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Nonlinear system identification is a challenging task that requires accurate estimation of the 

structural model from observations of nonlinear behavior. The WaveNet, originally a neural network 

architecture for audio processing, has been modified and first introduced to the analysis of 

mechanical signals to capture long-term dependencies in mechanical systems and generate high-

quality signals. A novel nonlinear system identification method has been proposed using a modified 

WaveNet-based approach that constructs the relationship between the vibration response and the 

nonlinear elements in the inverse model without the need for a definite structural model. This 

approach utilizes dilated convolution for feature extraction and a multi-layer perceptron for feature 

transition, with the addition of average pooling along the time dimension for adaptive processing of 

varying length data, which is more computationally efficient and widely applicable. The 13-layer 

modified WaveNet models have been designed and applied to the problem. Comparisons with other 

baseline models were made to demonstrate the method’s superiority in terms of accuracy, 

effectiveness, and robustness. Additionally, the method has been applied to predict composite 

models of friction and elastic curves, demonstrating its ability to handle diverse and complex 

problems. 
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Nomenclature 

(Nomenclature entries should have the units identified) 

A = dynamical system matrix of the state-space model 

Ac = dynamical system matrix of the continuous-time state-space model  

Bc = input matrix of the continuous-time state-space model 

BN=    batch normalization 

bi =    trainable parameter 

C = output matrix 

Cv = viscous damping matrix  

D = direct feedthrough matrix of the state-space model 

F(t) = force vector 

H = underlying frequency response function matrix 

HE = "extended" frequency response function matrix 

K = stiffness matrix 

M = mass matrix 

z = displacement vector 

λ = coefficient of the nonlinear element 

σ = nonlinear activation 

1. Introduction 

Nonlinear system identification [1][2] is the process of determining the characteristics and behavior of a nonlinear 

system by analyzing its response to various excitations. It plays a critical role in understanding the behavior and 

performance of nonlinear systems and has various applications, including control, signal processing, and structural 

analysis [3][4]. For instance, it identifies the nonlinear aerodynamic characteristics of aircraft and helps design control 

systems to handle these nonlinearities. In the design of aircraft structures, nonlinear system identification is employed 

to determine the nonlinear behavior of structural components under different loads and optimize the design for 

improved performance and reliability. 

There are several different classification schemes that group nonlinear system identification methods. One way to 

classify these methods is based on the type of system being modeled. For example, some methods are specifically 

designed for modeling continuous systems [5], while others are more suited for discrete systems [6]. Additionally, 

nonlinear system identification methods can also be classified based on the approach they take to identify the system. 

Some methods use statistical techniques, such as regression analysis or maximum likelihood estimation [7], while 

others are based on more deterministic approaches such as optimization or gradient descent [8]. The development 

status of nonlinear system identification has been thoroughly summarized in the literature [9][10]. Marchesiello et al. 

[11] proposed the nonlinear subspace identification based on the idea that a nonlinear system can be approximated by 

a linear combination of nonlinear functions, referred to as "basis functions". Building on previous research, Zhu et al. 
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[12][13] introduced the restoring force surface method and Bayesian model selection into subspace identification to 

enable the identification of nonlinear stiffness and damping. An automatic nonlinear subspace identification method 

[14] is proposed to avoid the phenomenon of virtual mode or omission. The similarity coefficient and distance function 

are introduced to cluster the identified modal results, the poles of the false modes are removed to obtain the cluster 

stabilization diagram, and the best order of the system is received. In addition, deep learning methods [15][16] have 

been widely used in the field of system identification as they can directly model the relationship between vibrational 

responses and nonlinear elements. This makes them particularly powerful for understanding and predicting the 

behavior of nonlinear systems. Brunton et al.[17] combine sparsity-promoting techniques and machine learning with 

nonlinear dynamical systems to discover governing equations from noisy measurement data. One approach is to use 

a deep neural network to learn a mapping from input data to output data for a nonlinear system, which can work well 

for systems with a complex functional relationship between the inputs and outputs. Another approach is to use a 

recurrent neural network [18], which can learn temporal dependencies in data and is well-suited for modeling dynamic 

systems. For instance, a long short-term memory (LSTM) network can be used to model a nonlinear system by learning 

to predict its future behavior given its past behavior [19]. A reduction scheme based on the identification of continuous 

time recursive neural networks [20] is proposed to identify the parameters of a nonlinear aerodynamic model from 

input-output data obtained through high-fidelity simulations. 

