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Optimal endorsement for network-wide distributed blockchains

Iman Lotfimahyari, Paolo Giaccone
Dipartimento di Elettronica e Telecomunicazioni - Politecnico di Torino - Torino, Italy

e-mail: firstname.lastname@polito.it

Blockchains offer trust and immutability in non-trusted
environments, but most are not fast enough for latency-
sensitive applications. Hyperledger Fabric (HF) is a com-
mon enterprise-level platform that is being offered as
Blockchain-as-a-Service (BaaS) by cloud providers. In HF,
every new transaction requires a preliminary endorsement
by multiple mutually untrusted parties called organiza-
tions, which contributes to the delay in storing the trans-
action in the blockchain. The endorsement policy is specific
to each application and defines the required approvals by
the endorser peers (EPs) of the involved organizations.

In this paper, given an input endorsement policy, we
studied the optimal choice to distribute the endorsement
requests to the proper EPs. We proposed the OPEN
algorithm, devised to minimize the latency due to both
network delays and the processing times at the EPs. By
extensive simulations, we showed that OPEN can reduce
the endorsement latency up to 70% compared to the state-
of-the-art solution and approximated well the introduced
optimal policies while offering a negligible implementation
overhead compared to them.

Index Terms—Blockchains, Hyperledger Fabric, En-
dorsement policy

I. INTRODUCTION

Nowadays, blockchains have become more and more
relevant in many ICT applications, since bring trust be-
tween different entities where trust is either nonexistent
or unproven. They can improve security and privacy
while offering a decentralized structure. The provided
immutability brings visibility and traceability, beneficial
for ICT applications, such as banking, supply-chain, IoT,
healthcare, and energy sectors [1], [2], [3].

A blockchain is public if it is open to everyone to read
otherwise it is private. But, if a node needs permission to
participate in validating transactions, then the blockchain
is permissioned otherwise it is permissionless [4]. In
contrast to public permissionless blockchains like Bit-
coin, many enterprise applications require performance
that permissionless blockchains are unable to deliver.
Furthermore, many use cases necessitate knowing the
identity of the participants, such as in financial transac-
tions where notary service regulations must be followed.
Private permissioned blockchains, such as Hyperledger

Fabric (HF) [5] and Corda [6], meet such requirements.
In HF, a transaction must be endorsed (i.e., approved) by
the organizations constituting the blockchain, according
to a specified endorsement policy. This guarantees a
mutual agreement between non-trusted parties, similarly,
in the physical world, to a receipt declaring an asset
transfer between two parties, signed by both parties.

HF uses an architecture called Execute-Order-Validate
for transactions, enabling the definition of endorsement
policies. During the execution phase, the client sends the
transaction to some Endorser Peers (EPs), based on the
user’s specified endorsement policy. Each EP processes
the transaction by only simulating it without applying the
results on the blockchain. The simulation result, denoted
as “endorsement”, is signed by the EP and returned to
the client. Finally, if the endorsement policy is satisfied,
the signed and endorsed proposal of the transaction will
be sent to the blockchain nodes to be stored.

The endorsement delay experienced by a client is
affected mainly by two components: i) the network delay
between the client and the EPs and ii) the processing
delay at each EP. The network delay mainly depends
on the network congestion and the propagation delays,
whereas the processing delay depends on both the CPU
capability and the computation load of each EP. Because
network and processing delays are time-varying and
hence difficult to predict, optimally selecting EPs is
hard. Note that a selection algorithm choosing just the
best EP based on the minimum experienced delays will
concentrate the endorsement requests to the same EPs,
increasing the network congestion and the processing
load, thus increasing the overall endorsement delays. In
this work, we propose an optimal EP selection policy
minimizing the endorsement delays. The main idea is to
send redundant endorsement requests to multiple EPs.
The adopted spatial diversity increases the chance of
having the best EPs among the selected ones. The benefit
of the proposed approach can be captured by a simple
queueing model in which a task is sent in parallel
to multiple servers, each with its queueing system, to
minimize task completion time.

In this paper, our novel contributions are as follows.



Fig. 1: Transaction processing phases in HF highlighting
all the message interactions between the involved entities

(i) We highlight the role of the network and processing
delays in the overall endorsement delay. (ii) We refer to a
simple analytical model, based on the classical theory of
queueing systems, to evaluate the effect of redundancy
in selecting the EPs and to compute the optimal num-
ber of EPs. (iii) We propose an optimization approach
denoted as OPtimal ENdorsement (OPEN) based on the
analytical results, leveraging the history of endorsement
delays. (iv) We demonstrate through extensive simula-
tions that OPEN outperforms the state-of-the-art solution
and accurately approximates other optimal policies while
having a much lower implementation overhead compared
to them.

The rest of this paper is structured as follows. Sec. II
describes the HF architecture and then focuses on the
endorsement phase delay by introducing the network
model and the EP selection problem. Sec. III explains
a simple analytical model, derived from classical results
on queueing theory, to find the optimal number of EPs
in a simplified scenario. In Sec. IV, we propose an
EP selection algorithm based on the optimal replication
factor computed analytically in Sec. III, able to operate
in a generic scenario. In Sec. V, we assess by simulation
the performance of our proposed approach and compare
it with the alternatives proposed and with the state-of-
the-art solution. In Sec. VI we discuss the related work.
Finally, we draw our conclusions in Sec. VII.

II. HYPERLEDGER FABRIC ARCHITECTURE AND
ENDORSEMENT

A. Hyperledger Fabric architecture and protocol

The Execute-Order-Validate approach enables the sim-
ulation of the transactions before the agreement of the
participants on recording the results in the Hyperledger
Fabric blockchain. We describe the role of the entities
which are participating in the simulation phase of Fig. 1.

