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Abstract—In this paper, we evaluated the radiation-induced 
Single Event Upset of an open-source TPU-like platform 
implemented on SRAM-based FPGA while its high 
performance parallel datapath is exploited to implement 
multiple feature extractions task.  
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I. INTRODUCTION 

As the workload required to run sophisticated Neural 
Networks (NN) increases, requiring multiple feature 
extraction from raw data to perform object detection and 
classification, the need for hardware accelerators capable of 
meeting the computational demand by ensuring high-
performance, low-power, and real-time response is growing. 
Modern detection systems such as Convolution Neural 
Networks (CNNs) perform feature extraction by applying 
multiple filters on the input data exploiting the convolution 
operator and meet the real-time response of AI-based 
systems, filters need to be applied in parallel. Hence, new 
domain-specific hardware accelerators have been proposed. 
Specifically, systolic-array-based accelerators, such as 
Tensor Processing Units (TPUs), gained popularity thanks to 
their specialized design that enables to process data in a 
highly parallel and efficient manner [1] 
As the CNNs approach is spreading in numerous safety-
critical applications such as autonomous driving, medical 
imaging, and surveillance systems, several works addressed 
the reliability of systolic array-based accelerators performing 
fault injection at different abstraction levels [2][3][4] [6][6], 
mostly referring to ASIC implementations of such 
accelerators, focusing on permanent or transient faults. 
On the other hand, the new generation of high-performance 
FPGAs equipped with on-chip DSP offers a new perspective 
of implementation solutions for systolic array-based 
accelerators by reducing costs and gaining flexibility.  
However, when a systolic array is implemented on SRAM-
based FPGAs, reliability becomes the major concern since 
radiation-induced alteration of FPGA configuration memory 
(CRAM) can cause a structural change to the implemented 
design and then propagate up to the application level [7].   
In this work, we evaluate the SEU effects, occurring in the 
CRAM, on the parallel processing capability of systolic 
array-based accelerators when implemented on SRAM-
FPGA, conducting an accurate analysis of the circuit 
typology and correlating it to the functional behavior of the 
computation cores. Combining the high-level features of the 
circuit with the FPGA architecture, and analyzing the 
mapping between logical and physical resources on the 
device, we propose a fault propagation model by targeting 
the critical resources for the design. Then, by exploiting the 
bit-flips fault model in the CRAM,  to emulate radiation-
induced SEU, we evaluate the effectiveness of the proposed 
approach.   

In our experimental campaigns, we considered single fault 
scenarios and multiple filters parallel application to (i) 
analyze the fault propagation on the parallel processing (ii)  
evaluate the correlation between the error rate and the filters’ 
data values. Finally, we profile the most sensitive resources 
by correlating application-level errors with resources 
affected by SEU.  The collected experimental results proved 
the validity of our fault model.  

II. SYSTOLIC ARRAYS 

Systolic arrays are widely used as AI engines to speed up the 
computational load required by neural networks (NN). They 
are equipped with a large number of identical processing 
elements (PEs) operating in parallel. 
Systolic arrays are characterized by a peculiar Datapath 
where PEs are organized as a two-dimensional array and 
interconnected through homogeneous, modular fixed paths 
designed for efficient data flow and easy scalability. Indeed, 
interconnection layout plays a key role in the systolic array 
computation mapping.  
Specifically, PEs belonging to the same column of the 2D 
array contributes to the production of one output value, 
which propagates top-down, from one PE to the following 
one. Complementary, the path of interconnections between 
PEs of the same row is designed to transfer inputs. Fig. 1a 
presents a schematic overview of the systolic array datapath. 
 

 
Fig. 1. Overview of systolic array datapath (a) the circuit topology, 

in (b) the corresponding hardware implementation on FPGA.  

 
This specific interconnection layout, combined with high-
performance PEs mapping Multiply and Accumulate (MAC) 
operation makes the systolic array suitable to speed up matrix 
multiplication. Indeed, AI applications require performing 
multiplications between large arrays for feature extraction, 
object detection, and classification. Even convolution 
operations can be accelerated through systolic arrays. By 
exploiting per-column parallelism and computational 
isolation, it is possible to map 2D convolutional kernels 
separately per PEs’ column, after expanding them into 1D 
vectors and transposing them. Therefore, each column will 
be in charge of convolving the input data samples for the 
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corresponding kernel, performing a row-by-column 
multiplication.  

