
30 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Design Techniques for Multi-Core Neural Network Accelerators on Radiation-Hardened FPGAs / Portaluri, Andrea;
Azimi, Sarah; Sterpone, Luca. - ELETTRONICO. - (2023), pp. 16-22. (Intervento presentato al convegno IEEE
International Symposium on Parallel and Distributed Computing tenutosi a Bucharest (Romania) nel 10-12 July 2023)
[10.1109/ISPDC59212.2023.00023].

Original

Design Techniques for Multi-Core Neural Network Accelerators on Radiation-Hardened FPGAs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISPDC59212.2023.00023

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2979316 since: 2023-06-12T09:09:28Z

IEEE

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Design Techniques for Multi-Core Neural Network

Accelerators on Radiation-Hardened FPGAs

Andrea Portaluri, Sarah Azimi and Luca

Sterpone

Dipartimento di Automatica e Informatica

Politecnico di Torino

Turin, Italy

Abstract— Radiation-Hardened-By-Design (RHBD) FPGAs

have gained a lot of attention thanks to their excellent

compromise between costs and performance. Being of very

limited use due to a lack of performance a few years ago, these

devices are now capable of implementing a wide range of

applications requiring high computational capabilities.

 This work describes an implementation of a Very Long

Instruction Word (VLIW) soft-core convolutional accelerator in

the NanoXplore RHBD NG-Medium chip. Feasibility and

timing performances have been analyzed in order to discover

whether and how multi-core solutions can affect parallel

acceleration. Placement also showed to heavily affect the delays,

up to 70% more, based on the proximity to the output buffers.

Keywords—Radiation-hardened-by-design, SRAM-based

FPGA, Convolution, Neural Network, Accelerator, Nanoxplore.

I. INTRODUCTION

In recent years, the computational power and data transfer

capabilities required for modern deep space applications have

critically grown. While rad-hard CPUs and controllers can no

longer meet the requirements due to lack of performance,

Radiation-Hardened-by-Design (RHBD) Application-

Specific Integrated Circuits (ASICs) seem to achieve the best

results, although being very expensive. On the other hand,

SRAM-based Field-Programmable Gate Arrays (FPGAs)

represent an attractive solution providing competitive

performances, versatility, and low costs. These devices offer

the possibility to reconfigure the hardware-implemented on

them, opening a wide range of applications such as error

correction or modification of parameters, while performing

hardware-accelerated arithmetic, and data conversion, with

low power consumption, compared to other devices.

However, the major drawback of these devices is the

susceptibility to radiation-induced soft errors. As a matter of

fact, FPGAs are prone to corruption due to the interaction

between high-energy particles such as protons, neutrons, and

heavy ions and the Silicon bulk. Erroneous behaviors like bit-

flips in configuration memory (i.e., Single-Event Upsets,

SEUs) and transient pulses in the circuitry (i.e., Single-Event

Transients, SETs) can arise and compromise the correctness

of the application. Similarly to other architectures, FPGAs

also have an RHBD counterpart that partially solves the issue

making them immune to SEUs but still vulnerable to SETs.

Therefore, RHBD FPGAs combine the re-programmability of

SRAM-based devices with the robustness of space-grade

layouts of the cells. Major vendors of FPGAs have their space-

grade version, although this number is very limited, even

smaller when looking for European chips. Currently, the main

available options for high-performance space-grade FPGAs

are Xilinx Virtex-5QV (SRAM, 65 nm) and RT Kintex

UltraScale (SRAM, 20 nm), Microchip RTG4 (Flash, 65 nm)

and RT PolarFire (SRAM, 28 nm). In this context,

NanoXplore NG-Medium FPGA has been recently certified

by the ECSS Standard as a space-grade component, reason

that put this device in an excellent spot among the previous

ones. This SRAM-based 65 nm RHBD chip includes space-

specific features such as the SpaceWire interface and a

scrubber module, together with the traditional programmable

logic resources. Moreover, the recent rad-hard technology

improvements, such as High-performances Block RAMs

(BRAMs) and Digital Signal Processing (DSP) blocks, have

unlocked a lot of potential applications, breaking through the

performance limits of these devices. In fact, while CPUs and

GPUs have fixed instruction set with rigid memory hierarchy,

FPGAs grant flexible and fully customizable architecture. The

latter can be adapted to the application, excelling at various

types of parallelism such as bit manipulation, pipelined

systems, and the necessity of wide datapaths. Among these,

acceleration of Convolutional Neural Networks (CNNs) and

soft processors might now be implemented in the

programmable logic of most of these rad-hard FPGAs. These

applications and mission-critical scenarios arise the necessity

of performance assurance for RHBD devices now that it is no

longer sufficient to rely on the robustness of the hardware

alone.

