
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Analyzing the SEU-induced Error Propagation in Systolic Array on SRAM-based FPGA / Vacca, Eleonora; Azimi, Sarah;
Sterpone, Luca. - ELETTRONICO. - (2023). (Intervento presentato al convegno IEEE Radiation and its Effects on
Components and Systems 2023 tenutosi a Toulouse (France) nel 25-29 September 2023).

Original

Analyzing the SEU-induced Error Propagation in Systolic Array on SRAM-based FPGA

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2979320 since: 2023-06-12T09:39:58Z

IEEE

Analyzing the SEU-induced Error Propagation in

Systolic Array on SRAM-based FPGA

Eleonora Vacca, Sarah Azimi, Luca Sterpone

Politecnico di Torino, Dipartimento di Automatica e Informatica

Turin, Italy

{eleonora.vacca, sarah.azimi, luca.sterpone}@polito.it

Abstract—In this paper, we evaluated the radiation-induced
Single Event Upset of an open-source TPU-like platform
implemented on SRAM-based FPGA while its high
performance parallel datapath is exploited to implement
multiple feature extractions task.

Keywords—Systolic Arrays, Tensor Processing Unit, Hardware
Accelerator, FPGA, Single Event Upset, Parallel Processing.

I. INTRODUCTION

As the workload required to run sophisticated Neural
Networks (NN) increases, requiring multiple feature
extraction from raw data to perform object detection and
classification, the need for hardware accelerators capable of
meeting the computational demand by ensuring high-
performance, low-power, and real-time response is growing.
Modern detection systems such as Convolution Neural
Networks (CNNs) perform feature extraction by applying
multiple filters on the input data exploiting the convolution
operator and meet the real-time response of AI-based
systems, filters need to be applied in parallel. Hence, new
domain-specific hardware accelerators have been proposed.
Specifically, systolic-array-based accelerators, such as
Tensor Processing Units (TPUs), gained popularity thanks to
their specialized design that enables to process data in a
highly parallel and efficient manner [1]
As the CNNs approach is spreading in numerous safety-
critical applications such as autonomous driving, medical
imaging, and surveillance systems, several works addressed
the reliability of systolic array-based accelerators performing
fault injection at different abstraction levels [2][3][4] [6][6],
mostly referring to ASIC implementations of such
accelerators, focusing on permanent or transient faults.
On the other hand, the new generation of high-performance
FPGAs equipped with on-chip DSP offers a new perspective
of implementation solutions for systolic array-based
accelerators by reducing costs and gaining flexibility.
However, when a systolic array is implemented on SRAM-
based FPGAs, reliability becomes the major concern since
radiation-induced alteration of FPGA configuration memory
(CRAM) can cause a structural change to the implemented
design and then propagate up to the application level [7].
In this work, we evaluate the SEU effects, occurring in the
CRAM, on the parallel processing capability of systolic
array-based accelerators when implemented on SRAM-
FPGA, conducting an accurate analysis of the circuit
typology and correlating it to the functional behavior of the
computation cores. Combining the high-level features of the
circuit with the FPGA architecture, and analyzing the
mapping between logical and physical resources on the
device, we propose a fault propagation model by targeting
the critical resources for the design. Then, by exploiting the
bit-flips fault model in the CRAM, to emulate radiation-
induced SEU, we evaluate the effectiveness of the proposed
approach.

In our experimental campaigns, we considered single fault
scenarios and multiple filters parallel application to (i)
analyze the fault propagation on the parallel processing (ii)
evaluate the correlation between the error rate and the filters’
data values. Finally, we profile the most sensitive resources
by correlating application-level errors with resources
affected by SEU. The collected experimental results proved
the validity of our fault model.

II. SYSTOLIC ARRAYS

Systolic arrays are widely used as AI engines to speed up the
computational load required by neural networks (NN). They
are equipped with a large number of identical processing
elements (PEs) operating in parallel.
Systolic arrays are characterized by a peculiar Datapath
where PEs are organized as a two-dimensional array and
interconnected through homogeneous, modular fixed paths
designed for efficient data flow and easy scalability. Indeed,
interconnection layout plays a key role in the systolic array
computation mapping.
Specifically, PEs belonging to the same column of the 2D
array contributes to the production of one output value,
which propagates top-down, from one PE to the following
one. Complementary, the path of interconnections between
PEs of the same row is designed to transfer inputs. Fig. 1a
presents a schematic overview of the systolic array datapath.

Fig. 1. Overview of systolic array datapath (a) the circuit topology,

in (b) the corresponding hardware implementation on FPGA.