The client is responsible for preparing the transaction
proposal of the users’ transactions and sending it to the

Endorser Peers (defined below) based on the specified
endorsement policy. If the client receives enough en-
dorsements before a specific time-out, it forwards them
to the ordering service; otherwise, the client can re-
transmit the same proposal in the hope of receiving
enough endorsements in time.

The Peer is the element responsible for the following
tasks. The Endorser Peer (EP) simulates/executes the
transaction received from the client application, based on
the current values of the world state. The Verifier/Com-
mitter (VCP) receives a block of simulated transactions
from the ordering service and verifies their legitimacy to
mark them as validated or invalidated. Then it appends
the verified block to the blockchain, comprising all the
transactions (validated or invalidated). To update its copy
of the ledger, an EP is typically a VCP at the same time.
The peers are owned by various organizations that are
blockchain members. An organization can be as small as
individuals or as large as a multi-national corporation.

The endorsement policy defines the logical conditions
to validate a transaction in terms of the EPs on a channel
that must execute a transaction proposal. In Sec. II-B,
we will describe in detail the representation of the
endorsement policy. The definition of an endorsement
policy is at the organizational level, which means any
EP of that organization can represent that organization in
the endorsement policy. A transaction should pass three
phases to be stored in the blockchain, as shown in Fig. 1.

B. Standard form of an endorsement policy

HF provides a very flexible way to define an en-
dorsement policy. We will show that any endorsement
policy, despite its complexity, can be reduced to a
standard form. In HF, the definition of an endorsement
policy is based on a syntax that allows the operators
“AND”, “OR” and “k-OutOf” to be applied to a set of
organizations and nested expressions [7]. In particular,
the operator “k-OutOf-E” returns true whenever at least
k expressions within set E are satisfied. Despite the
complexity of the policy expression, we prove that the
following proposition holds:

Proposition 1. Any endorsement policy obtained by
combining arbitrarily “AND”, “OR”, and “OutOf” op-
erators is equivalent to the policy:

OR(St1, St2, ...) (1)

where each Sti is either a single organization or the
conjunction (“AND”) of different organizations.

Proof. In the case of expressions based on only “AND”
and “OR” operators, thanks to the distribution principle
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in logic expressions, we can transform the original
expression into the target form (1). In the case of “k-
OutOf(e1, e2, . . . , em) operator, where ei is a single
expression, by definition this holds:

k-OutOf(e1, e2, . . . , em) = OR({AND(E)}E∈Ω)

being Ω the set of all
(
m
k

)
combinations of k expressions

from the set of m. Now, since any expression with the
“OutOf” operator is equivalent to one with only “AND”
and “OR”, by following the previous reasoning, such
expression can be reduced to the expression (1).

The policy, defined at the organization level, must be
mapped into a policy defined at the EP level since the
endorsement requests should be sent to the proper EPs.
So, getting the endorsement from a specific organization
requires receiving it from any of its EPs, which is equiv-
alent to the policy 1-OutOf(p1, p2, . . .), where pi are
the EPs within the organization. Revisiting Proposition 1
applied at the policy expression at the EP level, we can
claim:

Proposition 2. Any endorsement policy defined at the
organization level can be expanded into an endorsement
policy defined at the EP level as follows:

OR(St
′

1, St
′

2, ...) (2)

where each of St
′

i is either a single EP or the conjunc-
tion (“AND”) of different EPs.

The result of Proposition 1 allows investigating only
one standard form of endorsement expression, indepen-
dently from the original expression complexity. Now,
by using Proposition 2, we will have the endorsement
expression extended at the EP level. At this level, the
final endorsement will be just in the form of the OR
between the conjunction (“AND”) of different EPs of
different organizations, as in (2).

For example, consider a scenario with three organiza-
tions and two EPs in each of them. If the endorsement
policy is “2-OutOf(o1, o2, o3)”, we can rewrite it as:

2-OutOf(o1, o2, o3) =

OR({AND(pij , pi′ j′ ),∀i,∀i
′ 6= i,∀j,∀j′}) (3)

where oi is organization i, and pij is the EP j of
organization i. The expanded version in (3) lists all the
possible combinations of the EPs that can satisfy the
endorsement policy according to the standard form.

C. Endorser peer (EP) selection algorithm

In our work we focus on the EP selection algorithm,
starting from the standard form of the endorsement

policy. The endorsement delay is the amount of time
the client waits, from sending the endorsement request
until receiving the first endorsement reply that satisfies
the endorsement policy. The response delay from an EP
is the sum of two components: the network delay and the
processing delay at the EP. The network delay depends
on the propagation delay and the queueing delay along
the path to the EP, which is affected by the time-variant
congestion conditions. The overall processing delay de-
pends on the queuing at the EP before being served
and the computation time at the EP, which depends on
the CPU speed and the instantaneous CPU load and
resource contentions. Because the standard form of any
endorsement policy comprises an overall “OR” operator,
as in (2), the endorsement latency corresponds to the
minimum delay to get a valid statement. Also, each
statement is based on an “AND” operator between EPs,
so the delay of each statement depends on the maximum
response delay of all EPs included in a statement.
In summary, the endorsement latency depends on the
“fastest” group of EPs forming a statement, while the
delay of each group depends on the “slowest” EP within
the group.

D. System model for the endorsement phase

Without loss of generality, we consider a fixed net-
work topology connecting C clients with Q organiza-
tions, each of them with a generic network connecting
the internal EPs, depicted in Fig. 2a. We assume that all
nodes in the system are always available, the routing is
fixed, and the links have enough bandwidth to prevent
network congestion caused by the endorsement protocol.
Thanks to the service discovery process in HF, we
consider only the most updated EPs.

III. BACKGROUND ON OPTIMAL REPLICATION IN
QUEUEING SYSTEMS

Now, we discuss an analytical model to compute the
optimal number of EPs for each transaction, derived from
classical results on task replication in a queueing system,
as explained in Sec. VI. For the sake of readability, we
report the adopted notation in Table I.