In this paper, we discuss the feasibility of implementation

and timing performance optimization of an accelerator for

convolution running on the r-VEX Soft Processor. Assembly

code for the VEX Instruction Set Architecture (ISA) has been

developed in order to execute convolutional products,

Rectified Linear Unit (ReLU) function activation, and Max

Pooling. Multi-core solutions for parallel computations have

been implemented alongside the single-core design in order to

evaluate the trade-off between performances and the number

of cores. The circuit has been implemented on the

programmable logic of a NanoXplore NG-Medium chip.

The paper is structured as follows. Section II presents the

related works on the Artificial Intelligent (AI) accelerator

implementation on FPGAs and in particular RHBD FPGAs.,

while Section III gives a brief overview of the programmable

logic of the NG-Medium device and the architecture of the r-

VEX processor. Section IV describes the implementation of

the accelerator in the soft processor and Section V gives

details about the experimental analysis and results. Finally,

Section VI draws conclusions and discusses future works.

II. RELATED WORKS

Most of the studies available in the literature present data

on cross-section and radiation test reports of soft error and

Single Event Effects on RHBD FPGAs [1-4]. Other works

describe the implementation of AI accelerators on these

devices. The authors in [5] propose an AI architecture on RT

Kintex UltraScale exploiting Xilinx AI processing units. In

[6], the authors use the VectorBlox software development kit

to deploy AI models on RT PolarFire. The work described in

[7] compares different embedded devices running AI

applications from the performance point of view where also a

NanoXplore device can be found. Concerning the

NanoXplore chips, in [8] the vendor claims a Single-Event

Upset cross-section of about 1.00 · 10-10 cm2/bit with CMIC

on. The Configuration Memory Integrity Check (CMIC) is the

scrubber module of NanoXplore capable of reconfiguring

frames of the configuration memory in case of corruption. The

authors in [9] study the utilization of NG-Medium against high

TID environments such as the CERN applications, while in

[10] the authors evaluate the performances of the NG-Large

chip heavily exploiting its DPS blocks.

To our knowledge, very few works have focused on the

feasibility and implementation of Machine Learning

accelerators for rad-hard FPGAs, especially targeting newer

devices like NanoXplore's. This is most likely due to the

unavailability of detailed data concerning placement and

routing algorithms, architecture, and still poor customization

through the CAD tool, compared to other major vendors.

III. BACKGROUND

A. NanoXplore Programmable Logic Architecture

The NG-Medium chip by NanoXplore is a Radiation

Hardened-by-Design (RHBD) SRAM-based FPGA

manufactured with a 65nm technology process. This chip

represents the first product of a fully fab-less European

product chain with configuration memory cells and the circuit

design based on STMicroelectronics technology, respectively

STM C65 SPACE and RH65nm Skyrob Library, whose

architecture is described in the following paragraphs [8]. The

device's recent space-grade standards achievements made its

applications and market exponentially increase and attention

on this device have grown as well. The programmable logic

architecture does not follow a traditional "matrix" layout,

instead, a "cluster" solution is adopted. Three rows of

arithmetic and combinatorial tile logic are interspersed with

two rows of BRAMs and DSP blocks for two clock regions.

Figure 1 presents the described arrangement.

Fig. 1. Scheme of a Clock Region of the NX-Medium chip.

