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Abstract. Fracture propagation simulations by means of the traditional Finite El-
ement Method require progressive remeshing to match the geometry of the dis-
continuity, which heavily increases the computational effort. To overcome this 
limitation, methods like the eXtended Finite Element Method (XFEM), in which 
element nodes are enriched through the medium of Heaviside step function mul-
tiplied by nodal shape functions, may be used. The addition of a discontinuous 
field allows the full crack geometry to be modelled independently of the mesh, 
eliminating the need to remesh altogether. In this paper OpenSees framework has 
been used to evaluate crack propagation in brittle materials by means of the 
XFEM method. Two shell-type XFEM elements have been implemented into 
OpenSees: a three-node triangular element and a four-node quadrangular ele-
ment. These elements are an improvement of the elements with drilling degrees 
of freedom lately suggested by the Authors [6]. The implementation of XFEM 
elements implied some major modifications directly into OpenSees code to take 
into account the rise of number of degrees of freedom in the enriched element 
nodes during the analysis. The developed XFEM elements have been used to 
evaluate crack propagation into a plane shell subject to monotonically increasing 
loads. Moreover, with due tuning, the modified XFEM OpenSees code can be 
used to study also other problems such as material discontinuities, complex ge-
ometries and contact problems. 

Keywords: Finite Element Method, Extended Finite Element Method, Fracture 
Mechanics, Discontinuities, Enrichment. 
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1 Introduction 

The eXtended Finite Element Method (XFEM) is a robust technique for analysing prob-
lems with discontinuities and singularities, such as material discontinuities, and frac-
tures. It was initially proposed by Belytschko and Black [1], and was subsequently en-
hanced by Mos, Dolbow, and Belytschko [2]. 

 In this formulation, the discontinuous displacement field along the surface of a 
fracture is modelled using extra nodal degrees of freedom and enrichment shape func-
tions. 

Unlike the traditional Finite Element Method, XFEM enables mesh definition inde-
pendent of discontinuity position and does not require mesh refining close to disconti-
nuities. This is a significant benefit. In addition, when utilising XFEM to solve prob-
lems involving crack propagation, remeshing is not required to follow the evolution of 
the fracture, which drastically reduces the computational cost. 

Enrichment shape functions are non-differentiable and discontinuous, thus numeri-
cal issues might occur if the stiffness matrix of components with discontinuities is eval-
uated using a quadrature method (such as Gauss-Legendre quadrature). Partitioning 
these components into sub-elements will enable the integrands to be continuous and 
differentiable inside each subdomain, solving the issue. Ventura [3], [4], [5] has also 
provided an alternative method based on equivalent polynomials that does not require 
the integration domain to be partitioned. 

This paper outlines the implementation of three-node triangular and four-node quad-
rilateral XFEM shell elements in OpenSees. These elements are an improvement over 
the recently presented finite elements with drilling degrees of freedom by the Authors 
[6]. The presented elements can describe fracture propagation in brittle and quasi-brittle 
materials and have been utilised to perform static analysis with incremental load on 
planar shells. 

2 XFEM formulation overview 

Based on the Finite Element Method (FEM), the Extended Finite Element Method 
(XFEM) is a numerical method built specifically for addressing discontinuities [1], [2]. 
In conventional FEM, the displacement field of a single element inside a domain Ω is 
given by: 

𝒖 𝒙 = 𝑁& 𝒙 	𝒖& = 𝑵) 𝒙 	𝒖
*

&+,

 (1) 

where 𝑁&(𝑥) are the element shape functions, 𝑛 is the number of nodes of the element 
and 𝒖& are the components of the nodal displacement. 
 Eq. (1) is incapable of describing the displacement field behaviour when the element 
embeds discontinuities or singularities. To circumvent this restriction, one can enrich 
the interpolation on Eq. (1) using an enrichment function Ψ(𝒙) and a certain number 
of extra degrees of freedom 𝒂&: 



3 

𝒖 𝒙 = 𝑁& 𝒙 	𝒖&

*

&+,

+ 𝑁& 𝒙 	Ψ 𝒙 	𝒂&

*

&+,

 (2) 

The type of enrichment function Ψ(𝒙) being used is defined by the discontinuity being 
described. For instance, the most appropriate enrichment function to describe strong 
discontinuities (such as cracks), is the Heaviside step function: 

Ψ 𝒙 = 𝐻(𝜑(𝒙)) (3) 

𝐻 𝜑 𝒙 = −1 𝜑 𝒙 < 0
1 𝜑 𝒙 > 0 (4) 

where 𝜑 𝒙  defines the discontinuity signed distance from the point of evaluation. 
In the event of pronounced non-polynomial behaviour of the solution, XFEM for-

mulation permits the representation of discontinuities or singularities in an appropriate 
manner and with high performance. 

Due to the non-polynomial form of the enrichment function, the usual Gauss quad-
rature method cannot be employed if the element is intersected by a discontinuity. This 
issue may be resolved by dividing the integration domain Ω into two subdomains, Ω;  
and Ω< , along the discontinuity, such that the enrichment function is continuous and 
differentiable inside each subdomain: 

Ψ 𝒙 	℘*(𝒙)	𝑑Ω
?