We consider a simplified model as shown in Fig. 2b,
with one EP in each organization. We assume 1-OutOf-Q
as the endorsement policy, which corresponds to
OR(p1, p2, . . . , pQ) in its standard form. For now, we
neglect the network delays and concentrate just on
processing delays. We suppose each client generates
endorsement requests according to a Poisson process
with rate λ. Each client selects at random R EPs to
send the endorsement request. R will be denoted in the
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(a) General network model (b) R requests for 1-OutOf-Q

Fig. 2: Network model and the endorsement policy
sending each request to R organizations/peers in parallel.

TABLE I: Notation

C number of clients
Q number of organizations
p endorser peer (EP)
λ arrival rate of new transactions to each client
µ inverse of computation time for the EP server
U utilization factor in each EP server
R redundancy factor
Wi waiting time needed for the ith request to be served
Si inter-arrival time between the ordered version of {Wi}i
γ normalized load factor for the worst case R = Q

R̂k optimal R for policy k-OutOf-Q
Lk endorsement latency for policy k-OutOf-Q
P set of all available EPs
Pe set of selected EPs
Pold

e set of previously selected EPs
T probe sampling period
TXn transaction with local sequence number n
xk
p endorsement latency of TXk for peer p
tresp
p virtual response delay of a peer for the new TX
tbusy
p virtual time at which EP p is not busy anymore
τ proc
p processing delay for the current endorsement request
τ net
p network delay for EP p
τ queue
p queueing time experienced by the TX at EP p
dcp the network delay between client c and EP p

following as redundancy factor. To model the processing
time variability at the EP, we assume an exponentially
distributed processing time with an average 1/µ, coher-
ently with past works [8], [9]. Thus each EP can be
modeled as an M/M/11 queue with arrival rate λRC/Q
and service rate µ. We define the utilization factor for
each EP as U = λRC/µQ. Thus, for the request traffic
to be sustainable, U < 1 and the endorsement request
arrival rate must satisfy λ < µQ/RC. We now claim:

Proposition 3. Under a sustainable arrival rate of
endorsement requests and a random selection policy with
R EPs, according to the endorsement policy 1-OutOf-Q,
it holds for the endorsement latency L1:

E[L1] =
1

µ− λRC

Q

(
1

R

)
R ∈ [1, . . . , Q] (4)

1In classical queueing theory, an M/M/1 queue has a single server,
arrivals follow a Poisson process and service times are exponentially
distributed [10].

Proof. From Fig. 2b, let λ′ be the average incoming
rate of the requests for the queue of each EP such that:
λ
′

= λRC/Q We define Wi as the waiting time of a
request to be served at the ith EP, which is the sum of
queuing time and the serving time of the request in the
ith EP. From M/M/1 well-known properties [10], Wi are
i.i.d. and exponentially distributed with mean: E[Wi] =
1/(µ−λ′). Observe that: L1 = min(W1,W2, . . . ,WR)
where Wi are i.i.d.. From basic properties of the expo-
nential distribution, L1 is exponentially distributed with
mean:

E[L1] = E[Wi]/R (5)

and finally get (4).

By computing the first derivative of (4) with respect
to R, we can prove the following:

Proposition 4. Let R̂1 be the optimal value of R that
minimizes E[L1] for the policy 1-OutOf-Q.

R̂1 =
µQ

2λC
(6)

In summary, the optimal number of EPs changes with
λ. For low arrival rates, R must be large to exploit the
spatial diversity, without incurring additional overhead in
the processing times. For high arrival rates, conversely,
R is small to reduce the load on the EPs. Notably, for
the sake of readability, we omitted from (6) the clipping
to the interval [1, Q] and the rounding procedure to find
the optimal integer value of R. We can now extend the
result of Proposition 3 to a generic OutOf policy.

Proposition 5. Under a sustainable arrival rate of
endorsement requests and a random selection policy with
R EPs, according to the endorsement policy k-OutOf-Q,
it holds for the endorsement latency Lk, for any R ∈
[k, . . . , Q]:

E[Lk] =
1

µ− λCR

Q

(
k−1∑
i=0

1

R− i

)
(7)

Proof. Using the same definition of Wi as adopted in
the proof of Proposition 3, we can define Lk as the
endorsement latency for the policy k-OutOf-Q. Now Lk
can be computed as the kth order statistic as follows,
Lk = (W1,W2, . . . ,WR)(k), recalling the fact that Wi

are i.i.d. and exponentially distributed, we can define Si
as the time interval between the ordered version of the
Wi (i.e., Si = W(i+1) −W(i)). Thanks to the theory of
order statistics [11], Si is exponentially distributed with
average:

E[Si] = E[Wi]/(R− i) (8)
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By combining (5) and (8), for any R ∈ [k, . . . , Q]:

E[Lk] =

k−1∑
i=1

E[Si] + E(L1) =

k−1∑
i=0

E[Wi]

(R− i)
(9)

and we get (7).

The optimal value of R̂ can be computed analytically
as well. We impose sustainable request arrivals, i.e., U <
1, for any R to guarantee sustainable arrivals also in the
case R = Q, it must hold λ < µ/C. Thus, we can set:

λ = γ
µ

C
(10)

with γ ∈ (0, 1) being the load factor. By substituting
(10) into (6), we can obtain the optimal number of EPs
for 1-Out-Of-Q policy as:

R̂1 = Q/(2γ) (11)

We can repeat the same derivation also for R̂k, i.e., for
a generic k-OutOf-Q policy.

A. Numerical evaluation

In Fig. 3 we reported the endorsement latency com-
puted in the function of γ and R, obtained by sub-
stituting (10) in (7). As expected, we observe a mini-
mum endorsement latency obtained with R = Rk, as
computed analytically, which depends on the load γ.
Due to the difficulty to estimate the load in practical
scenarios (which may not be stationary), for k = 1,
we propose heuristically choosing R = Q/2 as a sub-
optimal redundancy in our proposed approach, discussed
in the following. This choice is robust since it is optimal
at high load and at low load the latency increase is
limited. Indeed, for γ = 0.5 the increase is no more
than 8% compared to the optimal value, and for γ = 0.1
no more than 12%. Thus for k = 1, R = Q/2 appears
to be a practical solution, which will be exploited when
devising online EP selection algorithms in Sec. IV.

