
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A comprehensive framework for training stable and passive multivariate behavioral models / Bradde, T.; Grivet-Talocia,
S.. - ELETTRONICO. - (2023), pp. 1-4. (Intervento presentato al  convegno 2023 IEEE 27th Workshop on Signal and
Power Integrity (SPI) tenutosi a Aveiro, Portugal nel 07-10 May 2023) [10.1109/SPI57109.2023.10145522].

Original

A comprehensive framework for training stable and passive multivariate behavioral models

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/SPI57109.2023.10145522

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2979365 since: 2023-06-14T09:16:47Z

IEEE
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stable and passive multivariate behavioral models

T. Bradde∗, S. Grivet-Talocia∗
∗ Dept. Electronics and Telecommunications, Politecnico di Torino, Italy
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Abstract—We present a theoretical framework and related
algorithms for the construction of behavioral models of linear or
linearized devices. Unlike competing approaches, the proposed
method is robust and guarantees theoretically the uniform
stability and passivity of the models in a multivariate setting,
where the model behavior depends not only on time or frequency
but also on a number of design/stochastic parameters. Various
examples demonstrate the high accuracy and reliability of
proposed framework.

Index Terms—macromodeling, model order reduction,
data-driven modeling, passivity, stability.

I. INTRODUCTION

Surrogate models are valid and efficient alternatives to
full-accuracy electromagnetic characterizations when dealing
with the optimization of complex electrical and electronic
components. Surrogates can be based on approximation, order
reduction or data-driven identification methods, the latter
including recently developed or improved machine learning
techniques [1]–[3].

In many relevant applications, including system-level
simulations for signal/power integrity verification and
microwave component design, the optimization of individual
components must necessarily be performed based on intensive
transient simulations, in which non-ideal and parasitic
phenomena must be properly taken into account. Surrogate
models enable fast optimizations, provided that they are
able to mimic the dynamic behavior of the underlying
system in correspondence of a number of well-defined
electrical ports, either as stand-alone units, or when they
are inserted in a larger interconnected system. In this view,
surrogate models are usually provided to the user in the
form of reduced-order equivalent circuits, that must necessarily
preserve the properties of causality, stability, or passivity, that
characterize the structure under modeling. If these properties
are not preserved by a reduced order circuit, the latter easily
becomes the root cause of nonphysical or unstable transient
simulation results. In this scenario, when dealing with linear or
linearized devices, rational fitting approaches usually represent
the modeling method of choice, as they are based on model
structures that lend themselves naturally to the characterization
and the enforcement of these fundamental properties.

Based on the recent developments of [4], in this contribution
we present a comprehensive framework for the generation
of guaranteed stable and passive parameterized macromodels.
Differently from previously available methods [5], [6], the

approach proposed in this work returns behavioral models that
are at the same time of minimal order, accurate, and certified
stable (passive) by construction, for all of the admissible
parameter values. For completeness, we report a detailed
introduction of the proposed model identification framework
in Sec. II and III, although part of this material can be
found in [4]. The main contribution of this work is a novel
approach to enforce stability and passivity constraints with
a tuneable trade-off between the computational requirements
of the algorithm and the accuracy of the output model. This
new formulation enables major accuracy improvements with
respect to [4] at the same computational cost.

II. BACKGROUND AND NOTATION

In the following, s is the Laplace variable, A>, A?

denote the transpose and the Hermitian transpose of the
matrix A respectively. The set of symmetric matrices of
size n is denoted with Sn. We define a multi-index as
a d-dimensional collection of indices i = (i1, . . . , id) ∈ Nd.
Given two multi-indices j and k, we write j ≤ k meaning
j1 ≤ k1, . . . , jd ≤ kd. The functions b

¯̀
`(x) : X⊂ Rd → R

are d-variate Bernstein polynomials normalized over the
hyper-rectangle X = [x1, x1] × . . . × [xd, xd]. The degree of
polynomials in each individual variable is ¯̀ = (¯̀

1, . . . , ¯̀
d),

and the multi-index ` identifies each basis element. A
polynomial matrix F (x) : X→ Rn×n, with entries of degree
¯̀ is written in the Bernstein basis as

F (x) =
∑
`∈Ì

F` b
`
`(x), Ì = {` ∈ Nd : ` ≤ `}. (1)

The set of the matrix coefficients defining the expansion, to
which we will refer to as control points, is compactly denoted
as {F `}. When F (x) is symmetric, with the notation F (x) �
0 we mean that F (x) is negative-semi-definite over its domain.
With {F `} � 0 we mean that all its control points are negative
semi-definite. Finally, we define the following block-matrix
notation