 In this paper, the system identification method based on WaveNet is proposed to improve the accuracy of 

nonlinear parameter estimation without requiring the evaluation of the structural model. WaveNet [21] is a deep 

learning architecture developed by DeepMind, a subsidiary of Alphabet Inc, designed specifically for analyzing and 

synthesizing audio signals. WaveNet is based on dilated convolution, which allows for a large receptive field with a 

small number of parameters. As a result, WaveNet can capture long-range dependencies in data and generate high-

quality audio samples. As both the response signals and sound signals in the mechanical field are time-based signal 

sequences, the WaveNet algorithm, which is specifically designed for analyzing and synthesizing time-based signal 

sequences, can be a useful tool for nonlinear system identification in the mechanical field. The ability of WaveNet to 

capture long-range dependencies in the data and generate high-quality signals makes it well-suited for modeling and 

predicting the nonlinear behavior of mechanical systems. 

We propose a novel nonlinear system identification based on WaveNet. Unlike traditional methods that rely on 

evaluating the nonlinear structural model, the new method is an end-to-end approach that directly establishes the 

relationship between the response and the nonlinear element. It utilizes dilated convolution to obtain large receptive 

fields on vibration data and captures features at all levels for identifying the nonlinear coefficient. Furthermore, 

average pooling along the time dimension allows for the adaptive processing of data of varying lengths. The robustness 

of the proposed method is evaluated through adding different levels of noise and comparing the results with other 

baseline methods. 
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2. Nonlinear parameter identification framework 

2.1 Basic description 

A multilayer building with nonlinear stiffness elements is investigated in Fig. 1. The dynamic equation of the 

system can be expressed as: 

( ) ( )( ) ( ) ( ) ,v nMz t C z t Kz t f z z F t+ + + =                                                   (1) 

Where M represents the mass matrix, Cv represents the viscous damping matrix, K represents the linear stiffness matrix, 

fn represents the nonlinear force, and F represents the excitation. It is important to note that fn is expressed as a sum of 

nonlinear basis functions multiplied by nonlinear parameters λ=[λ1, λ2,…λn] and the location vector. 

The nonlinear subspace identification (NSI) method is one approach for identifying nonlinear systems. This 

method begins by selecting an appropriate transformation of the system's inputs and outputs, so that the transformed 

system can be approximated by a linear model. Subsequently, the state-space matrices A, B, C, and D of the linear 

model are estimated using techniques from linear system identification. After the matrices have been estimated, the 

linear model is transformed back to the original space to obtain a nonlinear model of the system. The model order, 

which is the number of states in the model, and the values of the system matrices are crucial parameters that must be 

estimated accurately to obtain a good model of the system. 

Therefore, the extended frequency response function HE of the nonlinear system can be expressed as 

( ) ( )
1

E c cH D C j I A B 
−

= + −                                                           (2) 

Where Ac is the dynamical system matrix of the continuous-time state-space model, Bc is the input matrix of the 

continuous-time state-space model. H is the underlying linear frequency response function. 

( )
1

2

vH K j C M 
−

= + −                                                                 (3) 

The relationship between HE and H can be obtained in Ref. [13] 

 1E nH H H H =                                                            (4) 

λi contains the coefficients and location information associated with nonlinear elements. To accurately identify the 

nonlinear parameters of a system, it is necessary to accurately measure the input excitation and output response at 

various frequencies, and use this information to estimate the extended frequency response function. For nonlinear 

systems, evaluating the system model or corresponding parameters can be challenging. To solve this problem, we use 

the WaveNet neural network to directly construct the model of the response and the nonlinear unit, avoiding the prior 

determination of the nonlinear structural model 
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Fig. 1 Multilayer building with nonlinearity. 