This specific interconnection layout, combined with high-
performance PEs mapping Multiply and Accumulate (MAC)
operation makes the systolic array suitable to speed up matrix
multiplication. Indeed, AI applications require performing
multiplications between large arrays for feature extraction,
object detection, and classification. Even convolution
operations can be accelerated through systolic arrays. By
exploiting per-column parallelism and computational
isolation, it is possible to map 2D convolutional kernels
separately per PEs’ column, after expanding them into 1D
vectors and transposing them. Therefore, each column will
be in charge of convolving the input data samples for the

MAC0,1

MAC1,1

MACn,1

…

di

partial producti-1

(a) (b)

DSP implementing MAC

Switch Box implementing
inter-MACs output propagation

MAC0,m

MAC1,m

MACn,m

…

MAC0,0

MAC1,0

MACn,0

…

wi

corresponding kernel, performing a row-by-column
multiplication.

III. SEU-INDUCED FAULTS PROPAGATION MODEL ON

SYSTOLIC ARRAY IN FPGA

Taking advantage of the heterogeneous architecture of the
latest generation FPGAs, which are equipped with numerous
on-chip DSPs (configurable as MAC units), the
implementation of systolic array-based accelerators in
programmable logic is gaining popularity.
When systolic arrays are implemented on FPGAs, the
interconnection path is synthesized and implemented through
Switch Box. A Switch Box is a tile in the FPGA architecture
that groups programmable routing muxes, called
Programmable Interconnection Points (PIPs), used to route
signals. PIPs connect two wires in the same tile. Switch
boxes are designed to connect to all fabric resources, such as
CLB, DSP, and BRAM, each assigned to a different FPGA
tile.
Fig.1b reports a portion of the post-implementation design of
a systolic array on the Xilinx design tool. It shows the
mapping of resources used to implement a column of
cascaded MAC units. Highlighted in yellow is the output
propagation from one PE to the following one, while the blue
boxes are DSPs.
Each PIP’s state is encoded as a sequence of bits in the
CRAM, properly set to avoid signal conflicts or routing
congestion. Taking as reference the Xilinx Artix7 FPGAs,
each Switch Box contains roughly 3,000 PIPs. As such, a
large portion of the configuration memory is dedicated to
encoding PIPs. Moreover, DSPs are implemented as
hardwired computational units and configured only by
routing proper signals to their interface. As a consequence,
SEU can affect DSP behavior only if a routing resource is
hit. Logic resources (LUTs) become marginal in this design
topology and are mainly used to implement very basic
control logic functionalities.
Additionally, the programmability and flexibility of FPGAs
come at the price of resource sharing since a single Switch
Box is typically used to route multiple signals belonging to
different modules.
These observations suggest that abnormal functioning of the
design can be primarily attributed to SEUs occurring in the

memory bits employed for interconnection configuration.
This is particularly noteworthy in systolic arrays, where the
layout of interconnection paths plays a critical role in shaping
the processing core’s behavior. A single fault in the Switch
Box can be catastrophic for the entire application.
From the electrical point of view, the effects of SEUs in PIP
configuration bits result in open faults and bridge faults.
Open faults are interruptions in the routing path of a signal,
typically associated with the radiation-induced flip of the
value of the PIPs configuration memory cells from 1 to 0.
Similarly, a bridge fault is due to the creation of a short
between two or more signals, routed in the same Switch Box
due to a bitflip from 0 to 1.
By combining the aforementioned fault models with circuit
topology and physical resource mapping we are able to draw
the fault propagation path and estimate which fault locations
are the most critical from the application point of view. Fig 2
shows the two cases of open faults happening to different
data signals. To elaborate more, in Fig. 2a an open fault (red
dashed line) happening to the output propagation of one
MAC unit is illustrated while in Fig. 2b, the open fault
occurring on the input of a MAC is shown.
Although faults share the same nature, the severity of the
error induced is quite different. Following the red path in Fig
2, it can be drawn that an open fault occurring on the signal
driving the output propagation in a column of resources is
less critical when compared to one open fault in one input
data.
Considering the first case, each DSP has the task of

producing an output value po as the sum of its current

computation with the computation produced by the previous

DSP in the same column pi. Both po and pi are partial
products, received as input and produced as output,
respectively.

Specifically, the partial product production of each DSPi,j can
be formalized by the following equation:

𝑝𝑜𝑖,𝑗
= pii,j

+ (di ∗ wi,j) = poi−1,j
+ (di ∗ wi,j) (1)

where po is the output partial product generated pi is the input
partial product, di is the input sample and wi,j is the weight
data.
 A fault that happens in the output propagation routing path

can occur either on the signal that drives the pi input or on

Fig. 2. SEU-induced error propagation in systolic arrays datapath. In (a) the propagation of an SEU-induced open fault on the

routing path of the output propagation signal, while in (b) the case of an open fault affecting the routing path of the input sample.