The redundancy effect can be limited due to the num-
ber of organizations/EPs or applied endorsement poli-
cies, as they affect the number of statements generated by
Proposition 2. With fewer final statements, there would
be less space for redundancy. Indeed, systems with less
restrictive and less complex endorsement policies (e.g.,
majority policies) benefit more from redundancy, while
organizations benefit from adopting more EPs to increase
reliability.

IV. PRACTICAL ENDORSERS SELECTION
ALGORITHMS

Now, we concentrate on the 1-OutOf-Q policy, since it
is coherent with the standard form of any endorsement
policy. Without loss of generality, we assume just one
client in the system (C = 1). We assume that the
client is aware of all needed information including
available/most-updated EPs, thanks to the configuration
query request, as shown in Fig. 1, which leverages the
available service discovery process.

We propose an optimization procedure to select the
EPs, denoted as OPEN, whose main goal is to minimize
the endorsement response delay. OPEN considers the past
response delays experienced by the previously selected
EPs and selects the EPs with the lowest delays. This
choice is motivated by the high temporal correlation
between the response delays of an EP, due to queueing
in the network and in the EPs. Notably, the history is
meaningful only for recently selected EPs, otherwise, it
is obsolete. Therefore, it is possible that a highly loaded
EP which was not recently requested becomes among the
least loaded ones and is worth again sending the request
to it. To address this, OPEN probes non-selected EPs by
sending gratuitous endorsement requests, which are still
considered in the evaluation of the endorsement policy.
Furthermore, in OPEN pending requests are considered
indicators of possibly congested EPs, which are chosen
at a lower priority.

The pseudocode of OPEN is provided in Fig. 4.
Let TXn be the transaction with sequence number n,
evaluated locally at the client. Let xnp be the measured
response delays of TXn for any EP p ∈ P . Let Pne be
the set of selected EPs for TXn. For each transaction, we
initialize all EPs as eligible to be selected (ln. 2). Just
for the first transaction, OPEN initializes the history of
response delays to a dummy value and selects all EPs as
selected endorsers (ln. 3-6). For a generic transaction,
all response delays are initialized to a dummy value
(ln. 7-9). Then the EPs are selected based on a procedure
described in the next paragraph (ln. 10). Now OPEN
sends the endorsement request for TXn to the computed
set of EPs (ln. 11) and updates the measured delays
(ln. 12). A new instance of the procedure would start
if a new transaction TXn+1 is generated. Note that the
procedure ends when all the responses are received.

We now discuss how Select-Endorsers function
operates. Inspired by our previous result in (11), it selects
|P|/2 EPs chosen among the ones that experienced the
lowest response delays, based on the measures for the
last transaction TXn−1. The choice is challenging when
one or more responses are still pending for TXn−1, and
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Fig. 3: Endorsement latency where Q ∈ [8, 16, 32, 64] (left to right). The green line represents R = Q/2.

1: procedure OPEN(n) . Process TXn

2: enp ← true, ∀p ∈ P . Init the eligibility vector for TX(n)

3: if n = 1 then . Just for the first transaction
4: for p ∈ P do
5: x0

p ← x1
p ← −1 . Init the response delay history

6: P1
e ← P . Select all the available peers

7: else . Consider a generic transaction
8: for p ∈ P do
9: xn

p ← −1 . Init the measured delays for TX(n)

10: Pn
e ← Select-Endorsers()

11: Send-Endorsement-Requests(TXn,Pn
e )

12: Xn ← Update-Response-Delays()

Fig. 4: Pseudocode of the OPEN algorithm for TXn

the algorithm key idea is that the corresponding EPs are
considered as congested and thus should not be selected
for the current transaction TXn.

The pseudocode is reported in Fig. 5. It calculates the
maximum delay measured for TXn−1 (ln. 2). For each
EP in Pn−1

e such that the response is not received yet,
we mark the corresponding EP as non-eligible (ln. 3-5).
There are two cases. The first case is the special one
in which no responses have been received for TXn−1,
thus the algorithm speculates the delay equal to the
delay of TXn−2 (ln. 6-7). The eligibility assigned to
the EPs will lead to selecting the other |P|/2 EPs
compared to the previous ones. The second case is
the typical one in which at least some responses have
been received for TXn−1 (ln. 8). For the EPs used in
TXn−1 and for which no response has been already
received, the speculated delay is equal to the maximum
delay dmax plus some constant ε, chosen enough small
to be negligible compared to the average network and
processing delays (e.g., 1 ns) (ln. 9). This will model
the fact that the actual delay is unknown, but for sure
it is strictly larger than dmax. Finally, for all the other
EPs, not used for TXn−1, the delays are speculated to
be equal to Xn−2 (ln. 10-11). Now, the EPs are sorted
based on the Xn−2 delay values and the half best will be
selected (ln. 12). A random EP from not selected ones
will be chosen as the gratuitous probe EP (ln. 13). The
slowest EP from Pne will be replaced with the gratuitous
probe EP (ln. 14), and Pne will be returned to the main
OPEN process (ln. 15).