 

2.2 Nonlinear system identification based on novel WaveNet 

 

Fig. 2 WaveNet architecture with a feature extractor, an average pooling, and a multi-layer perceptron. 

 

We propose a deep learning-based approach for reconstructing the mapping from elastic deformation to elasticity. 

Specifically, a neural network takes mechanical signal sequences as input and infers the discrete sampling sequence 

of the elasticity curve. The sampling sequence is then converted into a continuous function that describes the mapping 

through regression.  

In this work, we introduce a WaveNet-based architecture, as depicted in Fig. 2, and demonstrate its advantages in 

accuracy and size through comparisons with a few baseline architectures, accompanied by visualized results. 
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2.2.1 The WaveNet-based model  

The WaveNet-based architecture is divided into three modules. First, a feature extractor based on dilated 

convolutions, represented by the blue rectangles in Fig. 3, converts the input X0 into a two-dimensional feature map 

S. Then, features under different receptive fields are merged through average pooling along the time dimension, 

resulting in a one-dimensional feature vector, with size independent of the input. Finally, a multi-layer perceptron 

translates the transposed feature vectors into an output vector of length 256, representing discrete sampling points of 

the nonlinear elastic and nonlinear damping curve. In the following, more detailed descriptions of each part will be 

discussed. 

1) Feature extractor 

 

Fig. 3 The dilated-convolution-based feature extractor. 

 

Fig. 3 provides a more intuitive illustration of the feature extractor, which consists of repetitions of blocks 

comprising dilated convolution (in blue), batch normalization, and nonlinear activation (in orange). The input of the 

ith block is denoted by Xi, which is also the output of the previous block. The data pipeline visualized by the blue lines 

can be summarized as: 

1 ( ) 1 1( )i i iX Act BN dConv X Conv X+ =    +                                                        (5) 

where X0 is the input for the neural network, namely the mechanical signal sequences. BN, dConv, and Conv1×1 

represent batch normalization, dilated convolution, and 1×1 convolution operation. 

The advantage of this structure benefits from the capacity of learning translation invariance and the receptive field 

that grows exponentially with the number of stacked dilated convolutions [21]. By setting the kernel size to 2, the 

output of the convolutional layer with dilation d is such that each feature is a biased weighted sum of two features on 

the previous layer, with an interval of d, visualized by the solid lines in rectangles labeled with “dConv” in Fig. 3. Let 

Kri, bi denoting the trainable parameters, namely the kernels and the bias, the dilated convolution operation 

,
( )i i

i
i

K b
X dConv X=  is defined by: 
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1 1

, , , ,
, ( )

1 0 2

, [ ], [ ]

− +

− +
= =

=  +  
ich d

i
i i i i

c n d ch m l ch l
m n floor l

m l

X X Kr b ch Ch n L                                   (6) 

where Chi refers to the channel size of the ith convolution, a hyper-parameter that must be configured prior to 

training. Vector Kri is of size Chi×(d+1)×L, representing Chi kernels, each with dimension (d+1)×L. It should be noted 

that, for each kernel, all entities except those in the first and last columns are zeros, which model the dilated receptive 

field. In addition, zero padding is applied so that Xi
m,n=0 for n[L]. 

After each convolution operation, the distribution of the output iX is manipulated automatically by batch 

normalization: 

2 1( ) ( )
i i

B BX X    −=  −  + +                                                            (7) 

where μB, σB
2 are the mean and variance of the mini-batch obtained during training and γ, βare trainable parameters. 

This method accelerates convergence significantly by avoiding the unstable behavior of the gradients [22], especially 

for neural networks as deep as those introduced in this work. 