Within the single tile, Flip-Flops (FFs) and Look-Up

Tables (LUTs) are coupled together in the so-called

Functional Elements (FE). FEs are placed within Tiles (28

Tiles for each row, 14 per each Clock Region). Besides FEs,

2 rows of carry logic, a row of 24-input high-performances

LUT (X-LUT), and a register file are also present. Currently,

the placement of resources is quite constrained by the

NanoXplore CAD tool NXmap. In fact, FEs locations cannot

be arbitrarily assigned. The only degree of freedom is to

choose the Tile, while the NXmap will place the resource in

one of the 384 possible spots within it according to the

embedded optimization algorithm. Each FE placement is then

described by the tile and its 32-location sub-set, called Site

(e.g., lut_name TILE[2x6]:S5_149). The distribution of the

sites within the tile is shown in Figure 2. This constraint limits

the possible mitigation approaches from the placement point

of view. The routing details are also few at the moment but the

vendor still identifies 4 different interconnections as follows:

• Low skew network: routing to provide a homogeneous

distribution of global signals such as clocks and resets.

• Direct interconnections: routing between adjacent logic.

• Logic internal routing: routing into the same tile.

• General routing resources: general routing with longer

propagation delay for inter-tile communication.

Fig. 2. Distribution of FEs and sites within a tile of the NG-Medium chip.

B. r-VEX Soft Processor

The r-VEX processor is a Very Long Instruction Word

(VLIW) soft core (i.e., implemented on programmable logic)

designed by Delft University based on the VLIW EXample

(VEX) ISA, introduced in [12] and loosely modeled upon the

HP/STMicroelectronics LX/ST200 ISA of VLIW embedded

cores. It offers a scalable technology, including instruction

width, instruction set, and functional units written in VHDL.

By default, a core has 4 Arithmetic and Logic Units (ALUs),

2 Multiply Unit Logics (MULs), 1 branch control unit, 1

memory access unit, 64 32-bit general purpose registers (GR),

and 8 1-bit branch registers (BR). It also supports a 32 kB data

and instruction memory cache. As a VLIW processor, each

instruction includes (also parametrizable) 4 32-bit long

syllables, fitting opcode bits, register addresses bits and meta-

data bits in one syllable. These syllables can be seen as single

RISC instructions. The VEX standard specifies the utilization

of three immediate operand types, namely short immediate

operands, branch offset immediate operands, and long

immediate operands. Each syllable in the VEX standard has a

switch field for immediate that comprises 2 bits that identify

the type of immediate operand within the syllable. Syllables

in r-VEX also have additional meta-data bits, L and F, where

the L bit indicates whether the syllable is the final syllable in

an instruction, and the F bit signifies whether it is the first

syllable in an instruction. The default configuration of the r-

VEX and the syllable layouts are shown in Figure 3. The

standard set of instructions includes 73 operations and the

possibility to extend it through custom instructions. Data and

instructions can be edited directly in the respective memories

by modifying the hardware description files associated with

them. After the traditional design flow (synthesis,

implementation, and bitstream generation), the design can be

implemented in the FPGA.

Fig. 3. a) Scheme of r-VEX architecture. b) Different instructions supported

by the VEX ISA.

IV. CONVOLUTION IN VEX ASSEMBLY

In order to have a benchmark that could heavily exploit the

computational capabilities of the board, the choice for the

application to run in the r-VEX processor was to implement a

convolutional accelerator of a reduced AlexNet architecture.

AlexNet is a very efficient CNN for handwritten character

recognition containing layers of 2D convolution, Max

Pooling, and ReLU activation [13]. A squared input image is

fed into a series of convolution products, Max Pooling, and

activation in order to return a probability of that image being

a digit between 0 and 9. Since the data memory of the r-VEX

is limited, only a sub-section of the entire network has been

implemented. However, we took care that this section could

contain at least one of the different layers. As shown in Figure

4, the implemented computation includes 2 convolutional

layers interposed with 2 Max Pool layers. In particular, the

parameters of the slice of the network slice implemented are

reported in Table I.

Since the r-VEX must be programmed in assembly

language, code for the convolution in VEX instruction set has

been developed. The assembly has been written exploiting the

branch registers for comparing the values of rows and

columns. In doing this, a parametrizable code has been

developed. Therefore, stride and padding can be modified by

changing the values in the code without modifying the body

of the code itself.

Fig. 4. Architecture of the AlexNet and its sub-section selected for the
acceleration through the r-VEX.