(a) Open fault in partial product propagation (b) Open fault in the input sample propagation(a)
open fault in partial product

propagation

(b)
open fault in input sample

propagation

SEU-
induced
error

fault-free
data

p_o = p_i + d_i * w_i

Switch
Box

d_i
w_i

p_o

p_i DSP

d_i
w_i

p_o

p_i DSP
faulty

MAC0,0

MAC1,0

d_i
w_i

p_o

p_i DSP

faulty output

MAC2,0

Column 0

Switch
Box

d_i
w_i

p_o

p_i DSP

d_i
w_i

p_o

p_i DSP

MAC0,1

MAC1,1

d_i
w_i

p_o

p_i DSP

fault-free output

MAC2,1

Column 1

Switch
Box

d_i
w_i

p_o

p_i DSP

d_i
w_i

p_o

p_i DSP

faulty

MAC0,0

MAC1,0

d_i
w_i

p_o

p_i DSP

faulty output

MAC2,0

Column 0

Switch
Box

d_i
w_i

p_o

p_i DSP

d_i
w_i

p_o

p_i DSP

MAC0,1

MAC1,1

d_i
w_i

p_o

p_i DSP

faulty output

MAC2,1

Column 1

faulty

Fault-Free Data SEU-induced Error

the signal that carries the newly produced output po to the

next DSP.

If we consider a fault in pi as shown in Fig. 2b and
propagate it to the next computations, represented in
Equation 2,

poi,j
= pii,j

+ (di ∗ wi,j) (2)

poi+1,j
= poi,j

+ (di+1 ∗ wi+1,j) = pii,j
+ (di ∗ wi,j) + (di+1 ∗ wi+1,j)

poi+2,j
= poi+1,j

+ (di+2 ∗ wi+2,j) =

= pii,j
+ (di ∗ wi,j) + (di+1 ∗ wi+1,j) + (di+2 ∗ wi+2,j)

we can observe that starting from DSPi,j receiving the faulty

pii,j
 partial product, the error propagates throughout the

column computations, involving all the units that follow the
corrupted one.
This behavior implies that (i) fault remains localized in only
one column of computations, while the computations
performed in parallel by the other columns are preserved, (ii)
all processing performed by the affected column will produce
potentially erroneous output at each iteration.
Because of the input data sharing mechanism between DSPs
of different columns, used to facilitate parallel processing
and reduce memory accesses, the second fault model has a
greater propagation impact. Taking Equation (1) as a
reference and applying it to the output produced by resources
belonging to different columns, Equation 3,

poi,j
= pii,j

+ (di ∗ wi,j) (3)

poi,j+1
= pii,j+1

+ (di ∗ wi,j+1)

we can observe that DSP units having the same row index
process the same input data di. Hence, if we consider a fault
on di and let it propagate,

poi,j
= pii,j

+ (di ∗ wi,j) (4)

poi,j+1
= pii,j+1

+ (di ∗ wi,j+1)

poi+1,j
= pOi,j

+ (di+1 ∗ wi+1,j) = pii,j
+ (di ∗ wi,j) + (di+1 ∗ wi+1,j)

poi+1,j+1
= poi,j+1

+ (di+1 ∗ wi+1,j+1) =

 = pii,j+1
+ (di ∗ wi,j+1) + (di+1 ∗ wi+1,j+1)

as represented in Equation 4, we can observe that starting
from the resources at row index i receiving corrupted input,
the error propagates both horizontally and vertically,
involving all columns. This behavior implies that all the
computations executed by the whole systolic array may be
characterized by a potentially erroneous output.
It is good to emphasize the potentially erroneous terms since,
in addition to the propagation mechanism, other factors come
into play that may mask the faults. These include the
rounding mechanisms adopted during output propagation,
the value of the data involved in the calculations, and,
considering that a PIP route a single-bit data signal, the bit
position in the data (i.e., MSBs, LSBs, etc.).
As an explanatory example, let’s consider the potentially
most critical scenario of a fault affecting an input data di.
Although the fault reaches multiple resources at the same
time, the corrupted data is multiplied by different values wi,j

in each involved DSP. Hence, wi,j value may mask (or
accentuate) the fault-induced error, which means that despite
all columns having a DSP receiving corrupted data, fault
effects and its propagation depends also on the data values of
the other operands involved in the computations. Therefore,
despite all the columns being faulty, they may not show the
same faulty behavior. Also in the case of a fault in the output
propagation mechanism, the fault may be masked.
When systolic arrays are employed to accelerate NN
applications also weight input 𝑤𝑖,𝑗 in DSP plays a key role.