To extract non-linear features, the non-linear activation is applied before outputting in each block: 

( ) tanh( ) sigmoid( )Act x x x=                                                             (8) 

where denotes the element-wise multiplication. 

tanh( )
x x

x x

e e
x

e e

−

−

−
=

+
                                                                   (9) 

1
sigmoid( )

1 x
x

e−
=

+
                                                                   (10) 

Moreover, the input of each block is propagated directly to the end through a residual connection [23], represented 

by the second term in Eq.(5) and visualized in Fig. 3 by the solid arrows on the right. To address the problem of 

inconsistent channel size, a convolution operator with kernel size 1 (i.e. 1×1 convolution) is applied to the input before 

adding: 

,
1 1 ( )

i i

i i i i

Kr b
Conv X Kr X b= +                                                            (11) 

where 
1− 

i ii Ch ChKr R and 
ii Chb R are trainable parameters. 

The output of the feature extractor S is the stack of half the reduced output of each block and reduction is again 

performed by 1×1convolutions: 

1

,
1

1 1 ( ) , ,
i i

p
p i i

n j j
Kr b

i

S Conv X n Ch j Ch
−

+

=

 = =                                                (12) 

where 2




i
i C

C
iKr R  and 2

iC

ib R  are trainable parameters. In comparison to directly using the output of the last 

block as the feature map, the stacked reduced feature map also includes low-level features, namely the output of earlier 

blocks, which can be utilized by later layers as well. 

2) Global pooling 

Since the objective is a constant physical quantity that does not change over time, regardless of the receptive field 

in which it is observed, we merge the feature map along the time dimension through global average pooling [24]: 
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0

,

1

1 L

i i j

j

Y S
L =

=                                                                     (13) 

This results in a feature vector of size 1
Ch

2
 i , independent of the input length. 

3) Multi-layer perceptron 

A multi-layer perceptron consists of fully connected layers [25]. Let Yi denote the input of the ith layer, the fully 

connected layer computes its biased and activated linear combination: 

1 max( ,0)i i i i

fcY W Y b+ = +                                                            (14) 

where Wi and bi
fc are trainable parameters. Note that, for the final layer, there is no activation, and the output 

dimension is equal to 256, namely the number of the sampling points. 

It is important to note that the number and size of trainable parameters in all layers are not dependent on the length 

of the input sequence, allowing for the acceptance of input data of varying lengths. 

4) Loss function and training 

The model is trained to minimize the mean squared error between the ground truth and the prediction, defined as: 

2

1

1
( , ) ( )

N
i i

true pre true pre

i

MSE Y Y Y Y
N =

= −                                                     (15) 

where N is the size of training set. Observing that sub gradients are accessible for all operators introduce above by 

backward propagation, all trainable parameters will be optimized by sub gradient method [27] iteratively. 

The complete method pipeline of the method is summarized in Fig. 4. 

2.2.2 Baselines 

To verify the advantages of our model in accuracy, models of three popular architectures in deep learning were 

implemented and applied to the problem as baselines: fully connected network (FC), long short-term memory (LSTM), 

and Convolutional Neural Networks (CNN). 

1) FCs are neural networks that consist solely of fully connected layers. Since it only accepts one-dimensional 

input, the response sequences are normalized and flattened to vectors of length Ch×L before being fed to the 

network. FCs naturally have complete receptive fields, but this results in extremely large model sizes. 

2) By CNNs, the convolutional layers without dilation are used for feature extraction. To obtain the 

exponentially growing receptive field as the WaveNet models, max-pooling layers were inserted between 

convolutions. 

3) Long Short Term Memory Networks (LSTM) is a special class of recurrent neural networks, which consists 

of repeating modules of neural network, each contains multiple layers that are responsible for input, 

forgiveness, and output, respectively [28]. 

Note that techniques that improves performance and accelerate training, such as BN, non-linear activation, and 

dropouts [26], are equally applied to all architectures. 
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Fig. 4 The complete method pipeline. 

3 Numerical simulation 

3.1  Multilayer building with Nonlinear Stiffness 

A multilayer building with nonlinear stiffness is analyzed to verify the proposed method. The linear structure 

parameter is used to establish a finite element model based on Ref.[29]. The nonlinear response can be calculated 

under different nonlinear stiffnesses, as shown in Fig. 1.  

MLP and CNN are adopted to compare the proposed WaveNet as well as to investigate the advantages of WaveNet. 

Additionally, the robustness of the proposed method is evaluated by adding different levels of noise to response signals. 