III. SEU-INDUCED FAULTS PROPAGATION MODEL ON 

SYSTOLIC ARRAY IN FPGA 

Taking advantage of the heterogeneous architecture of the 
latest generation FPGAs, which are equipped with numerous 
on-chip DSPs (configurable as MAC units), the 
implementation of systolic array-based accelerators in 
programmable logic is gaining popularity.  
When systolic arrays are implemented on FPGAs, the 
interconnection path is synthesized and implemented through 
Switch Box. A Switch Box is a tile in the FPGA architecture 
that groups programmable routing muxes, called 
Programmable Interconnection Points (PIPs), used to route 
signals. PIPs connect two wires in the same tile. Switch 
boxes are designed to connect to all fabric resources, such as 
CLB, DSP, and BRAM, each assigned to a different FPGA 
tile. 
Fig.1b reports a portion of the post-implementation design of 
a systolic array on the Xilinx design tool.  It shows the 
mapping of resources used to implement a column of 
cascaded MAC units. Highlighted in yellow is the output 
propagation from one PE to the following one, while the blue 
boxes are DSPs.  
Each PIP’s state is encoded as a sequence of bits in the 
CRAM, properly set to avoid signal conflicts or routing 
congestion. Taking as reference the Xilinx Artix7 FPGAs, 
each Switch Box contains roughly 3,000 PIPs. As such, a 
large portion of the configuration memory is dedicated to 
encoding PIPs. Moreover, DSPs are implemented as 
hardwired computational units and configured only by 
routing proper signals to their interface. As a consequence, 
SEU can affect DSP  behavior only if a routing resource is 
hit. Logic resources (LUTs) become marginal in this design 
topology and are mainly used to implement very basic 
control logic functionalities. 
Additionally, the programmability and flexibility of FPGAs 
come at the price of resource sharing since a single  Switch 
Box is typically used to route multiple signals belonging to 
different modules.  
These observations suggest that abnormal functioning of the 
design can be primarily attributed to SEUs occurring in the 

memory bits employed for interconnection configuration. 
This is particularly noteworthy in systolic arrays, where the 
layout of interconnection paths plays a critical role in shaping 
the processing core’s behavior. A single fault in the Switch 
Box can be catastrophic for the entire application. 
From the electrical point of view, the effects of SEUs in PIP 
configuration bits result in open faults and bridge faults. 
Open faults are interruptions in the routing path of a signal, 
typically associated with the radiation-induced flip of the 
value of the PIPs configuration memory cells from 1 to 0. 
Similarly, a bridge fault is due to the creation of a short 
between two or more signals, routed in the same Switch Box 
due to a bitflip from 0 to 1.  
By combining the aforementioned fault models with circuit 
topology and physical resource mapping we are able to draw 
the fault propagation path and estimate which fault locations 
are the most critical from the application point of view. Fig 2 
shows the two cases of open faults happening to different 
data signals. To elaborate more, in Fig. 2a an open fault (red 
dashed line) happening to the output propagation of one 
MAC unit is illustrated while in Fig. 2b, the open fault 
occurring on the input of a MAC is shown.  
Although faults share the same nature, the severity of the 
error induced is quite different. Following the red path in Fig 
2, it can be drawn that an open fault occurring on the signal 
driving the output propagation in a column of resources is 
less critical when compared to one open fault in one input 
data.  
Considering the first case, each DSP has the task of 

producing an output value po as the sum of its current 

computation with the computation produced by the previous 

DSP in the same column pi. Both po and pi are partial 
products, received as input and produced as output, 
respectively.  

Specifically, the partial product production of each DSPi,j can 
be formalized by the following equation: 

𝑝𝑜𝑖,𝑗
= pii,j

+ (di  ∗  wi,j) =  poi−1,j
+ (di  ∗  wi,j) (1) 

where po is the output partial product generated pi is the input 
partial product, di is the input sample and wi,j is the weight 
data. 
 A fault that happens in the output propagation routing path 

can occur either on the signal that drives the pi input or on 

 
Fig. 2. SEU-induced error propagation in systolic arrays datapath. In (a) the propagation of an SEU-induced open fault on the 

routing path of the output propagation signal, while in (b) the case of  an open fault affecting the routing path of the input sample. 
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the signal that carries the newly produced output po to the 

next DSP. 