However, there’s no propagation mechanism that directly
involves weight data induced by the systolic array

interconnection path topology. Moreover, SEU-induced
weight data corruption, either due to a bitflip in memory
elements or to interconnection fault, directly involves just
one DSP computation at a time. Hence the impact of the fault
strongly depends on the executed application.
The fault propagation model obtained by combining the
circuit topology and its functional behavior with the FPGA
architecture and resource mapping enable us to predict which
resources are most critical in the design. Specifically, the
interconnections related to input data turn out to be the most
critical in relation to workloads in which all the array
resources are used in parallel to process the same data. Thus,
from a purely theoretical point of view, we expect that even
a single SEU can have critical consequences on the parallel
processing capabilities of the architecture.

IV. EXPERIMENTAL ANALYSIS

To evaluate the propagation of the SEU from the hardware
level to the application we implemented the open-source
systolic array based TinyTPU [8] architecture on the Xilinx
Zynq XC7Z020 SoC which incorporates an SRAM FPGA.
The systolic array inside the TPU main core is equipped with
14 x 14 PEs, exploiting all the available on-chip DSPs. Table
I reports the post-implementation details of the circuit. Please
note that additional DSP are used outside the systolic array
main core to implement additional accumulator’s module
required by the TPU architecture.

Table 1: Resource Utilization of the Hardware Accelerator

Resource Used [#] Available [#] Utilization [%]

LUT-Logic 3723 53200 7.0

LUT-Memory 235 17400 1.35

FF 6108 106400 5.74

DSP 218 220 99.09

In order to evaluate the consequences of SEU on the

parallel processing capabilities of the systolic array, we chose
a multiple-feature extraction task as a benchmark. The task
consists of applying convolutional filters in parallel on the
same input image.

Fig. 3. The evaluated filters and their effects on the original image.

To efficiently handle feature extraction on the systolic array,
the convolution operation is converted to a General Matrix
Multiply operation. Each filter is expanded into a 1D vector,
transposed, and assigned to a column in a matrix matching
the size of the systolic array. The input image required the
Img2col matrix transformation [9]. The creation of the two
matrices, one for the image data and one for the filters allows
for efficient computation, since each 2D image window,
encoded as a matrix row, convolves with multiple filters in
parallel.
To evaluate the real-case scenario, we targeted convolutional
filters used to enhance edges and texture, adopted in object
detection applications. As a test image, we select a stop
signal. The filters’ effects are shown in Fig.3. Please note that
in accordance with commercial TPU devices, the target
architecture operates on 8-bit integers.

F1 F2

255
0
0

0
0
0

0
0
255

0
0
0 0

0
0

255

255
255

F3

255
0
0

0

0
0
255

255
255 255

0
0

0
0

0

0
0

255

Original

F4

 We emulated the CRAM content alteration by adopting the

bitflip fault model in the bitstream file. Starting from the
golden bitstream, we utilized the PyXEL [10] framework to
generate 3,000 corrupted bitstreams with a single bit-flip
alteration, hence emulating a single SEU affecting a memory
cell. For each tested bitstream, the filters’ matrix, the stop
signal, and the instructions defining the task are sent and
written to the TPU memory buffers. Thus, the data is not
subject to SEU and the detected errors only refer to SEU-
induced hardware faults in the architecture. The outcome of
each run is labeled as an error if it causes a visible distortion
on the output image, which is translated into having at least
30% of pixels' computational mismatch with respect to the
golden output.

Injection results reported that a single bitflip in the CRAM
causes an average error rate of 4%. This result is in
agreement with the fact that the cores in charge of performing
the computations are mapped to DSPs, which we recall, are
hardwired and therefore exempt from direct configuration
via bitstream. This means that the arithmetic units
(multipliers and adders) used in the design cannot be affected
by a fault and thus cannot cause errors in the application. It
follows that the sources of errors are to be found in the
control logic implemented with LUTs and in the
Interconnects.
Since our purpose is not to perform reliability testing but to
validate the theory that considers interconnections as the
most critical design resources, we adopted a random fault
injection methodology. It follows that the low error rate is
not indicative of design robustness, but simply that the
affected resources are not used to implement the design.
Exploiting PyXEL's bitstream decoding capabilities, we can
trace the type of resource affected by the fault injection. By
combining this feature with the parsing of experimental
results in which anomalous output occurred, we can realize a
distribution of application errors on faulty resources.