TABLE I
 LAYER PARAMETERS

Layer Input Stride Padding Filter Output

Conv. Layer 1 12 x 12 1 1 3 x 3 12 x 12

Max Pool 1 12 x 12 0 1 2 x 2 11 x 11

Conv. Layer 2 11 x 11 0 1 3 x 3 9 x 9

Max Pool 2 9 x 9 0 1 2 x 2 8 x 8

Algorithm 1 Algorithm for convolution, Max Pool and ReLu in VEX

assembly.

Input: image[N][N]

Load image from Data Memory:

 1: while branch_col_register do

 2: while branch_row_register do

 3: mov image[i][j], gen_register j+N*i

 4: add 1, row_register

 5: cmpeq 1, branch_row_register

 6: add 1, col_register

 7: cmpeq 1, branch_col_register

 8: goto Convolution

Convolution:

 8: while branch_col_register do

 9: while branch_row_register do

10: execute convolution in row_register, col_register

11: add 1, row_register

12: cmpeq 1, branch_row_register

13: add 1, col_register

14: cmpeq 1, branch_col_register

15: goto Max Pool

Max Pool:

16: while branch_col_register do

17: while branch_row_register do

18: max gen_register i, gen_register i+1

19: add 1, row_register

20: cmpeq 1, branch_row_register

21: add 1, col_register

22: cmpeq 1, branch_col_register

23: goto ReLU

ReLu:

24: while branch_col_register do

25: while branch_row_register do

26: max gen_register i, 0

27: add 1, row_register

28: cmpeq 1, branch_row_register

29: add 1, col_register

30: cmpeq 1, branch_col_register

Algorithm 1. Assembly pseudo-code for the implemented convolutional

steps.

The algorithm developed is presented in Algorithm 1.

First, the input image has been uploaded from the data

memory to the registers in order to minimize further accesses,

then various functions for the different layers have been

developed and pointed through the goto opcode in case of

need. In the implemented configuration, the computation

involved a 12-by-12 input image, producing an 8-by-8 output.

V. EXPERIMENTAL ANALYSIS AND RESULTS

In order to be able to discuss the performances of the

implemented accelerator, analyses have been carried out on

the design. Three different implementations of the benchmark

varying the number of cores alongside the plain design

(namely, 1-core, 2-core and 3-core) have been analyzed with

the goal of finding an optimal trade-off between performances

and the number of computing cores. Firstly, a detailed

description of the resource utilization and mapping directives

has been presented by exploiting the NXmap design toolchain.

Secondly, a timing evaluation through Static Timing Analysis

has been carried out on the designs. The next subsections

discuss the details and the obtained results.

A. Hardware Benchmark

First, the reconfigurable hardware parameters of the r-

VEX have been chosen. In particular, the number of registers,

syllable issues, and computational units have been

maximized according to the r-VEX version we used. The

implementation details are shown in Table II. These values

remain constant for all the cores in the designs.

TABLE II
IMPLEMENTED R-VEX CONFIGURABLE PARAMETERS

General Registers [#] 64

Branch Registers [#] 8

Arithmetic Logic Unit [#] 4

Multiplier [#] 2

Syllable-Issues [#] 4

Data Memory [kB] 32

For the implementation of the circuit, the NanoXplore

toolchain has been used. First, the NXmap tool has

synthesized, routed, and placed the design. In the Synthesis

phase, the correct completion of the steps is required to add

mapping directives for the design. These options allow the

designer to map instances on a targeted resource rather than

the default one e.g., a multi-R/W port RAM cannot be

managed by the tool and has to be mapped as DFF. Moreover,

the placement of resources has been entirely managed by the

tool without user intervention or customized directives. From

the tool, several reports on the timing and resource utilization

of the device can be extracted, as well as a graphical

representation of the implemented circuit in the

programmable logic. This interface helps the designer

through the use of the available placement options, highlights

used instances and routing paths, and gives a summary

visualization of the resource utilization, as shown in Figure 5.

The last step of the design flow generates the bitstream,

an array of binary data that programs the resources of the

FPGA according to the implemented design. Eventually, the

bitstream is downloaded into the Brave NG-Medium

NX1H35S CLGA625 DevKit using the NXbase software.