1: procedure SELECTENDORSERS( )
2: dmax = max

p∈Pn−1
e
{xn−1

p } . Max measured delay for TXn−1

3: for p ∈ Pn−1
e do . For EPs used for TXn−1

4: if xn−1
p = −1 then . Not yet response from EP p

5: enp ← false . Make the EP Not-eligible for TXn

6: if dmax = −1 then . No delay measured for TXn−1

7: xn−1
p ← xn−2

p . Use past delays
8: else
9: xn−1

p ← dmax + ε . Speculate the delay

10: for p ∈ P \ Pn−1
e do . For EPs not used for TXn−1

11: xn−1
p ← xn−2

p . Use past delays

12: Pn
e ← Eligibile-EPs-with-min-delay(|P|/2,Xn−1)

13: p← Random-EP(P \ (Pn
e ∪ P

n−1
e )) . Select probe EP

14: Pn
e ← Replace-slowest-EP(Pn

e , p) . Embed the probe EP
15: return Pn

e . Selected EPs augmented with the probe EP

Fig. 5: Pseudocode for SelectEndorsers

V. PERFORMANCE EVALUATION

We developed an event-driven simulator using OM-
NeT++ [12]. We considered a scenario with C =
8 clients and Q = 8 organizations, each of them
with 1 EP, thus |P| = Q. The endorsement requests
are generated according to a Poisson process at each
client and we set the normalized load γ ∈ [0.1, 0.9].
Then fixing γ = 0.5, we considered more scenar-
ios by varying Q ∈ {8, 16, 32, 64}, each organiza-
tion with the number of EP ∈ {1, 2, 4, 8}, and C ∈
{8, 40, 125, 1000, 8000, 32000} clients; in each scenario
we fixed all parameters except one. To understand the
performance under non-stationary requests, we also con-
sidered a Poisson-modulated process with squared-wave
cyclo-stationary load, with a period equal to 1200 ms,
duty cycle 50%, and normalized load γ = 0.5. To
consider the effect of different kinds of computation, we
assume the computation time of each EP to be either
exponentially distributed or bi-modal distributed with an
average equal to 10 ms, whose value has been achieved
from our practical measurements in HF EPs. In the bi-
modal case, we assumed that, with a given probability,
the computation time is constant with the value 1/µ1,
otherwise its value is 1/µ2. Table II shows the coeffi-
cient of variations (Cv) for the adopted setting. To model
the heterogeneity in the computing power and resources
of the EPs, we considered a non-homogenous scenario in
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TABLE II: Settings for different distributions of the
computation time with different coefficient of variation
(Cv).

Cv (Bimodal) 0.0 0.5 1 2 5

P (µ = µ1) 0.5 0.6 0.75 0.9 0.98
1/µ1 [ms] 10.0 5.9 4.2 3.4 2.85
1/µ2 [ms] 10.0 16.1 27.3 70.0 360.0

(a) S1 (bipartite) (b) S2 (linear)

Fig. 6: The two synthetic network topologies adopted for
test scenarios in our simulations.

which we assigned different average computation times
to different EPs (i.e., (2, 4, 6, 8, 12, 14, 16, 18) ms) where
the computation time of each EP is exponentially dis-
tributed. We considered three scenarios for the network
model, two of them are synthetic and the last one is
real. Let dcp be the network delay between client c
and EP p. In the first scenario, denoted as S1, the
network delays are negligible compared to the processing
times at the EP, i.e., dcp = 0 (Fig. 6a). In the second
scenario, denoted as S2, we set linearly increasing delays
between any client and the EPs, similarly to a linear
topology where all clients are closer to the first EP, i.e.,
dcp = (p+ 1/2) ms for p ∈ [1, Q]. This implies similar
delays from each EP to any client while on average the
total network delays are comparable to the processing
times at the EPs (Fig. 6b).

In the third scenario, denoted as S3, we selected the
Highwinds network from [13], shown in Fig. 7, as a real
world-wide scenario where the link delays are calculated
based on the physical distance between the geographical
position of the nodes (using the Haversine formula) and
the propagation speed is 2/3 the speed of light. The
clients here can be divided into two groups: (i) far clients
placed in nodes 1, 7, 8, and (ii) centered clients placed
in nodes 2, 3, 4, 5, 6.

We measure the average endorsement latency as the
main performance metric. The endorsement latency is
calculated from the moment the endorsement request is
sent out from the client until the first response is received
by the client. For comparison, we considered three EP
selection algorithms, namely RND, OOD, and DSLM,
where the first two are proposed by us.

1) Random EPs (RND)
RND is the policy adopted in the analytical model

Fig. 7: Real network topology (S3) showing the EPs and
clients placement with interconnecting network topology

1: procedure DSLM(n) . Process TXn

2: if n = 1 then . Just for the first TX
3: lp ← x̄p ← x0

p ← 0, ∀p ∈ P . Init EP load and delay values

4: Ph ← Select-|P|/2-random-peers . Random half EPs
5: for p ∈ Ph do
6: x̄p ← [αx̄p + (1− α)xn−1

p ] . Average delay

7: return arg minp∈Ph
{(x̄0.5

p + 1)qp} . Choose min product delay
queue length.

Fig. 8: Pseudocode for DSLM adapted to our model

of Sec. III. Every endorsement request is sent to R
randomly chosen EPs. If R = Q/2, the policy is denoted
as RND-half. If R adapts to the load according to the rule
R = Q/(2γ), as in (11), it is denoted as RND-load.

2) Dynamic Stochastic Load Minimization (DSLM)
Dynamic Stochastic Load Minimization (DSLM) was

proposed in [14] and the pseudocode of the version
adapted to our system model is shown in Fig. 8. Just
for the first TX, DSLM initializes the load lp and the
measured response delay x0

p of any EP p (ln. 2-3).
Typically, it randomly selects half of the EPs (ln. 4) and
evaluates heuristically the load on each selected EP by
the product of the square root of the response delay and
the corresponding queue length (ln. 5-6). The average
is obtained with an exponential moving average with
parameter α. Finally, DSML returns the EP with the
lowest estimated load among the selected ones (ln. 7).

