study
follows the methodology of Wager et al. (2014). Lastly the estimation of the variable
importance is performed with the permutation method Breiman (2001).

5.3 Results and discussion

The evolution of the mean test error obtained with ALPERC is represented in Fig. 3.
From the comparisonwith the baseline approach, it appears that ALPERC is preferable
to the random sampling of candidate configurations. The median test error obtained
when using 85% more data than ALPERC at iteration 20 is represented in Fig. 3 by
the black dotted line: this is another proof of the good predictive accuracy obtained
by the models using ALPERC.

As it is possible to observe from the three scatterplots in Fig. 4, which represent
the observed vs predicted values, the accuracy on the test data is very high for all the
three responses.

In Fig. 5 the evolution of the variable importance of the Tg through ALPERC itera-
tions is represented. To improve the visual impact, those variables forwhich themedian
variable importance always results smaller than 10% in each of the AL iterations and
for all the CTTs are displayed in light grey. From this plot emerges that 29 out of the
44 predictors are barely important for all the responses or, equivalently, that only 15
predictors should be taken into account. This is a very useful information, because it
allows to understand which elements need the most investigation.
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leads to the best results at iteration=20 for ALPERC
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To better comprehend theRFmodel employed, the SHAP (SHapleyAdditive exPla-
nations) techniqueLundberg et al. (2018) can be used. The SHAP values are inspired
from the Shapley indices of game theory literature Shapley (2016), and provide an
explanation of individual predictions.

By calculating the contribution of each feature to the prediction, SHAP aims to
explain the prediction of a single instance x: this can be achieved by assuming an
additive model form and analysing, by using the Shapley values, how much each vari-
able affects the prediction for the instance x in relation to the overall mean prediction
calculated on a given dataset.

Let’s consider the response Tg as an example (Fig. 6): the plot indicates that the
average test data prediction is 0.496 (for each response the values have been rescaled
to [0−1]). Then, the value of the predictor Co= 0.4 adds 0.061 to themean prediction,
while the content of Zirconium, Zr= 0, subtracts 0.054 to the mean prediction, and
so on. Considering all the input variable values, the final prediction for the selected
test instance is of 0.509, corresponding to 626.63K. To aid in visualization, just the
contribution of the five most relevant predictors is shown for the given test instance,
whereas the rest is collapsed in the "other variables" category. For the other responses
this approach leads to a final prediction of Tx = 682.72K and Tl = 996.65K. This
visualization offers a precise explanation of how each predictor contributes to the
prediction of a certain data configuration, providing also insights on the rationale
underlying the ML model.

By plotting the feature value associated with each test instance on the horizontal
axis and the related SHAP value Molnar et al. (2020) on the vertical axis it is possible
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Fig. 6 SHAP break-down values for one observation obtained via ALPERC considering the training-test
partition that leads to the best results at i teration = 20

to obtain a global view of the SHAP values for each predictor, considering all the test
data. An example of these plots is provided for Tg , the Glass transition temperature,
represented in Fig. 7, considering the 15 most relevant predictors identified in Fig. 5;
if we consider the case of Copper (Cu) it is possible to observe that, if Cu = 0.25, Tg
descreases by almost 0.025, while, if Cu = 0.8, the increase in Tg is equal to 0.025.
So, using this partial dependence plot it is possible to observe how the various levels
of some elements affect the different temperatures.

Moreover, from this plot it is possible to observe how these relationships are non-
linear and also rather complex. A limitation of this kind of visualization is represented
by the fact that these plots only provide information on the effect of the input variables
taken individually. However it is possible to compute SHAP interaction values, which
quantify the impact of the interactions after removing the impacts of the individual
effects Molnar et al. (2020).

In Fig. 8, obtained using the treeshap R Package Komisarczyk et al. (2023), an
example that displays a relevant interaction effect between Zirconium (Zr) and Copper
(Cu) for the response Tl is represented.
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Fig. 7 Partial dependence plots on the test data for Tg considering the 15 most relevant predictors

In this example, it is important to point out that since the dataset is not a result
of a designed experiment some confounding effects may arise while interpreting the
interactions.

6 Results, interpretations and conclusions

In the first part of this paper, we provided a review of some contributions in the field of
AL: firstly we reviewed a simulation study Arboretti et al. (2022b), in which the aim
was to investigate which experimental design andMLmodel result most suitable for a
joint application in physical experiments. From this simulation study, performed on 7
different test functions, it emerged that the best experimental design is MAXPRO_dis.
The fact that this design is the best in the majority of situations may be explained
by the fact that it is based on a space-filling criterion. This may favor flexible non-
linear predictive models in capturing the behavior of the underlying function and, it
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Fig. 8 Interaction plot of the variables Zr and Cu for the response Tl

just needs a limited number of levels, so it is also feasible for physical experiments.
As regards the ML models, it emerged that the best choice is the Gaussian process,
which resulted as the best choice in the vast majority of the different noise settings
analyzed. This simulation study may represent the base for future research where the
loss functions of the D-opt and I-Opt criteria are adapted to include heteroscedasticity.
In Sect. 3 there is a review of ALPERC, a recently developed AL algorithm suitable
for physical experiments when three or more responses are investigated. In Sect. 4 a
simulation study compares ALPERC with other AL algorithms and also with a non-
AL approach. From this review, it emerged that ALPERC provided a lower prediction
error in comparison to the competitors, and also that AL algorithms performed better
in almost all the analyzed situations, in contrast to a non-AL approach. Section5
introduces the main novelty element of this paper, a case study, about amorphous
metallic alloys, in which ALPERC is used together with an RF, in order to train
and refine predictive models for emulating three different CTTs. In this case study,
ALPERC proved to be more efficient than the non-AL strategy (Fig. 3) and this is a
confirmation of the goodness of the algorithm. Moreover, also thanks to the adoption
of the SHAP technique, the obtained model results could be easily interpreted by the
analyst. To conclude, we can sum up the findings of this novel case study by saying
that not only does ALPERC have a high potential for reducing predictive errors, but
it also provides researchers with a more intuitive interpretation of the results.

Funding Open access funding provided by Politecnico di Torino within the CRUI-CARE Agreement.

Data availability The data used in the case study is taken from the work of Xiong et al. (2020). A R package
including ALPERC functions is available at https://github.com/PegoraroL/ALPERC.
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