Figure 6 summarizes the steps.

Fig. 5. Programmable logic view after place and routing in the NXmap tool.

Lighter blue squares represent the programmed resources. In the example,
the 3-core circuit.

Fig. 6. NanoXplore design flow from the input of design sources to the

bitstream downloading.

From the NXmap reports, the utilization of resources for

the three designs has been extracted and presented in Table

III with respect to the Brave NG-Medium NX1H35S device.

It can be seen how the three configurations follow a resource

utilization proportional to the number of cores implemented.

TABLE III
RESOURCES UTILIZATION OF EACH DESIGN

Design 4-LUT DFF
Carry

Logic
DSP BRAM

1-core
6,098

(19%)

1,901

(6%)

298

(4%)
3 (3%) 4 (8%)

2-core
11,714

(37%)

3,801

(12%)

596

(8%)
6 (6%) 8 (15%)

3-core
17,946

(56%)

5,703

(18%)

894

(12%)
9 (9%)

12

(22%)

Additionally, the Brave NX-Medium NX1H35S chip

does not have an embedded Universal Asynchronous

Receiver-Trasmitter (UART) controller. In order to visualize

the output data from the r-VEX, a configurable UART

controller has been implemented alongside the circuit. The

output pin has been mapped to a 3.3 V programmable pin of

the board and an external USB-to-UART serial converter

module has been used to transmit the data to the host PC with

a 115,200 baud rate. Each benchmark uses the 25 MHz clock

provided by the oscillator on the board as the maximum

frequency. For the performance analysis, some reports have

been extracted from the NXmap tool, in particular the Static

Timing Analysis (STA) netlist and the routed VHDL netlist.

The following subsections give details about data and how

they have been exploited.

B. Transitions Delay

NXmap is capable of deploying the Standard Delay

Format (SDF), which is an IEEE specification that represents

circuit delays in ASCII format. In the most common SDF files,

delays of 0 → 1 and 1→ 0 transitions are reported for the

networks of the circuit although others can have up to 12 delay

values (i.e., corresponding to all the possible transitions

among 0, 1, Z, and X states). For the timing analysis, the

average of the maximum and minimum values for the 0 → 1

and 1 → 0 are computed for each design in order to show the

timing performances of the three. In particular, we divided

timing results according to the type of interconnection

described in Section III.B by cross-checking the SDF report

with the routed netlist. Therefore, transition timing data about

intra-tile resources (i.e., internal routing resources), inter-tile

(i.e., general routing resources), and, global routing (i.e.,

clock and reset signals, low-skew resources) have been

collected and shown in Table IV, V and, VI, respectively. As

can be seen from the tables, transition timing seems to increase

as the resource placement spreads in the programmable logic.

TABLE IV
 AVERAGE TRANSITIONS TIMING OF INTERNAL ROUTING RESOURCES

Design
0 → 1min

[ns]

0 → 1max

[ns]

1→ 0min

[ns]

1→ 0max

[ns]

1-core 2.278 2.378 2.278 2.378

2-core 2.497 2.601 2.497 2.601

3-core 2.537 2.642 2.537 2.642

TABLE V
 AVERAGE TRANSITIONS TIMING OF GENERAL ROUTING RESOURCES

Design
0 → 1min

[ns]

0 → 1max

[ns]

1→ 0min

[ns]

1→ 0max

[ns]

1-core 2.742 2.827 2.742 2.827

2-core 2.801 2.922 2.801 2.922

3-core 2.905 2.985 2.905 2.985

TABLE VI
 AVERAGE TRANSITIONS TIMING OF LOW SKEW ROUTING RESOURCES

Design
0 → 1min

[ns]

0 → 1max

[ns]

1→ 0min

[ns]

1→ 0max

[ns]

1-core 6.605 6.667 6.605 6.667

2-core 6.587 6.646 6.587 6.646

3-core 6.683 6.743 6.683 6.743

As a matter of fact, the 1-core design obtained the lowest

delay values among the others. However, the highest

difference among these has been registered in the internal

routing being around 0.3 · 10-9 s, which is the 0.75% of a clock

period, therefore totally negligible delay. The 2-core design is

the only exception with a slightly lower delay value

concerning the low skew network which is due to a more even

distribution of resources around the clock and reset sources

compared to the other designs.