For the simulation, the details are as follows: 3200 raw samples were generated for training, 320 samples for validation, 

and 450 samples for testing. Each raw sample contained f = A1sin(20×t), where A1 was randomly generated from a 

uniform distribution [10, 20]. Nonlinear stiffness k2z2+ k3z3+ k4z4 is randomly generated for k2[103, 104], k3[104, 

106], k4[105, 107], which is added to DoF 5 in Fig. 1. The raw samples were preprocessed through normalization, 
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and the number of samples was increased by fivefold through random cropping. Care was taken to avoid overlap 

between the training, validation, and test sets during the entire process. 

3.1.1 Neural network model architectures 

Hyper-parameter search was performed for each architecture. Table 1 illustrates representative models that 

achieved competitive results within their respective architectures. The focus of the hyper-parameter search was the 

depth and width of the model, as characterized by the number of layers and hidden units/channels within each layer 

that is summarized by the number of trainable parameters, respectively. For example, the MLP1 model has 7 fully 

connected layers and 44.0 million trainable parameters. CNNs and WaveNets in addiction employ convolution and 

dilated convolution layers, respectively. Compared with MLP, fewer number of trainable parameters are needed for 

building models of the same width and depth. Note that, other operators such as batch normalization, activations are 

not described in Table 1 for simplicity. Further detailed hyper-parameter configurations are available in Table 4, 

Appendix.   

Table 1 Models architectures of different neural networks. 

Architecture Name Layer Trainable parameters 

Fully connected 

neural networks 

MLP1 6 fully connected layers 44.9M 

MLP2 7 fully connected layers 48.9M 

MLP3 7 fully connected layers 93.0M 

MLP4 8 fully connected layers 50.0M 

Convolutional 

neural network 

CNN1 
6 Convolutions                            

 2 fully connected layers 
470,052 

CNN2 
7 Convolutions                             

2 fully connected layers 
519,588 

CNN3 
8 Convolutions                           

2 fully connected layers 
532,068 

WaveNet 

WaveNet1 
10 dilated Convolutions           

2 fully connected layers 
166,652 

WaveNet2 
10 dilated Convolutions           

2 fully connected layers 
419,536 

WaveNet3 
10 dilated Convolutions           

2 fully connected layers 
1,388,638 
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Fig. 5 The Ln(loss) of different training models. 

 

 

All models were trained using the Adam optimizer until convergence. The batch size for WaveNet models was 32, 

the initial learning rate was 5e-05, and the total training epoch was 100. The baseline models were trained for 200 

epochs with a batch size of 64 and an initial learning rate of 1e-04. The smoothed validation loss curves for the first 

100 epochs are shown in Fig. 5 and indicate that all models converged well. 

3.1.2 Identification results and comparisons 

In this study, since the training data had a noise addition ratio of 5%, the accuracy of the models can be examined 

with the same noise addition ratio, as illustrated in the second last row of Table 2. Results showed that the WaveNet 

models had the lowest error and are therefore the most accurate, followed by the CNN models, which had errors 

approximately 50% higher than the WaveNet models. The results made by the RNN models were not better than 

random guess and therefore will not be discussed further in the later content. 

Table 2 Mean square errors of different models trained on 5% noise data. 

Noise MLP1 MLP2 MLP3 CNN1 CNN2 CNN3 WaveNet1 WaveNet2 WaveNet3 

0% 0.00099 0.00103  0.00124  0.00128  0.00036 0.00026 0.00027 0.00017 0.00024 

1% 0.00064 0.00058 0.00078 0.00083 0.00034 0.00023 0.00025 0.00016 0.00021 

2% 0.00042 0.00038 0.00048 0.00054 0.00031 0.00023 0.00024 0.00016 0.00019 

5% 0.00039 0.00032 0.00036 0.00041 0.00029 0.00023 0.00025 0.00019 0.00016 

10% 0.00105 0.00087 0.00104 0.00108 0.00056 0.00049 0.00044 0.00036 0.00025 

 