Ω(P,Q,R) =

[
P>R+RP RQ

Q>R 0

]
(2)

A. Problem Statement

We consider a complex linear time invariant (LTI) electrical
system S, accessible from a set of P well defined electrical
ports, and depending on d physical or design parameters,
collected in a vector ϑ ∈ Θ = [ϑ1, ϑ1] × . . . × [ϑd, ϑd].
For all of the admissible parameter configurations, S is



known to be stable and/or passive. It is assumed that S
is characterized only in terms of samples of its scattering
matrix S(s,ϑ) ∈ CP×P, provided in correspondence of a finite
number of frequency-parameter configurations

Sk,m = S(jωk,ϑm), 1 ≤ k ≤ k̄, 1 ≤ m ≤ m̄. (3)

Our objective is to build a parameterized low complexity LTI
model H, with scattering matrix H(s,ϑ), that

1) mimics the behavior of S at its electrical ports ∀ϑ ∈ Θ,
by verifying the approximation

H(jωk,ϑm) ≈ Sk,m, ∀k, ∀m (4)

2) inherits the stability (passivity) properties of S for all the
admissible ϑ.

B. Model Structure and Passivity Characterization

In the proposed modeling framework, the scattering
parameters of the model H obey the following structure

H(s,ϑ) =
N(s,ϑ)

D(s,ϑ)
=

∑n
i=0Ri(ϑ)ϕi(s)∑n
i=0 ri(ϑ)ϕi(s)

, (5)

where ϕ0(s) = 1, and ϕi(s) = (s − qi)−1, i > 0 are partial
fractions with fixed and known stable poles. The dependency
on ϑ is induced by the parameterized residues

Ri(ϑ) =
∑
`∈Ì

Ri,` b
`
`(ϑ), ri(ϑ) =

∑
`∈Ì

ri,` b
`
`(ϑ), (6)

where ri,` ∈ R and Ri,` ∈ RP×P are unknown model
coefficients. From these definitions, it follows that N(s,ϑ) ∈
CP×P and D(s,ϑ) ∈ C are both rational functions of s with
parameterized zeros and the same fixed common poles. This
implies that H is a proper scattering matrix of order n, with
parameterized poles and zeros: the former are the zeros of D,
the latter are the zeros of N.

To provide a numerically exploitable passivity
characterization for H, we will make use of the following
state space realizations associated with D and N1

D(s,ϑ)↔ ΣD =

(
A B

C1(ϑ) D1(ϑ)

)
, (7)

N(s,ϑ)↔ ΣN =

(
A B

C2(ϑ) D2(ϑ)

)
, (8)

where A and B constant matrices depending on the basis
functions ϕi(s), A asymptotically stable, and

C1(ϑ) = [r1(ϑ), . . . , rn(ϑ)], D1(ϑ) = r0(ϑ), (9)
C2(ϑ) = [R1(ϑ), . . . , Rn(ϑ)], D2(ϑ) = R0(ϑ). (10)

Also, setting m = 2¯̀ we define for readability

X(ϑ) =

[
C>1 (ϑ)
D>1 (ϑ)

] [
C1(ϑ) D1(ϑ)

]
=
∑

m∈Im

Xm bmm(ϑ),

(11)

1Without loss of generality, the presentation in this paper assumes the scalar
(one-port) case P = 1. Generalizations to the case P > 1 are straightforward
and thoroughly treated in [4]

and an m-degree expression for the output matrices of ΣN

Y (ϑ) =

[
C>2 (ϑ)
D>2 (ϑ)

]
=
∑
`∈Ì

[
R>`
R0,`

]
b``(ϑ) =

∑
m∈Im

Ym bmm(ϑ),

(12)
where, the coefficients Ym are obtained as linear combinations
of
[
R`, R0,`

]>
=
[
R1,`, . . . , Rn,`, R0,`

]>
, by applying the

degree elevation property of the Bernstein polynomials [7].
Now, considering the functions

L(ϑ) : Θ→ Sn, G(ϑ) : Θ→ Sn+1,

G(ϑ) = Ω(A,B,L(ϑ))−
[

0 C1(ϑ)>

C1(ϑ) 2D1(ϑ)

]
, (13)

and

P (ϑ) : Θ→ SnP, F (ϑ) : Θ→ SP(n+2)

F (ϑ) =

[
Ω(A,B, P (ϑ))−X(ϑ) Y (ϑ)

Y >(ϑ) −IP

]
, (14)

we have the following theorem, proved in [4]
Theorem 1: The model H is stable ∀ϑ ∈ Θ if

∃L(ϑ) : G(ϑ) � 0. (15)

When (15) holds, H is passive ∀ϑ ∈ Θ if and only if,
additionally

∃P (ϑ) : F (ϑ) � 0. (16)

Notice that in the above theorem, G(ϑ) depends linearly on
ri,`, while F (ϑ) depends linearly on Ri,`. Matrices L(ϑ) and
P (ϑ) are generalized energy storage functions.