3) Oracle Optimal Delays (OOD)
As a reference for all the endorsement algorithms, we

define an online Oracle-based Optimal Delays (OOD) EP
selection policy that minimizes the endorsement latency
given a fixed replication factor R, denoted as OOD-R.
The pseudocode of OOD-R is provided in Fig. 9. We
assume an oracle that knows in advance the response
delay of any endorsement request if sent to a specific
EP. Thus, the oracle knows for any EP p: (i) the absolute
time tbusy

p at which the EP will finish (or has finished)
to serve the last received endorsement request TXn−1,
(ii) the processing time τ proc

p of the endorsement request
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1: procedure OOD-R(n) . Process TXn

2: for p ∈ P do . For each EP
3: tresp

p = max{tnow + τ net
p , tbusy

p }+ τ proc
p . Compute response delay

4: p = arg minp∈P{tresp
p } . Choose the min response delay EP

5: Pe = Find-(R− 1)-EPs-with-largest-{tresp
p }

6: return {p} ∪ Pe . Return endorsement set

Fig. 9: Pseudocode of OOD-R

TXn, and (iii) the overall network delay τ net
p between

each client and the EP. Thus, if sent to EP p, the response
to TXn will be received from EP p at a predicted time
tresp
p (ln. 3) equal to:

tresp
p = max{tnow + τ net

p , tbusy
p }+ τ proc

p + τ net
p (12)

since if at the time of arriving the request to an EP
its queue is empty, then the request will be served at
tnow + τ net

p , otherwise at tbusy
p . Then, the request will be

processed for τ proc
p and the response will be sent back,

experiencing τ net
p delay. Now OOD-R chooses the EP

with the smallest predicted time to minimize the re-
sponse delay (ln. 4). The remaining (R−1) endorsement
requests (if any) will be sent to the EPs in decreasing
order of predicted time (ln. 5). This allows to load the
“slowest” EPs with requests whose responses will be
received late and thus reduces the load on the “fastest”
EPs, for the sake of future endorsement requests.

It should be noted that, in the case of RND-load,
the request arrival is assumed to be stationary, thus, the
system load can be estimated with high accuracy. Also,
OOD is implementable with enough control information,
but obtaining this information would need instantaneous
communication with the EPs, which is challenging to
accomplish in a practical situation. So, both algorithms
are not practical in a real scenario.

A. Simulations results

For a fair comparison between OOD and other ap-
proaches, in all test scenarios we selected OOD-half, i.e.,
with the same R as OPEN, and RND-half, and slightly
smaller R than RND-load, for which R ∈ [Q/2, Q].
Only DSLM has a completely different redundancy
factor (R = 1).

1) Homogenous scenario
The left graphs in Fig. 10 show the simulation results

for a homogenous scenario with all EPs with compu-
tation times that are exponentially distributed with the
same average.

In scenario S1 (left-up), all delays are purely due to
processing in the EPs. Since DSLM does not exploit
redundancy and for γ = 0.1 the queuing at the EP is neg-
ligible, its response delay is around 10 ms, equal to the

computation time. By increasing the load and hence the
queueing, the average delay increases slightly. Instead,
by exploiting the redundancy all the other approaches
can get smaller delays, by a factor of 2 to 6. As expected,
OOD-half achieves the best average endorsement latency
among all solutions. At low loads, due to the maximum
redundancy factor (i.e., R = 8), RND-load performs
closer to OOD-half by always having the fastest EP
among its selection. By increasing the arrival rate, for
both RND-half and RND-load, the endorsement latency
increases as the selection of EPs is not efficient as
OOD-half, which knows in advance the best EP. At
high loads, for RND-load, R is almost 4, hence RND-
load shows similar results to RND-half. OPEN has a
redundancy factor R = 4, as RND-half, but selects
EPs with smaller estimated delays. At low loads, OPEN
has a small advantage over RND-half, as the queueing
is almost negligible. As the offered load increases, the
higher queueing makes OPEN more efficient, also thanks
to the higher frequency by which the response delays are
estimated.

In scenario S2 (left-middle), as expected, OOD-half
is the best algorithm, and DSLM is outperformed by all
other solutions by a factor of 2 to 3. Due to the linearly
increasing network delays, the effect of redundancy in
EPs becomes less dominant, so the delay’s improvement
in scenario S2 is less than in S1. On the other hand,
at low loads, OPEN acts slightly better than RND-half
compared to S1, thanks to being aware of the network
delays. At high loads, OPEN behaves close to RND-half
since the queueing delays become dominant to network
delays.

In scenario S3 (left-down), again OOD-half is the best
approach, DSLM is outperformed by all other solutions
by at least a factor of 2. Due to the different network
delays, on average much larger than the computation
times, the redundancy is less effective, thus a lower delay
improvement is experienced in S3 compared to S2, and
S1. OPEN performs quite similarly to RND-load in low
loads even with a half number of selected EPs, and much
better in high loads. OPEN completely outperforms
RND-half in all loads since it exploits mainly the EP
with lower network delays.

2) Non-homogenous scenario
The simulation results for a non-homogenous scenario

are reported in the middle graphs of Fig. 10. As a
reminder, now the average computation times for the
EPs are different, but the overall average is the same as
in the homogenous scenario. In all three scenarios S1,
S2, and S3, as DSLM is not able to exploit redundancy,
it is not able to reduce its average latency. On the other
hand, by exploiting redundancy, all other approaches can
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Fig. 10: Average endorsement delay for i) average computation time of 10 ms for each EP: S1 (left-up), S2 (left-
middle), S3 (left-down), ii) different average computation times from [2 to 18] ms for each EP: S1 (middle-up),
S2 (middle-middle), S3 (middle-down), and iii) the different number of organizations, EPs, and clients in scenario
S2, for γ = 0.5 (right-most graphs).

reduce their average latency, where OOD-half achieves
the lowest latency thanks to its global knowledge of the
system.