C. Data Delay

The STA report is a way of analyzing the timing

performances of a circuit. STA breaks the design down into

timing paths and computes the signal propagation delay along

them, allowing to verify also timing violation. Each timing

path consists of a start point, an endpoint, and the

combinational logic between them. In this context, the main

reason for this further analysis is the observation of the timing

performance modification as the number of cores

implemented increased. The STA has been performed in

typical scenarios for the three designs and the data delay of

the 10 longest paths of the 1-core design has been compared

with the same path of the other designs. The results are

plotted in Figure 7.

Fig. 7. Plot of the data delay of the 10 longest paths of the 1-core design

compared with the same paths of the other design. The dotted lines represent
the average values.

As can be seen from the data above, data delays are

clearly dependent on the resource utilization of the device. In

particular, the displacement of the 2-core and 3-core average

values from the 1-core one is 3.620 ns (+37.10%) and 4.742

(+48.59%), respectively. However, this shift appears to not

be directly proportional to the increase in utilization. Max

working frequency has been also affected by the placement

congestion: data are presented in Table VII.

TABLE VII
 MAXIMUM WORKING FREQUENCY OF EACH DESIGN

Design Frequency [MHz]

1-core 32.753

2-core 27.586

3-core 23.384

The NXmap tool, like other CAD tools for FPGA design,

offers the possibility to create and edit a timing constraint file.

In this file, constraints on nets and timing paths can be written

and, unless raising a timing violation flag, eventually applied

to the design. For our designs, timing constraints have been

exploited trying to increase the performances with respect to

9

10

11

12

13

14

15

16

1 2 3 4 5 6 7 8 9 10

D
a

ta
 D

e
la

y
 [

n
s]

Path ID

1-core

2-core

3-core

3
.6

2
0

4
.7

4
2

the data shown in Figure 7. The constraints involved the same

10 paths analysed above and focused on the 2-core and 3-

core designs. A constraint iteration of 0.05 ns on the

maximum data delay has been applied until reaching the

timing violation for each path. Figure 8 shows the obtained

results.

Fig. 8. Plot of the data delay of the 10 longest paths of the 1-core design

compared with the same paths of the other design with timing constraints.
The dotted lines represent the average values.

Through the timing constraint file, all the 10 paths' data

delays have decreased. Thus, a small improvement has been

registered for both 2-core and 3-core designs whose average

delay difference from 1-core's is now equal to 3.339 ns

(+34.21%) and 4.487 ns (+45.98%), respectively. However,

no improvement concerning the working frequencies has

been registered.

D. Placement Constrained Data Delay

In a common hardware-accelerated application, FPGA

programmable logic is often densely populated with

interconnections, memories, processors, and additional logic

that manages the data flow to and from the accelerator.

Therefore, the resources dedicated to accelerated

computations are constrained in congested sub-sections of the

configurable logic of the device. These placement constraints

can also affect timing since proximity to clock and reset

sources as well as output pin interfaces may vary. In our

analysis, placement constraints on the cores have been

applied in order to mimic the placement congestion of the

logic. Through the NXmap tool, regions have been created

and edited to which the cores have been assigned. After some

trials, the minimum size of the region for containing a single

core has been found to be equal to 11×6 (i.e., 11 rows and 6

columns) according to the NXmap programmable logic

coordinate system. Two layouts (namely, L1 and L2) for each

design have been proposed and analyzed, where the distance

from the I/O buffers, located on the top-left side of the logic,

have changed. L1 layouts are united by a higher proximity to

the top-left corner, whereas L2 ones try to maximize this

distance. Figure 9 shows the proposed layouts.

Fig. 9. Cores layouts analyzed for a) 1-core b) 2-core c) 3-core. Each

colored block represents a constrained region for a single core.

Notice that, in the 3-core layouts, two regions overlapped

due to the unavailability of enough resources. STA analysis

for each layout has been performed and data on timing delay

collected and plotted in a box plot, shown in Figure 10. The

data refer to the same 10 paths analyzed previously.