III. MODELING ALGORITHM OUTLINE

The model generation is performed applying the
Parameterized Sanathanan Koerner Iteration (PSK) [8],
augmented with numerically tractable stability and passivity
constraints. Condition (4) is met by iteratively enforcing the
linearized approximation

Nµ(jωk,ϑm)− Dµ(jωk,ϑm)Sk,m
Dµ−1(jωk,ϑm)

≈ 0,∀k, ∀m (17)

in a least squares-sense, being µ = 1, 2, . . . an iteration
index. By setting D0(jω,ϑ) = 1, the function Dµ−1 is
numerically available at each iteration µ, and (17) can
be enforced repeatedly until convergence, that is reached
when Dµ(jω,ϑ) ' Dµ−1(jω,ϑ). Since only the knowledge
of the denominator variables rµ−1

i,` is required to setup
the approximation problem (17), the PSK iteration admits
a fast implementation based on the elimination of the
numerator unknowns Rµi,`, that are computed only once, after
convergence is met [9]. By collecting the variables rµi,` in the
vector xµ and denoting with Γµ a known regression matrix,
the fast iteration is performed by solving until convergence
the problem

min
xµ
‖Γµxµ‖ . (18)

We now augment this optimization problem with the model
stability constraints. To verify condition (15), while solving



for xµ we look for a function L(ϑ) such that G(ϑ) � 0. We
force L(ϑ) to be structured as

L(ϑ) =
∑
`∈Ì

L` b
`
`(ϑ), L` ∈ Sn, (19)

being {L`} unknown matrix coefficients. This choice returns

G(ϑ) =
∑
`∈Ì

G` b
`
`(ϑ) (20)

where {G`} depend linearly on the unknowns L` and xµ.
Due to the non-negativity of the Bernstein polynomials, the
condition G(ϑ) � 0 is implied by {G`} � 0. Therefore, in
place of (18) we solve the semi-definite program

min
xµ,L`

‖Γµxµ‖ , s.t. {G`} � 0, (21)

which guarantees model stability by construction.
Assuming that the denominator convergence is attained at

iteration µ̄, collecting the unknowns Rµ̄i,` in a vector y, the
standard unconstrained model generation would be completed
by solving

min
y

∥∥Φy + Γµ̄xµ̄
∥∥ (22)

where again Φ is a known regression matrix. We constrain (22)
in such a way that the optimal model verifies also
condition (16), so that it is certified passive. We restrict the
admissible P (ϑ) to be structured as

P (ϑ) =
∑

m∈Im

Pm bmm(ϑ), Pm ∈ SnP, (23)

with unknown {Pm}. With this choice we obtain

F (ϑ) =
∑

m∈Im

Fm bmm(ϑ). (24)

As in (20), also in this case the control points {Fm} depend
linearly on the unknowns Pm and y. Therefore in place of (22)
we solve the semi-definite program

min
y,Pm

∥∥Φy + Γµ̄xµ̄
∥∥ , s.t. {Fm} � 0. (25)

Since {Fm} � 0 implies F (ϑ) � 0, H verifies both
conditions (15) and (16), and is stable and passive by
construction.

IV. CONSERVATIVITY REDUCTION

The proposed stability and passivity constraints are
sufficient but not necessary to guarantee that H fulfils
conditions (15) and (16). This may introduce some
conservativity in the estimate of the model coefficients, thus
degrading the achievable model accuracy. One source of
conservativity stems from the fact that we are considering
as admissible functions L(ϑ) and P (ϑ) only those that are
structured as in (19) and (23), thus restricting the space of
the admissible solutions. To relieve this conservativity, we
propose a numerically viable strategy that allows to admit
also piece-wise polynomial storage functions. In the following

derivations, we focus on the enforcement of condition (16), but
similar techniques can be applied to enforce (15).