Fig. 4a shows three important aspects. First, each filter

processing has a similar error trend. This behavior is due to

faults related to the input data, which as explained before,

propagates through all the processing columns. On the other

hand, the slight error variations may be due to the data values

in the filters which combined with the approximation

mechanism of the architecture, may mask fault effects.

Secondly, the distribution of errors related to each filter

computation over the faulty resources confirms the expected

behavior. LUTs are the lowest source of error. In fact, few

functionalities are mapped to LUTs and only 7% of the

available LUTs are used for design under evaluation. The

error rate associated with DSPs and BRAMs again relates to

the interconnects and/or ports of the physical modules. In

fact, as application data are written to memory buffers after

fault injection is performed, hence any SEU-induced bitflip

is overwritten. The most relevant finding is definitely the one

associated with interconnects, which are found to cause 70%

of the errors for all parallel processing, confirming the

predicted criticality. In addition, the common trend among

the filters confirms the single fault propagation pattern

among different computational resources. Finally, from Fig.

4c, we can appreciate how severe can be the output distortion

induced by an SEU in CRAM provoking an interconnection

fault.

V. CONCLUSION

In this paper, we analyzed the SEU-induced error

propagation in systolic arrays implemented on Xilinx Zynq

XC7Z020 SRAM-based FPGA. We combined information

on circuit topology and functional behavior with FPGA

architecture, physical resource and FPGA’s fault models.

This information is used to draw the error paths and predict

the most sensitive modules in the design. The developed fault

propagation model and targeted sensitive elements have been

validated through fault injection campaign conducted by

adopting bit-flip fault model in CRAM to emulate SEU. The

experimental analysis confirmed the validity of the adopted

fault model and the predicted criticality showing that SEU

affecting interconnection resources result for the 70% as

source of erroneous behavior.

REFERENCES
[1] N. P. Jouppi et al., "In-data center performance analysis of a tensor processing

unit," ACM/IEEE International Symposium on Computer Architecture (ISCA),
2017, pp. 1-12.

[2] J. J. Zhang et al., "Analyzing and mitigating the impact of permanent faults on a
systolic array based neural network accelerator," 2018 IEEE 36th VLSI Test
Symposium (VTS), San Francisco, CA, USA, 2018, pp. 1-6.

[3] R. L. Rech Junior et al., "High Energy and Thermal Neutron Sensitivity of
Google Tensor Processing Units," in IEEE Transactions on Nuclear Science, vol.
69, no. 3, pp. 567-575, March 2022.

[4] D. P. Ramaswami et al "Single Event Upset Characterization of the
Intel Movidius Myriad X VPU and Google Edge TPU Accelerators
Using Proton Irradiation," 2022 IEEE Radiation Effects Data
Workshop (REDW) (in conjunction with 2022 NSREC), Provo, UT,
USA, 2022, pp. 1-3,

[5] Kundu et al., "Toward Functional Safety of Systolic Array-Based Deep Learning

Hardware Accelerators," in IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 29, no. 3, pp. 485-498, March 2021

[6] R. L. R. Junior et al., "Reliability of Google’s Tensor Processing Units for

Convolutional Neural Networks," 2022 52nd Annual IEEE/IFIP International

Conference on Dependable Systems and Networks - Supplemental Volume

(DSN-S), Baltimore, MD, USA, 2022, pp. 25-27.

[7] B.Du et al., "Ultrahigh Energy Heavy Ion Test Beam on Xilinx Kintex7 SRAM-

Based FPGA," in IEEE Transactions on Nuclear Science, vol. 66, no. 7, pp.

1813-1819, 2019.

[8] Jonas Fuhrmann, “ Implementierung einer Tensor Processing Unit mit dem

Fokus auf Embedded Systems und das Internet of Things”, 2018,

http://hdl.handle.net/20.500.12738/8527

[9] A. V. Trusov et al., "p-im2col: Simple Yet Efficient Convolution Algorithm

With Flexibly Controlled Memory Overhead," in IEEE Access, vol. 9, pp.

168162-168184, 2021.

[10] L. Bozzoli, et al., "PyXEL: An Integrated Environment for the Analysis of Fault

Effects in SRAM-Based FPGA Routing," International Symposium on Rapid

System Prototyping (RSP), pp. 70-75, 2018, Turin, Italy, 2018, pp. 70-75.

Fig.4. Collection of experimental results. In (a) the error rate detected over the parallel application of the different filters. In (b) the

error distribution over the faulty resources. In (c) some of the faulty patterns provoked by interconnection faults.