Fig. 10. Plot of the data delay of the 10 paths analyzed in Section V.C of the
constrained layouts. L1 versions minimize the distance from the output

buffer, while L2 maximizes it.

Overall, data show that an increasing distance from the

top-left corner (i.e., where the output buffers are located)

seems to deteriorate timing performances. In particular, the

worst difference has been registered by the 1-core layouts

(around 6 ns), where the distance from the buffers is the

highest. As a matter of fact, the degradation of performances

in the other L2 layouts appears to be less since routing paths

to the output are shorter. Therefore, timing-sensitive modules

such as accelerators are widely placement dependent in terms

of performance. Timing constraints may not be enough to fill

the gap as shown previously, so careful analyses are

necessary to fully exploit hardware acceleration in presence

of a congested programmable logic. Finally, resource

utilization shows no significant increment with the placement

constraints active.

9

10

11

12

13

14

15

16

1 2 3 4 5 6 7 8 9 10

D
a

ta
 D

e
la

y
 [

n
s]

Path ID

1-core

2-core

3-core

3
.3

3
9

4
.4

8
7

7

9

11

13

15

17

19

21

23

1-core L1 1-core L2 2-core L1 2-core L2 3-core L1 3-core L2

D
a

ta
 d

e
la

y

[n

s]

Layout

a)

b)

c)

L1

L1

L1

L2

L2

L2

E. VLIW Robustness Considerations

From the VLIW side, a few considerations on the

performance vs. reliability trade-off must be taken into

account. As a matter of fact, whenever a syllable is executed,

all the instructions contained in it are run in parallel, virtually

making the computation n-time faster, where n represents the

number of instructions in a syllable [15]. On the other hand,

a higher number of syllables (thus, a lower number of

instructions per syllable) might help the filtering of transient

faults since values in the registers are called at every

computation like a sort of recovery checkpoint. In the

proposed implementation, only 16% of the syllables are not

full as we preferred to go with a performant computation.

This value is due to unavoidable write conflicts since more

instructions cannot write in the same register within the same

syllable, thus needing to fill the issue with another no-conflict

instruction or a do nothing opcode.

VI. CONCLUSIONS AND FUTURE WORKS

As the deep space mission computational requirements

become more challenging over time goes, RHBD FPGAs

have witnessed an increase in attention due to the

combination of versatility and reliability. In fact, the intrinsic

reliability feature of these devices can guarantee the correct

completion of mission-critical tasks when performing in

harsh environments.

In this paper, we implemented several solutions, both

single and multi-core, of a convolutional accelerator in the r-

VEX soft processor on a NanoXplore NG-Medium device

and evaluated timing performances. Collected data show that

the placement location of the cores plays a key role in the

timing performances, which can be seriously affected and

timing constraints are often not enough to fill this gap.

As future works, we are investigating the placement

optimization of NanoXplore devices and developing a tool to

integrate with the NanoXplore toolchain to customize it

according to reliability-driven placement algorithms.

VII. ACKNOWLEDGEMENT

This publication is part of the project NODES which has

received funding from the MUR – M4C2 1.5 of PNRR with

grant agreement no. ECS00000036.

REFERENCES

[1] Á. B. de Oliveira et al., "Analyzing the Influence of using
Reconfiguration Memory Scrubber and Hardware Redundancy in a
Radiation Hardened FPGA under Heavy Ions," 2018 18th European
Conference on Radiation and Its Effects on Components and Systems
(RADECS), Goteborg, Sweden, 2018, pp. 1-4, doi:
10.1109/RADECS45761.2018.9328683.

[2] G. Mantelet, M. Briet, G. Rouxel, S. Hachad, B. Bancelin and D. de
saint Roman, "ATMEL ATF280E rad hard SRAM based
reprogrammable FPGA SEE test results," 2009 European Conference
on Radiation and Its Effects on Components and Systems, Brugge,
Belgium, 2009, pp. 606-608, doi: 10.1109/RADECS.2009.5994730.

[3] P. R. C. Villa et al., "Analysis of single-event upsets in a Microsemi
ProAsic3E FPGA," 2017 18th IEEE Latin American Test Symposium
(LATS), Bogota, Colombia, 2017, pp. 1-4, doi:
10.1109/LATW.2017.7906772.

