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Abstract—This paper presents a model order reduction ap-
proach, specifically designed for the generation of compact
and efficient transient simulation models of system-level power
distribution networks (PDN) of multicore processor systems.
The proposed approach applies a Krylov subspace projection,
with a structure that is adapted to a block-coupled state-space
description of individual PDN subsystems. The latter include
board-package, averaged models of integrated voltage regulators
switching circuitry, and individual models of all cores including
regulator inductors and capacitors. Numerical results from pro-
posed reduced-order models provide major speedup with respect
to SPICE with negligible loss of accuracy.

I. INTRODUCTION

Modern multicore processor systems are equipped with
sophisticated voltage regulation systems [1], aimed at sta-
bilizing and controlling power delivery to individual cores.
This is usually achieved through Fully Integrated Voltage
Regulators (FIVR) [2], usually implemented as multi-phase
switching power supplies with buck topology. Power tran-
sistors, switching control circuits, and the output decoupling
for these FIVRs are fabricated on-die, while the inductors
are placed in the package. Feedback loops through dedicated
controllers determine the duty cycle of FIVR switches based
on the instantaneous output voltage, which is thus adaptively
filtered and stabilized. Although FIVRs provide an intended
decoupling between the board/package and voltage-regulated
core circuitry, a global coupling still exists and must be prop-
erly characterized and modeled for full-system power integrity
verification. Unfortunately, this type of analysis requires a
complete description of all system parts, which for many-core
systems may become impractical due to complexity.

In this work, we attempt a complexity reduction through a
suitable model order reduction approach [3], [4]. Differently
from the black-box approach of [5], based on a compressed
representation of the linearized output PDN impedance, in
this work we propose a structured projection framework. We
first cast the PDN equations in a block-structured system
of coupled state-space equations. These include: models of
all interconnects and linear passive components, obtained by
standard rational fitting of S-parameters from electromagnetic
simulations; averaged models of FIVR switches; per-core
feedback loops sensing output voltage and providing duty
cycle signals through dedicated controllers. The overall cou-
pled system is nonlinear due to the FIVR feedback, however
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Fig. 1. Schematic illustration of the power distribution system under investi-
gation, including Nc cores whose voltage is regulated by Np-phase FIVRs.

such nonlinearity is concentrated at the FIVR switch models,
whereas all other system parts can be seen as large-scale
Linear and Time-Invariant (LTI) blocks. The size of these
blocks is reduced through structured and block-partitioned
Krylov subspace projection, with projection matrices based
on a set of system responses (snapshots) under suitable op-
erating points. The resulting reduced model preserves the
block-interconnected structure (with nonlinear feedback) of
the original system and is easily solved in time-domain by
a basic discretization scheme. Numerical results obtained on a
system based on a recent Intel® CoreTM microprocessor show
a major speedup (up to 200× with respect to reference SPICE
simulations), with a negligible loss of accuracy.

II. PROBLEM STATEMENT AND NOTATION

The structure under analysis is depicted in Fig. 1. The PDN
provides the supply voltage to Nc microprocessor cores. In this
work, all cores are considered identical, so that the subsystem
in the box in Fig. 1 is repeated Nc times. The leftmost
voltage source represents the mainboard voltage supply. This
is connected to the input network block, which represents the
electrical behavior of the board and package as a passive
LTI system that models the effect of parasitics, on-board
decoupling capacitors, and it includes a linear model of the
VRM. The output network box is another passive linear
system describing integrated passive components and the die.
The microprocessor units to which the power is supplied
are represented as No current sources loading each output
network. The load currents for all cores are indicated by io

and the corresponding load voltages are vo.979-8-3503-3282-7/23/$31.00 ©2023 IEEE



Core-level voltage regulation is implemented with FIVRs,
depicted in the middle box in Fig.1. These are switching
converters with time-varying duty cycle and Np phases. The i-
th core has a dedicated controller that senses the output voltage
and steers the duty cycle signal di(t) of the respective switches
so that the load voltage tracks a constant reference value Vref .
In this work, the FIVR switches are represented with ideal
transformers, which is a well-known averaged approximation
of buck converters. In particular, each core is associated with
Np ports on the output side corresponding to an equal number
of ports on the input network side; a per-core bank of Np ideal
transformers connects these two groups of ports.