If we consider a fault in pi as shown in Fig. 2b and 
propagate it to the next computations, represented in 
Equation 2, 

poi,j
=  pii,j

+ (di  ∗  wi,j)                                                                             (2) 

poi+1,j
=  poi,j

+ (di+1  ∗  wi+1,j) =  pii,j
+ (di  ∗  wi,j) + (di+1  ∗  wi+1,j) 

poi+2,j
=  poi+1,j

+ (di+2  ∗  wi+2,j) = 

= pii,j
+ (di  ∗  wi,j) + (di+1  ∗  wi+1,j) +  (di+2  ∗  wi+2,j)   

 

we can observe that starting from DSPi,j receiving the faulty 

pii,j
  partial product, the  error propagates throughout the 

column computations, involving all the units that follow the 
corrupted one. 
This behavior implies that (i) fault remains localized in only 
one column of computations, while the computations 
performed in parallel by the other columns are preserved, (ii) 
all processing performed by the affected column will produce 
potentially erroneous output at each iteration.  
Because of the input data sharing mechanism between DSPs 
of different columns, used to facilitate parallel processing 
and reduce memory accesses, the second fault model has a 
greater propagation impact. Taking Equation (1) as a 
reference and applying it to the output produced by resources 
belonging to different columns, Equation 3, 

poi,j
=  pii,j

+  (di  ∗  wi,j)                                                                  (3) 

poi,j+1
=  pii,j+1

+ (di  ∗  wi,j+1)                                          

we can observe that DSP units having the same row index 
process the same input data di. Hence, if we consider a fault 
on di and let it propagate, 

poi,j
=  pii,j

+ (di  ∗  wi,j)                                                                     (4) 

poi,j+1
=  pii,j+1

+  (di  ∗  wi,j+1) 

poi+1,j
=  pOi,j

+ (di+1  ∗  wi+1,j) = pii,j
+ (di  ∗  wi,j) + (di+1  ∗  wi+1,j) 

poi+1,j+1
= poi,j+1

+ (di+1  ∗  wi+1,j+1) = 

              = pii,j+1
+ (di  ∗  wi,j+1) + (di+1  ∗  wi+1,j+1) 

as represented in Equation 4, we can observe that starting 
from the resources at row index i receiving corrupted input, 
the error propagates both horizontally and vertically, 
involving all columns. This behavior implies that all the 
computations executed by the whole systolic array may be 
characterized by a potentially erroneous output. 
It is good to emphasize the potentially erroneous terms since, 
in addition to the propagation mechanism, other factors come 
into play that may mask the faults. These include the 
rounding mechanisms adopted during output propagation, 
the value of the data involved in the calculations, and, 
considering that a PIP route a single-bit data signal, the bit 
position in the data (i.e., MSBs, LSBs, etc.). 
As an explanatory example, let’s consider the potentially 
most critical scenario of a fault affecting an input data di.  
Although the fault reaches multiple resources at the same 
time, the corrupted data is multiplied by different values wi,j 

in each involved DSP. Hence, wi,j value may mask (or 
accentuate) the fault-induced error, which means that despite 
all columns having a DSP receiving corrupted data, fault 
effects and its propagation depends also on the data values of 
the other operands involved in the computations. Therefore, 
despite all the columns being faulty, they may not show the 
same faulty behavior. Also in the case of a fault in the output 
propagation mechanism, the fault may be masked.  
When systolic arrays are employed to accelerate NN 
applications also weight input 𝑤𝑖,𝑗 in DSP plays a key role. 

However, there’s no propagation mechanism that directly 
involves weight data induced by the systolic array 

interconnection path topology. Moreover, SEU-induced 
weight data corruption, either due to a bitflip in memory 
elements or to interconnection fault, directly involves just 
one DSP computation at a time. Hence the impact of the fault 
strongly depends on the executed application.  
The fault propagation model obtained by combining the 
circuit topology and its functional behavior with the FPGA 
architecture and resource mapping enable us to predict which 
resources are most critical in the design. Specifically, the 
interconnections related to input data turn out to be the most 
critical in relation to workloads in which all the array 
resources are used in parallel to process the same data. Thus, 
from a purely theoretical point of view, we expect that even 
a single SEU can have critical consequences on the parallel 
processing capabilities of the architecture. 

IV. EXPERIMENTAL ANALYSIS 

To evaluate the propagation of the SEU from the hardware 
level to the application we implemented the open-source 
systolic array based TinyTPU [8] architecture on the Xilinx 
Zynq XC7Z020 SoC which incorporates an SRAM FPGA. 
The systolic array inside the TPU main core is equipped with 
14 x 14 PEs, exploiting all the available on-chip DSPs.  Table 
I reports the post-implementation details of the circuit. Please 
note that additional DSP are used outside the systolic array 
main core to implement additional accumulator’s module 
required by the TPU architecture. 

 
Table 1: Resource Utilization of the Hardware Accelerator 

Resource Used [#] Available [#] Utilization [%] 

LUT-Logic 3723 53200 7.0 

LUT-Memory 235 17400 1.35 

FF 6108 106400 5.74 

DSP 218 220 99.09 

 
In order to evaluate the consequences of SEU on the 

parallel processing capabilities of the systolic array, we chose 
a multiple-feature extraction task as a benchmark. The task 
consists of applying convolutional filters in parallel on the 
same input image. 