[4] N. Battezzati, F. Decuzzi, M. Violante and M. Briet, "Application-
oriented SEU sensitiveness analysis of Atmel rad-hard FPGAs," 2009
15th IEEE International On-Line Testing Symposium, Lisbon,
Portugal, 2009, pp. 89-94, doi: 10.1109/IOLTS.2009.5195988.

[5] J. Vidmar, P. Maillard, T. Jones, M. Sawant, G. Gambardella, and N.
Fraser, "Space DPU: Constructing a radiation-tolerant, FPGA-based
platform fordeep learning acceleration on space payloads," in Proc.
Eur. Workshop Board Data Process. (OBDP), 2021, pp. 1–8.

[6] K. O’Neill, A. Severance, and D. Nandi, ‘‘Using the VectorBlox
software development kit to create programmable AI/ML applications
in radiation-tolerant RT PolarFire FPGAs,’’ in Proc. Eur. Workshop
Board Data Process. (OBDP), 2021, pp. 1–8.

[7] V. Leon, G. Lentaris, D. Soudris, S. Vellas and M. Bernou, "Towards
Employing FPGA and ASIP Acceleration to Enable Onboard AI/ML
in Space Applications," 2022 IFIP/IEEE 30th International
Conference on Very Large Scale Integration (VLSI-SoC), Patras,
Greece, 2022, pp. 1-4, doi: 10.1109/VLSI-SoC54400.2022.9939566.

[8] NanoXplore SAS, "From Radiation Hardening to BRAVE FPGA
devices," RADiation and reliability challenges for electronics used in
Space, Avionics, on the Ground and at Accelerators (RADSAGA),
Geneve, Switzerland, 2017.

[9] G. Tsiligiannis, C. Debarge, J. Le Mauff, A. Masi and S. Danzeca,
"Reliability analysis of a 65nm Rad-Hard SRAM-Based FPGA for
CERN applications," 2019 19th European Conference on Radiation
and Its Effects on Components and Systems (RADECS), Montpellier,
France, 2019, pp. 1-8, doi: 10.1109/RADECS47380.2019.9745713.

[10] V. Leon et al., "Development and Testing on the European Space-
Grade BRAVE FPGAs: Evaluation of NG-Large Using High-
Performance DSP Benchmarks," in IEEE Access, vol. 9, pp. 131877-
131892, 2021, doi: 10.1109/ACCESS.2021.3114502.

[11] C. De Sio, S. Azimi, L. Bozzoli, B. Du and L.Sterpone, "Radiation-
induced Single Event Transient effects during the reconfiguration
process of SRAM-based FPGAs," in Microelectronics Reliability, vol.
100-101, 2019, doi: 10.1016/j.microrel.2019.06.034.

[12] J. A. Fisher, "Retrospective: very long instruction word archtectures
and the ELI-512," in IEEE Solid-State Circuits Magazine, vol. 1, no. 2,
pp. 34-36, Spring 2009, doi: 10.1109/MSSC.2009.932941.

[13] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet classification
with deep convolutional neural networks" in Commun. ACM, vol. 60,
no. 2, pp. 84-90, doi: 10.1145/3065386.

[14] S. Azimi, B. Du and L. Sterpone, "Accurate analysis of SET effects on
Flash-based FPGA System-on-a-Chip for satellite applications," 2016
16th European Conference on Radiation and Its Effects on Components
and Systems (RADECS), Bremen, Germany, 2016, pp. 1-4, doi:
10.1109/RADECS.2016.8093203.

[15] S. Wong, T. van As, G. Brown, "ρ-VEX: A Reconfigurable and
Extensible Softcore VLIW Processor," in International Conference on
Field-Programmable Technology (ICFPT 2008), December 2008.

http://ce-publications.et.tudelft.nl/author/view/id/6
http://ce-publications.et.tudelft.nl/author/view/id/304
http://ce-publications.et.tudelft.nl/author/view/id/350
http://ce-publications.et.tudelft.nl/publication/view/id/507
http://ce-publications.et.tudelft.nl/publication/view/id/507