The overall PDN system can be represented by the following
system of differential-algebraic equations

ẋ = Ax+ Bww + Buu (1a)
z = Czx+ Dzww + Dzuu (1b)
y = Cyx+ Dyww + Dyuu (1c)
w = ∆(d)z (1d)
ẋk = Akxk + Bk (Ny − Vref) , d = Ckxk (1e)

where all quantities are defined as follows. Let v1, i1 be
vectors collecting all voltages and currents at the NcNp ports
of the input network (to the left of the FIVRs in Fig.1) and
v2, i2 be the corresponding quantities on the output network
side. The characteristic equations of the FIVR switches are

v2 = ∆1(d)v1 i1 = −∆1(d)i2

∆1(d) , blkdiag (∆1,1, . . . ,∆1,Nc) , ∆1,i(d) , diINp

Let us further introduce

w ,

(
i1
v2

)
, z ,

(
v1
i2

)
, ∆(d) ,

(
0 −∆1(d)

∆1(d) 0

)
so that we can compactly represent the FIVR switches with the
equationw = ∆(d)z in (1d). Furthermore, the behavior of the
linear and passive subsystems in Fig. 1, i.e. the input network
and all the output networks, can be viewed as a single coupled
dynamical system mapping the inputs VVRM, i

o, i1,v2 to the
outputs v1, i2,vo. Hence, by stacking VVRM and io in the
vector u and letting y , vo, we can use the state-space
representation for this subsystem in (1a)-(1b)-(1c). Finally,
the Nc compensators can be grouped into another linear
subsystem whose input is the vector of error signals for
each core e , Ny − Vref , where N ∈ {0, 1}Nc×NoNc is a
matrix that selects Nc entries out of all load voltages to be
compared with the vector of constant reference voltages Vref .
The compensators output is the vector of duty cycle signals
d ∈ RNc , whose i-th entry is di(t). The state-space equations
of the compensator subsystem are (1e). The main objective
of this work is the definition of a fast transient simulation
algorithm that can solve (1) under realistic current excitation
of all cores.

III. FORMULATION

Let us analyze the structure of (1). Due to (1d), the overall
system is nonlinear, as it involves products of state variables.

Conversely, the first three equations (1a)–(1c) are linear due
to the adopted models of input and output networks. The
complexity in (1) mainly comes from the first state equation,
which has as many components as the dynamic elements
used to model the electrical behavior of board, package and
die. In the application at hand, x is high-dimensional and
the remaining states xk of the duty cycle controllers are
few (≈ 5 − 10Nc). This motivates a structured approach in
which we derive a reduced-order model of (1) by reducing the
dimensionality of x only and leaving the controller equations
and the other algebraic constraints untouched. Specifically, we
derive the following reduced subsystem by projection of the
first three equations in (1)

ẋr = Âxr + B̂ww + B̂uu

z = Ĉzxr + Dzww + Dzuu

y = Ĉyxr + Dyww + Dyuu

w = ∆(d)z

ẋk = Akxk + Bk (Ny − Vref) , d = Ckxk

(2)

where Â = WTAV, B̂w = WTBw, B̂u = WTBu,
Ĉz = CzV, Ĉy = CyV are the reduced state-space matrices
obtained by Petrov-Galerkin projection via the biorthogonal
matrices V and W (i.e., WTV = I). These matrices are
here constructed so that the input-output mapping from u to
y is reproduced accurately, using a specific linearized moment
matching approach to deal with the nonlinearity of (1).

A. Local linearization

The main tool we use to overcome the fact that (1) is a
nonlinear system is local linearization around an operating
point. Given a constant input ū, the corresponding operating
point is

(
x̄, x̄k, w̄, z̄, d̄, ū, ȳ

)
, that is a steady state solution

of (1) obtained by letting u(t) = ū and ẋ = ẋk = 0. Let us
identify the operating point with p(ū) ,

(
x̄k, w̄, z̄, d̄, ū, ȳ

)
,

and let us split each variable as x = x̄+x̃, where x̄ is the bias
and x̃ is the small-signal component. The linearized system
around p(ū) can be easily obtained by replacing (1d) with
its first-order approximation w = ∆(d)z ≈ w̄ + w̃, with
w̄ = ∆(d̄)z̄, w̃ = ∆(d̄)z̃ + ∆(d̃)z̄.