In scenario S1, RND-load reduces the latency more
than RND-half, since the higher redundancy factor in-
creases the chance of selecting EPs with lower average
computation times. With the same redundancy factor as
RND-half, OPEN reduces the most the delays for all
loads, as it employs the latency history to select EPs with
lower average computation times. In scenario S2, a sim-
ilar behavior as in S1 is observed for all the algorithms.
OPEN, by exploiting the delay history comprising both
the average computation times and the network delays,
achieves the best performance by almost approaching
OOD-half. In scenario S3, we observe almost similar
results as in scenario S3 of the homogeneous case, as
the variation in the average computation times is still
negligible to the average network delays.

3) Scaling the number of organizations, EPs, and
clients.

The simulation results for larger scenarios are shown
in Fig. 10 (right). We consider the S2 scenario, to get
a heterogeneous system in terms of network delays,
and we fixed γ = 0.5. By increasing the number of
organizations, the overall number of EPs increases, thus

the endorsement latency is reduced for all the algorithms
exploiting redundancy, as shown in Fig. 10 (right-up).
The same behavior is observed when the number of
EPs in each organization increases (see Fig. 10 (right-
middle)). The similarity with the previous graph is that
we are considering the 1-OutOf-N policy here, which
by recalling (2), for this endorsement policy there is no
difference between two EPs of the same organization or
different EPs of different organizations.

According to Fig. 10 (right-down), changing the num-
ber of clients has no effect on the approaches. Note
that increasing the number of clients will reduce the
efficiency of the information gained by OPEN and it
will converge to the RND-half results for homogeneous
cases with less dominant network delays.

4) Bi-modal computation times
The simulation results are shown in Fig. 11. In sce-

nario S1, for constant computation time (Cv=0), the
redundancy is not beneficial for delay reduction, while
at high loads it can increase the EPs’ queue length and
thus the delay. For larger Cv, all the algorithms, except
DSLM, decrease the average endorsement delay. This is
because the average of the minimum between a sequence
of i.i.d. random variables is smaller when the variance
is larger. All the solutions, except for DSLM, behave
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TABLE III: Average endorsement delays for cyclo-
stationary input rates with different scenarios.

Scenario S1 [ms] S2 [ms] S3 [ms] S3 [ms]
centered clients far clients

OOD-half 1.2 7.1 13.6 16.9
OPEN 2.9 11.7 17.9 24.2

RND-load 3.1 11.2 19.2 23.7
RND-half 3.2 12.2 25.9 43.6

DSLM 10.8 22.8 65.9 110.3

similarly for low and high loads.
In scenario S2, also for Cv=0, the redundancy reduces

the average delay. The reason is that DSLM considers the
computation load at the EPs obliviously of the network
delays, which are dominating the computation times.
But, in the other approaches, redundancy increases the
chance of selecting the EP with lower network delays.
By increasing Cv, redundancy can reduce the latency
even more, by benefiting from the variability in the com-
putation times. At low load (γ = 0.2), OPEN performs
quite well as it also selects EPs with lower network
delays. RND-load is performing slightly better as it sends
to all EPs. OOD-half is even better than RND-load with
a small margin, thanks to the lower load guaranteed by
setting R = 4. At high load (γ = 0.8), RND-load adopts
R = 5.7 (on average) and the corresponding queueing
penalizes the overall response delay. OPEN acts slightly
better thanks to the smaller value of R.

In the S3 scenario, all approaches are not affected
by Cv, as the variability in the computation times is
compensated by the network delays which vary between
0 ms and 7 times the average computation time. At
low load (γ = 0.2), OPEN selects closer EPs in terms
of network delays and outperforms RND-half by a
factor greater than 2, while being very close to OOD-
half. RND-load achieves the same results as OPEN by
selecting all the EPs (i.e., R = 8), which include the
closest EP as well. At high load (γ = 0.8), as in scenario
S2, RND-load is penalized by the queueing. OPEN
reduces the endorsement delay up to 70% compared
to DSLM. Notably, differently from OPEN, RND-load
may not select the closest EPs. As expected, for both
loads OOD-half performs the best, since it always selects
the minimum combination of the network delay and the
processing delay.

5) Cyclo-stationary request process
We compared OPEN with other approaches under

Poisson-modulated cycle-stationary load. We evaluated
the average endorsement delays by using an exponential
moving average. The results are provided in Table III.
In S1 and S2, OPEN, RND-half, and RND-load showed
almost constant average endorsement latency, while

Fig. 11: Average endorsement latency under bimodal
computation times: i) normalized load: γ = 0.2 (left),
γ = 0.8 (right), ii) scenarios: S1 (up), S2 (middle), S3
(down)

DSLM and ODD results are the highest and the lowest
respectively. Interestingly, all the results for different
approaches in S1 and S2 are very close to the results
gained from Fig. 10 (left) for γ = 0.5, even if the load
was changing periodically. This means that all of them
are robust to load change in homogeneous scenarios.

In S3, as a non-homogenous real scenario, OPEN
shows a small difference of the average endorsement
latency between centered and far clients (recall their
definition in Sec. V). This difference (6 ms) is negligible
compared to the average network delays in S3 (50 ms).
The same behavior is observed for RND-load. On the
other hand, in RND-half the performance depends heav-
ily on the client’s position; even in the case of centered
clients, RND-half experiences more endorsement latency
than OPEN with far clients. As expected, OOD-half
achieves the best endorsement latency with minimum
difference regardless of the client’s position. DSLM
performs the worst with latencies about 4 times larger
than OPEN.

These results show that OPEN adapts to load changes
even in the presence of unbalanced network delays. Also,
OPEN outperforms RND-half and DSLM, while it shows
similar results to RND-load and to OOD-half.

VI. RELATED WORKS

Different works modeled analytically the endorsement
process in HF. [9] modeled the EPs as M/M/1 queues
and considered the propagation delays in the network
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model, coherently with our work. It showed that us-
ing a pure “AND” endorsement policy, compared to
“OR” or “k-OutOf-Q” policies, significantly increases
the endorsement delay by increasing the number of
organizations. Similarly, [15] showed the same results
by modeling HF using stochastic reward networks. They
also observed that for “OR” and “k-OutOf-Q” policies
the latency decreases by increasing the number of EPs
within the same organization, similar to the effect of
increasing R in our work.