We start by considering a subdivision of the domain Θ in
j smaller hyper-rectangles Θj = [aj1, b

j
1] × ... × [ajd, b

j
d] such

that
Θ =

⋃
j

Θj , Vol(Θz ∩Θl) = 0 ∀z 6= l. (26)

Over each subdomain we can define the functions

Pj(ϑj) : Θj → SPn, Pj(ϑj) =
∑

m∈Im

Pj,m bmm(ϑj) (27)

where Pj,m are unknowns matrix coefficients. With this
choice, we can consider the restriction

Fj(ϑj) : Θj → SP(n+2), Fj(ϑj) = F (ϑj) ∀ϑj ∈ Θj .
(28)

Applying the Bernstein subdivision property [10] to the blocks
X(ϑ) and Y (ϑ) in (14) , each restriction Fj can still be written
as a Bernstein polynomial expansion of degree m over Θj

Fj(ϑj) =
∑

m∈Im

Fj,m bmm(ϑj) (29)

where the control points {Fj,m} depend linearly on Pj,m and
the numerator unknowns Ri,`. Clearly, Fj(ϑj) � 0 ∀j is
equivalent to F (ϑ) � 0, and we can replace problem (22)
with the less conservative semidefinite program

min
y

∥∥Φy + Γµ̄xµ̄
∥∥ , s.t. {Fj,m} � 0 ∀j. (30)

Although the size of problem (30) is larger then (22),
the conservativity reduction drastically improves the model
accuracy, also for small j, as will be shown in the following
example.

V. MODELING A PCB LINK

We consider a 2-port high-speed stripline running through
two PCBs linked by a connector, as described in [11].
The permittivity of the PCB substrate is εr = 3 and
tanδ = 0.002. The vias are parameterized by the pad radius,
ϑ1 ∈ [100, 300] µm. The scattering matrix samples Sk.m
are obtained from a field solver for 9 different parameter
configurations, in the bandwidth [0.5, 5] Ghz. Exploiting these
data, we build a parameterized macromodel of order n = 28,
parameterizing the residues of the numerator and of the
denominator with Bernstein polynomials of degree 3 and 2
respectively.

We build two different models, one obtained by solving (21)
and (25), the second by solving (30) with j = 4 in place
of (25). The subdomains Θj are obtained by subdividing Θ
in four adjacent intervals of equal length. Using a standard
workstation, the models generation took 18 s and 30 s
respectively for the former and the latter case.

In Figure 1 we report the trend of the real and imaginary
parts of the transmission coefficient S(2, 1) of the PCB,
compared with those of the resulting models, for 3 selected
parameter values, ϑ = 200, 225, 250 µm. As expected, the
model obtained via the domain subdivision strategy is more



Fig. 1: The real (top panel) and the imaginary (bottom panel)
components of the PCB transmission coefficient, compared
with those of two macromodels obtained by applying the
proposed modeling approach. The results show that the
accuracy of the resulting models is effectively improved by
applying the conservativity reduction strategy presented in
Section IV (case j = 4).

accurate than the one obtained by solving (25). In particular,
for the case ϑ = 200 µm, the constraint refinement strategy
improves the average model error on the real part of S(2, 1)
from 6.7 × 10−2 to 5.3 × 10−3. The same metric on the
imaginary part is improved from 6.8 × 10−2 to 4.4 × 10−3.
Similar results are obtained for ϑ = 225, 250 µm.

In order to test the robustness of the proposed approach,
using the same strategy for the domain subdivision, me model
the same structure in the bandwidth [0.2, 10] GHz, using a
order n = 46 for this broader band macromodel. In this
case, the model generation took 210 s. The extremely accurate
results of the fitting are shown in Figure 2, for all of the
parameter configurations for which data are available.

VI. CONCLUSIONS

We presented a comprehensive framework for the
data-driven generation of guaranteed stable and passive
parameterized macromodels. Starting from a collection of
samples of the reference system scattering matrix, we
train the model applying a multivariate rational fitting
scheme, augmented with suitable convex constraints. The
latter are purely algebraic and guarantee the stability and/or
passivity of the models for all the admissible parameters
configurations, thanks to the particular adopted model
structure and parameterization. This formulation allows to

Fig. 2: Comparison between the magnitude of the PCB
reflection coefficient and that of a passive broadband
macromodel of order n = 46.

cast the constrained fitting problem into a sequence of
semi-definite programs, that can be solved deterministically
using off-the-shelf convex optimization solvers. Finally, we
have shown that these constraints allow a user-defined
trade-off between accuracy and efficiency, thanks to a
conservativity reduction strategy based on a partition of the
parameter space.
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