The robustness of the model can be assessed by evaluating its performance under different levels of noise. Note 

that, it is natural that all models performed worse with less noisy data, as they are trained on data with a 5% noise 

addition. In comparison, the MLP model displayed weak anti-noise capabilities in the absence of noise and in the 

presence of high levels of noise (10%), with a prediction error more than 200% higher than that of the 5% noise 

condition. In contrast, the CNN and WaveNet models did not show a significant increase in error with low levels of 

noise. For more noisy data, the error is increased by about 100%. For each baseline architecture, we find the largest 
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model where further increasement in size does not further reduce error. Such models, namely MLP2 and CNN2, will 

be used to represent its architecture in subsequent tests. In case of WaveNets, the model with the best balance between 

accuracy and robustness is selected, namely WaveNet2. 

Fig. 6 presents four representative samples from the test set that exhibit different characteristics of elastic curves. 

In the simplest case, shown in Sample (a), where the elastic curve is approximately an odd function, all three 

architectures provide a good approximation of the curve with only slight differences in accuracy; In Sample (b), which 

is more asymmetrical, with the elastic force doubling in different directions, the two convolution-based models are 

still accurate, but the MLP model performs poorly; Sample (c) is a special case where there is only obvious elasticity 

for positive displacement. All three architectures fit the general trend well, but do not capture the nonlinear increase 

in elasticity that occurs when displacement increases to a certain extent in the negative direction. It is also observed 

that the performance of all architectures deteriorates for very small elasticities; In Sample (d), the elastic curve is an 

approximate even function (i.e., representing an inverse elastic system) with extremely small function values, about 

0.05 at maximum after normalization. For this Sample, neither the CNN nor the MLP accurately captured the trend, 

with a relative error of about 400% for positive displacement. While the WaveNet performs better for positive 

displacement, it still overestimates the elasticity in the negative range.  
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Fig. 6 The nonlinear elastic force curve prediction based on different models. 
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Another advantage of the WaveNet models is the adaptability to input data of arbitrary length. As shown in Fig. 

7, the mean squared error decreases while the input length increases. However, the baseline models that only process 

data of a fixed length, require that excessively long input be cropped, resulting in a waste of data. And data that is too 

short cannot be processed in any way. 

3.2 Multiple-Degree-of-Freedom System with Nonlinear stiffness and damping 

To determine the method's general applicability, we applied the same architecture to a problem that reconstructs 

the mixture model of a friction and elasticity curve in Fig. 8. Simultaneous prediction for multiple targets is achieved 

through hard parameter sharing in multi-task learning [30]. The parameters of the simulation are shown in Table 3. 

The structure has both cubic nonlinear and Coulomb friction elements.  

The dataset size and preprocessing methods are the same as described in 3.1. In each raw sample, the system is 

excited by a zero-mean Gaussian random force f6 at DOF 6 only, whose root-mean-value is 30N.Nonlinear stiffness 

k14
n×(z1-z4) 3 is randomly generated for kn

3[106, 108], and nonlinear damping αn= α1×sign(ż) is randomly generated 

for α1[1, 10]. The equation of motion can be expressed by:  

3

1 1 1 2 14 1 2 2 14 4 1 2 1 2 2 14 1 14 14 1 4

2 2 2 3 25 2 2 1 3 3 25 5 2 3 25 2 2 1 3 3 25 5

3 3 3 30 36 3 3 2 36 6 3 30 36 3

( ) ( ) ( ) ( ) 0

( ) ( ) 0

( ) ( )

nm z c c c z c z c z k k z k z k z z k z z

m z c c c z c z c z c z k k k z k z k z k z

m z c c c z c z c z k k k z k

+ + − − + + − + − + − =
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                             (16) 

In the case of WaveNet models, the number of final MLP is increased to match the number of targets. This method 

is based on the idea that features needed for reconstructing the friction and elasticity curve overlap, meaning that 

learning one task can benefit the other. In practice, the size of the MLPs may also need to be increased as necessary.  