[8] modeled HF using Generalized Stochastic Petri
Nets and showed that for high request arrival rates, the
endorsement phase is a performance bottleneck of HF.
This is coherent with the motivation of our work, focus-
ing on optimizing the endorsement phase. [16] consid-
ered four organizations and showed that simple endorse-
ment policies based on “AND”, “OR” and “k-OutOf-Q”
operators, experience the minimum latency. [17] showed
that using “k-OutOf-Q” policy, increasing k decreases
the throughput and increases the latency. This is coherent
with our system model since the endorsement latency
will be the maximum among k request delays. [18] op-
timized the HF configurations to improve the throughput
and reduce the delays. Coherently with our results, they
showed the equivalence between the “1-OutOf-Q” policy
and the “OR” among all organizations. Our results in
Sec. II-B generalize such property.

Some works tried to improve endorsement phase of
HF. [14] proposed a way to select the best EP for
“1-OutOf-Q” endorsement policy in HF v1.4. They in-
troduced an algorithm running in each EP, called DSLM,
to calculate the EP’s load by considering multiple re-
source metrics within an EP. For each request, only half
of the EPs are probed to get their actual load, coherently
with R = Q/2 adopted in OPEN. A version of DSLM
tailored to our system model has been considered in
Sec. V as an alternative approach to be compared with
OPEN. [19] showed that the failed transactions due to
timeouts are affected by the number of statements within
the “AND” operator defined in the endorsement policy.
Such failures increase the latency and waste of resources
due to re-transmissions at the application level.

[20] suggested a way to reduce the possibility of en-
dorsing conflicting transactions. They proposed a cache
mechanism inside the EPs to record some data of the
recently endorsed transactions and drop the conflicting
proposal before execution. Recall that, in the endorse-
ment phase, no execution results will update the world
state, so transactions with similar initial world states
can propose different updates for the world state. This
early drop of the proposal before execution will reduce
the computing and network resources by reducing the

chance of transaction failure at the validation phase. [21]
removed unnecessary operations for pure read requests,
by modifying the EPs algorithm to differentiate the
process of pure read transactions from mixed read/write
ones. This reduced the latency and resource consumption
in the endorsement phase.

The main idea of OPEN is to send multiple replicas
of the same request to multiple peers. This approach has
been deeply investigated in the literature on queueing
theory, motivated by the problem of optimal job assign-
ment to servers. As the literature is huge, we focus just
on a few papers for the sake of space. In the generic
literature about distributed systems, several works [22],
[23], [24] investigated the effect of sending replicas of
a job to more than one randomly selected server and
waiting for the first response to exploit redundancy,
as in OPEN. These works introduced redundancy to
reduce the job completion time and overcome server-side
variability, where a server might be temporarily slow, due
to many factors like garbage collection, background load,
or even network interrupts. [25] showed that, besides its
simplicity, in many cases, redundancy outperforms other
techniques for overall response time. [26], by decoupling
the inherent job size from the server-side slowdown,
described a more realistic model of redundancy and
showed that increasing the level of redundancy can de-
grade the performance, coherently with our observations
in Sec. III. [27] showed that a major improvement results
from having each job replicated to only two servers,
coherently with our Fig. 3 which shows that for the
1-OutOf-k policy, the endorsement latency decreases
mostly when varying R from 1 to 2. On the contrary,
in our work, we have considered the optimal value of R
that minimizes the endorsement latency, which may be
greater than 2. [28] showed the reverse relation between
the incoming load and the optimal number of replicas,
coherently with (11), and experimentally obtained the
optimal redundancy factor in different job arrival rates
and for different service times. Also, [29] theoretically
demonstrated that, when replicating the job to multiple
servers, the best choice in case of low (or, high) loads
is to replicate to all (or, only 1) servers, coherently
with (11) and with the operations of OPEN, which adapts
the replication factor to the instantaneous load.

VII. CONCLUSIONS

We addressed the problem of minimizing the endorse-
ment latency in HF. Leveraging some results obtained in
a simplified queueing model, we proposed the OPEN
algorithm to choose multiple EPs for each transaction
by taking into account the measurements from the past
requests, in a realistic scenario. Through simulations

11



with OMNeT++, we showed that independently from
the scenario, OPEN is robust and achieves performance
remarkably close to the optimal oracle-based approach
(OOD) and outperforms state-of-the-art solutions.

OPEN has been validated only by extensive simula-
tions. Beyond the scope of this work, we implemented
OPEN in HF to validate the proposed approach in a
realistic setting. The experimental results of the first
version of the proof-of-concept are very promising. We
leave the optimization of the design of the client-based
OPEN solution and its extensive experimental validation
for future work.
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in communication networks using redundant messages,” in ITC,
2017.

[29] G. Joshi, E. Soljanin, and G. Wornell, “Efficient replication of
queued tasks for latency reduction in cloud systems,” in Allerton
Conference on Communication, Control, and Computing, 2015.

Iman Lotfimahyari received his BSc and
MSc in Electronics Engineering from IA
University in 2003 and 2007, respec-
tively. In March 2020, he received his
second MSc in Telecommunication Engi-
neering from Politecnico di Torino, Italy,
and joined the Telecommunication Networks
Group of Politecnico di Torino as a Ph.D.
student. His current research interests in-
volve programmable data planes for SDN and
blockchains.

Paolo Giaccone received the Dr.Ing. and
Ph.D. degrees in telecommunications engi-
neering from the Politecnico di Torino, Italy,
in 1998 and 2001, respectively. He is cur-
rently a Full Professor in the Department of
Electronics, Politecnico di Torino. His main
area of interest is the design of optimal
network control algorithms.

12