The resulting set of equations can be assembled in the
compact linearized descriptor form (we omit the detailed
expression of the descriptor matrices due to lack of space){

E ξ̇ = Apξ + Bpũ
ỹ = Cpξ +Dpũ

with ξ =

 x̃x̃k

z̃

 .

The transfer function of the linearization of (1) around the
operating point associated to ū can be written as

H (s;p(ū)) = Cp (sE − Ap)
−1 Bp +Dp. (3)

The same linearization procedure can be carried out on the
projected nonlinear system (2) to obtain the reduced linearized
transfer function

Ĥ(s; p̂(ū)) = Ĉp̂
(
sÊ − Âp̂

)−1

B̂p̂ + D̂p̂ (4)



where p̂(ū) is the operating point corresponding to the input
ū in the reduced system (2). Note that, by enforcing that the
operating points match as p(ū) = p̂(ū) for a fixed ū, then

Âp̂ =WTApV, B̂p̂ =WTBp, Ĉp̂ = CpV, D̂p̂ = Dp

where V , blkdiag (V, I, I) and W , blkdiag (W, I, I).

B. Projection matrices

This section discusses how to construct the projection
matrix V. The general idea proposed here is that the linearized
transfer function of the reduced nonlinear system (4) should
(approximately) interpolate the linearization of the original
system (3). We consider separately matching at DC and at
other frequencies.

DC accuracy: Steady-state conditions are of particular
importance in the verification of power delivery networks.
Hence, we would like our reduced model to reproduce the
exact steady-state response of the full system. In particular, for
any constant ū, the equilibrium solution p(ū) of (1) should
be the same as p̂(ū). This is ensured by taking

R(V) ⊃ R(A−1
(
Bw Bz

)
) (5)

where R denotes the column space (range). This condition
implies that, for any steady-state solution of the original
system (x̄, x̄k, w̄, z̄, d̄, ū, ȳ), the reduced system has a steady-
state solution at (x̄r, x̄k, w̄, z̄, d̄, ū, ȳ) with x̄ = Vx̄r. Con-
sequently, p(ū) = p̂(ū).

Transfer function moments: In order to enforce
H(s;p(ū)) ≈ Ĥ(s; p̂(ū)), we consider a finite set of operat-
ing points induced by the inputs ū1, . . . , ūM and a finite set of
points s1, . . . , sK ⊂ C+. For any given ūj with pj = p(ūj),
consider the block matrix Mj defined asMj,1

Mj,2

Mj,3

 ,
(

(s1E − Apj
)−1Bpj

, . . . , (sKE − Apj
)−1Bpj

)
where Mj,1,Mj,2,Mj,3 provide a partitioning conformal with
ξ. Now if V is such that R(V) ⊃ R (Mj,1), then R(V) ⊃
R (Mj), implying

Ĥ(sk; p̂(ūj)) = H(sk;p(ūj)) k = 1, . . . ,K. (6)

In words, if the range space of V contains the image of the first
block-row of Mj , then the linearization of the reduced sys-
tem (2) around the operating point induced by ūj matches the
linearized transfer function of the original system (1) around
the same operating point for the prescribed set of frequencies
{sk}. Finally, multiple operating points are considered at once
by collecting all Mj,1 in a single matrix Ψ1

Ψ1 ,
(
M1,1 · · · Mj,1 · · · MM,1

)
C. Approximate interpolation via SVD

If the matrix V is constructed to satisfy

R (V) ⊃ R (Ψ1) , (7)

then the interpolation condition (6) will hold for all j =
1, ...,M . However, the dimension of R (Ψ1) can quickly grow

large if many operating points and frequencies are considered.
Therefore, we give up the exact interpolation condition and
construct V by taking only the first ρ principal components
of Ψ1 as given by its singular value decomposition

Ψ1 =
(
P1 P2

)
blkdiag{Σ1, Σ2}QT

with the condition (7) relaxed to R (V ) ⊃ R (P1). Com-
bining this with the condition for DC accuracy in (5), we can
finally state our choice of V

V = orth{P1, A−1
(
Bw Bz

)
}.