 

15 

 

Coulomb

Friction

m4

k4

m5

k25

Cubic Stiffness, k

m 6

k36

m1

m2

m3

k1

k2

k3

k30

k5

k6

c14

c25

c36

c1

c2

c3

c30

k14

k60

c4

c5

c6

c60 α1

14
n

f
6

 

Fig. 8  Multiple-Degree-of-Freedom System with Nonlinear stiffness and damping. 

Table 3 System parameters of six degrees of freedom with cubic stiffness and Coulomb friction. 

Mass (kg) Linear stiffness (N/m) Damping (Ns/m) Nonlinear stiffness Nonlinear damping 

m1=m3=m5=1 

m2=m4=m6=0.5 

k1= k4=6000 

k2= k3=2000 

k5=4000 k6=5000 

k14= k25= k36=1000 

k30= k60 =1000 

ci=0.2 (i=1,2,3,4,5,6) 

c14= c25= c36=0.1 

c30= c60 =0.05 

k14
n N/m3 α1  

 

Fig. 9 shows four samples from the test set that exhibit nonlinear stiffness and friction. Results show that: the 

proposed method based on WaveNet provide a good approximation of the curve with only slight differences in 

accuracy for nonlinear elastic force and dissipative force curves.  
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Fig. 9 The nonlinear elastic and dissipative force curve prediction for different samples with 5% noise. 
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Even in the case of noise, the method still has good accuracy and good robustness. Taking Sample (a) as an example, 

the real value of the response at 6 node and the reconstructed response signal of the identified parameters are given in 

Fig. 10. Results demonstrated that the estimated nonlinear response curve is in close agreement with the true value 

curve. 

 

 
Fig. 10 Comparison of displacement of Dof 6 for sample (a) with 5% noise. 

 

 

Further, the corresponding absolute error of identified parameter are shown in Fig. 11. Four samples are presented. 

When the noise is 5%, the nonlinear parameter identification error of the system is less than 5%, which verifies the 

effectiveness of the method. 
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Fig. 11 The absolute error of identified parameters with 5% noise based on WaveNet model. 
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4 Conclusion 

In this paper, we propose a deep learning-based method for system identification to build an inverse model from 

response signals to system constants. Deep neural networks take the response signal as input and output discrete 

sampling points of the function curve of the physical constant versus displacement, which can be converted into a 

continuous function through regression. We compare the proposed WaveNet architecture to several baseline 

architectures in predicting nonlinear elastic curves and demonstrate its advantages in terms of accuracy, robustness, 

and model size were demonstrated. The same model successfully predicted the damping and elastic forces of a more 

complex hybrid system, demonstrating the generalizability of the method. Promising future work includes exploring 

transfer learning to share the low-level features across different systems different systems and studying the use of an 

encoder-decoder architecture to learn a latent representation of the system by compressing and reconstructing the 

mechanical signal. 
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Appendix 

*(Ch, n) indicates n consecutive blocks with convolutional layers of the same channel size Ch  

Table 4 Models architectures. 

Categories MLP CNN WaveNet 

Name MLP1 MLP2 MLP3 MLP4 CNN1 CNN2 CNN3 WaveNet1 WaveNet2 WaveNet3 

Input 1D flattened data of size (12000) 2D time series of size (2000, 6) 2D time series of size (2000, 6) 

Hidden layers 

Hidden layers Convolution channels Convolution channels 

3000 3000 5000 3000 (8, 1)* (8, 1) (8, 1) (8, 2) (16, 2) (32, 2) 

2000 2000 3000 2000 (16, 1) (16, 1) (16, 1) (16, 3) (32, 3) (64, 3) 

1000 2000 3000 2000 (32, 2) (32, 2) (32, 2) (32, 5) (64, 5) (128, 5) 

500 1000 2000 1000 (64, 1) (64, 1) (64, 2)    

400 500 1000 1000 (128, 1) (128, 2) (128, 2)    

300 400 600 500 MLP hidden layers MLP hidden layers 

 300 400 400 500 500 500 300 500 1000 

   300 400 400 400 200 300 500 

1D flattened data of size (256) 

Model size 44.9M 48.9M 93.0M 50.0M 470052 519588 532068 166652 419536 1388468 
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