 

 
Fig. 3. The evaluated filters and their effects on the original image. 

To efficiently handle feature extraction on the systolic array, 
the convolution operation is converted to a General Matrix 
Multiply operation. Each filter is expanded into a 1D vector, 
transposed, and assigned to a column in a matrix matching 
the size of the systolic array. The input image required the 
Img2col matrix transformation [9]. The creation of the two 
matrices, one for the image data and one for the  filters allows 
for efficient computation, since each 2D image window, 
encoded as a matrix row, convolves with multiple filters in 
parallel.  
To evaluate the real-case scenario, we targeted convolutional 
filters used to enhance edges and texture, adopted in object 
detection applications. As a test image, we select a stop 
signal. The filters’ effects are shown in Fig.3. Please note that 
in accordance with commercial TPU devices, the target 
architecture operates on 8-bit integers. 
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 We emulated the CRAM content alteration by adopting the 

bitflip fault model in the bitstream file. Starting from the 
golden bitstream, we utilized the PyXEL [10] framework to 
generate 3,000 corrupted bitstreams with a single bit-flip 
alteration, hence emulating a single SEU affecting a memory 
cell. For each tested bitstream, the filters’ matrix, the stop 
signal, and the instructions defining the task are sent and 
written to the TPU memory buffers. Thus, the data is not 
subject to SEU and the detected errors only refer to SEU-
induced hardware faults in the architecture. The outcome of 
each run is labeled as an error if it causes a visible distortion 
on the output image, which is translated into having at least 
30% of pixels' computational mismatch with respect to the 
golden output.  

Injection results reported that a single bitflip in the CRAM 
causes an average error rate of 4%. This result is in 
agreement with the fact that the cores in charge of performing 
the computations are mapped to DSPs, which we recall, are 
hardwired and therefore exempt from direct configuration 
via bitstream. This means that the arithmetic units 
(multipliers and adders) used in the design cannot be affected 
by a fault and thus cannot cause errors in the application. It 
follows that the sources of errors are to be found in the 
control logic implemented with LUTs and in the 
Interconnects.  
Since our purpose is not to perform reliability testing but to 
validate the theory that considers interconnections as the 
most critical design resources, we adopted a random fault 
injection methodology. It follows that the low error rate is 
not indicative of design robustness, but simply that the 
affected resources are not used to implement the design. 
Exploiting PyXEL's bitstream decoding capabilities, we can 
trace the type of resource affected by the fault injection. By 
combining this feature with the parsing of experimental 
results in which anomalous output occurred, we can realize a 
distribution of application errors on faulty resources. 

Fig. 4a shows three important aspects. First, each filter 

processing has a similar error trend. This behavior is due to 

faults related to the input data, which as explained before, 

propagates through all the processing columns. On the other 

hand, the slight error variations may be due to the data values 

in the filters which combined with the approximation 

mechanism of the architecture, may mask fault effects. 

Secondly, the distribution of errors related to each filter 

computation over the faulty resources confirms the expected 

behavior. LUTs are the lowest source of error. In fact, few 

functionalities are mapped to LUTs and only 7% of the 

available LUTs are used for design under evaluation. The 

error rate associated with DSPs and BRAMs again relates to 

the interconnects and/or ports of the physical modules. In 

fact, as application data are written to memory buffers after 

fault injection is performed, hence any SEU-induced bitflip 

is overwritten. The most relevant finding is definitely the one 

associated with interconnects, which are found to cause 70% 

of the errors for all parallel processing, confirming the 

predicted criticality. In addition, the common trend among 

the filters confirms the single fault propagation pattern 

among different computational resources. Finally, from Fig. 

4c, we can appreciate how severe can be the output distortion 

induced by an SEU in CRAM provoking an interconnection 

fault. 

V. CONCLUSION 

In this paper, we analyzed the SEU-induced error 

propagation in systolic arrays implemented on Xilinx Zynq 

XC7Z020 SRAM-based FPGA. We combined information 

on circuit topology and functional behavior with FPGA 

architecture, physical resource and FPGA’s fault models. 

This information is used to draw the error paths and predict 

the most sensitive modules in the design. The developed fault 

propagation model and targeted sensitive elements have been 

validated through fault injection campaign conducted by 

adopting bit-flip fault model in CRAM to emulate SEU. The 

experimental analysis confirmed the validity of the adopted 

fault model and the predicted criticality showing that SEU 

affecting  interconnection resources result for the 70% as 

source of erroneous behavior. 
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