D. Stability

In order to establish stability results, let us focus on the
first four equations in (1). By viewing it as a linear system
with time-varying parameters d = d(t), we can use a result
analogue to [6, p.63], stating that if the LTI system in (1a)–
(1c) is passive and ∆(d) + ∆(d)T � 0, then the time-
varying system is stable for any trajectory di(t) ∈ [0, 1]. Since
the original subsystem represented by (1a)–(1c) is passive
and the duty cycle signals are positive and smaller than 1
by construction, the same property can be preserved in the
reduced model (2) by preserving passivity in the projection.
As explained in [7], this can be done by first finding a positive
definite matrix X that certifies the passivity of the original
subsystem based on the Positive Real Lemma. This matrix is
then used to construct W as WT = (VTXV)−1VTX.

IV. NUMERICAL RESULTS

The proposed approach was tested on a mobile system based
on a 4-core Intel® CoreTM microprocessor. This is the same
system already used in [5], for which each core has No = 36
output ports where voltage is to be sensed and regulated,
as well as Np = 4 ports connecting to the four phases of
each FIVR. One output voltage for each core is fed to a
feedback controller which determines the duty cycle of the
corresponding FIVR switches. Application of proposed MOR
scheme led to a reduced model with 527 states, with ρ = 350
and 177 additional states to enforce DC accuracy, whereas the
full-order system has 2673 state variables. The global basis
V was constructed based on M = 4 distinct operating points
defined by a sequential activation sequence for the cores.

The resulting system is excited by a sequence of current
pulses, whose cumulative waveforms for each core are de-
picted in the bottom-left panel of Fig. 2. Such currents are
uniformly distributed across the ports of each core, so that
each core port is excited with the respective waveform divided
by 36. The rise time of each pulse is 5 ns. The top panels
of Fig. 2 compare the results obtained by proposed reduced-
order solver to reference SPICE results, for two different port
voltages located on two different cores. Bottom-right panel of
Fig. 2 reports the maximum instantaneous deviation between
our proposed solution and SPICE, computed for each time step
as the largest error among all NcNo = 144 output voltages.
This error is uniformly less than 5 mV, which is well below
the engineering accuracy that is requested for this transient



Fig. 2. Transient simulation results of a 4-core microprocessor system. Top: load voltage at selected ports of two different cores (left: port 1 of core 1; right:
port 18 of core 3); bottom-left: total load currents applied to each core; bottom-right: maximum instantaneous error across all load voltages.

power integrity verification. Within this good accuracy level,
larger instantaneous errors are related to multiple concurrent
core switching events.

In terms of runtime, the SPICE simulation required 6880
seconds whereas the proposed model could be solved under
the same loading conditions and on the same workstation in 33
seconds. Both simulations were performed with a maximum
step size of 50 ps, resulting in about 2 · 105 time steps. The
speedup in runtime is about 200×. These results confirm
the excellent potential of proposed approach for efficient and
comprehensive transient power integrity verification.

V. CONCLUSIONS

This paper presented a structured Krylov subspace pro-
jection framework for the model order reduction of large-
scale descriptions of system-level power distribution networks
from VRM to core loads, including per-core integrated voltage
regulators. The proposed approach preserves the structure
of the initial system through a block-partitioned projection,
constructed by assembling snapshots of the linearized system
states at suitably chosen operating points. The resulting re-
duced model can be simulated (including feedback voltage
stabilization) very efficiently, as demonstrated by the 200×
speedup with respect to SPICE that was achieved on a mobile
system based on an Intel® CoreTM microprocessor. In order
to be ready for routine application, some work is still required
for automating the various modeling steps, including selection

of number and placement of the snapshots. This ongoing work
will be documented in a future report.
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