⟹ Ψ 𝒙 	℘*(𝒙)	𝑑Ω
?A

+ Ψ 𝒙 	℘*(𝒙)	𝑑Ω
?B

 (5) 

(℘(𝒙) is a generic polynomial function, such as a stiffness matrix term). 
 Subdomain partitioning incorporates a 'mesh' requirement into the elegance of the 
XFEM formulation. Ventura proposed a technique to eliminate the necessity of sub-
cell definition without adding any approximation in the quadrature using equivalent 
polynomials [3], [4]. It has been proven that there exists an equivalent polynomial func-
tion whose integral provides the precise values of the discontinuous/non-differentiable 
function integrated on sub-cells. The polynomial is defined over the whole element 
domain so that it may be simply integrated using Gauss quadrature without the need to 
create quadrature sub-domains. Eq. (5) then becomes: 

Ψ 𝒙 	℘* 𝒙 	𝑑Ω
?A

+ Ψ 𝒙 	℘* 𝒙 	𝑑Ω
?B

= Ψ 𝒙 	℘*(𝒙)	𝑑Ω
?

 (6) 

where Ψ 𝒙  is the equivalent polynomial function. This approach avoids the splitting 
of the quadrature domain by doubling the polynomial degree of the integrand function. 

3 OpenSees implementation 

The flexibility of the OpenSees framework eased the implementation process. To dy-
namically vary the quantity of degrees of freedom of each node throughout the analysis, 
it was necessary to define a new 'node' Class as an alternative to the original in the code. 
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This is a critical component for satisfying the displacement field solution in Eq. (2). 
 The introduction of a new Class of nodes enabled the further implementation of two 
new XFEM plane shell-type elements: a triangular element with three nodes and a 
quadrilateral element with four nodes. In this initial implementation, the in-plane be-
haviour of the proposed elements is indefinite linear elastic for compression and elastic-
fragile for tension. Out-of-plane behaviour is considered linear elastic. 
 The proposed elements can embed a pre-existing fracture. A crossing point and the 
normal to the discontinuity itself can be used to define it. The elements might alterna-
tively be described as initially undamaged; in this instance, however, they might frac-
ture as a result of progressive loading. 
 The element will fracture when the main tensile stress exceeds the material tensile 
resistance. Utilizing the coordinates of the element point where this limit is surpassed, 
the fracture position is determined. 
 The presented elements can also be utilised to investigate how fractures originate 
and proceed to spread in brittle and quasi-brittle materials. The displacement field of 
modelled elements is defined by the interpolation law in Eq. (1) if they are not damaged 
and by the one in Eq. (2) if cracking occurs. As a result, the nodes will have more 
degrees of freedom as the analysis goes further since the enriched degrees of freedom 
𝒂& will be added to the standard degrees of freedom 𝒖&. 
 At the current implementation stage, each mesh element can only manage a single 
discontinuity. Elements capable of handling multiple discontinuities have been ana-
lysed and will be implemented in future versions. A non-linear compressive behaviour 
for the elements will also be included. 

4 Numerical applications 

Plane shells with discontinuities have been analysed using the presented XFEM ele-
ments. 

4.1 Damaged cantilever beam 

In the first case, the cantilever beam in Fig. (1) is examined. The beam embeds a frac-
ture and two forces are applied to its free end: cross-sectional force 𝐹D and axial force 
𝐹E. 
 

 
Fig. 1. Cracked cantilever beam subject to forces 𝐹E and 𝐹D. Crack is highlighted in red. 

 
In Tab. (1) are illustrated the geometrical and mechanical properties of the beam. 
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Table 1. Beam geometrical and mechanical properties 

Geometrical 
properties 𝐿 = 50[𝑐𝑚] 𝑏 = 2.5[𝑐𝑚] ℎ = 20[𝑐𝑚] 

Mechanical 
properties 𝐸 = 2796

𝑘𝑁
𝑐𝑚U  𝜈 = 0.2 𝐹E = 20[𝑘𝑁] 𝐹D = 20[𝑘𝑁] 

 
The beam has been modelled using both conventional FEM shell-type elements and the 
proposed XFEM shell-type quadrilateral elements. 

Fig. (2) depicts the discretisation mesh for the structural element. In the case of con-
ventional FEM (Fig. (2b)), the mesh had to be modified near the fracture to match the 
geometry of the discontinuity, necessitating the employment of triangular and deformed 
quadrilateral finite elements. 

 

 
Fig. 2. Cantilever beam discretisation: a) XFEM discretisation; b) Standard FEM discretisa-
tion. 

 
Fig. (3) illustrates the distorted configurations derived from the analysis. It is evident 
that both the standard FEM model and the XFEM model provide identical displacement 
values. Tab. (2) indicates that point A deflection is same in both models. 
 

 
Fig. 3. Cantilever beam deformed configurations: a) XFEM discretisation; b) Standard FEM 
discretisation. 

 
Table 2. Point A deflection 

Standard FEM Model Proposed XFEM Model 
𝑢E = 0.00037	[𝑐𝑚] 𝑢E = 0.00037	[𝑐𝑚] 
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𝑢D = 0.00177	[𝑐𝑚] 𝑢D = 0.00177	[𝑐𝑚] 
 
The proposed elements are validated by these outcomes. 

4.2 Undamaged cantilever beam – progressive cracking 

In the second example, an undamaged cantilever beam is examined. In the condition of 
tensile stress, the behaviour of the beam is considered to be linearly elastic, and in the 
condition of compression, it is assumed to be elastic-fragile. The tensile resistance of 
the material is defined as 𝑓Z = 1.5	 [\

]^_ . 
In this scenario, an analysis has been conducted using a cross-sectional load 𝐹D that 
increases monotonically. The outcomes up until the point of collapse are depicted in 
Fig. (4). 
 

 
Fig. 4. Cantilever beam subjected to a cross-sectional load that increases monotonically. As 
the stress increases with each time-step until failure, progressive cracking occurs. 

 
Notably, the objective of the XFEM model is not to precisely track the crack propaga-
tion path, but rather to evaluate the displacement field of a structural element suscepti-
ble to progressive cracking. Thus, the fracture pattern depicted in Fig. (4) is illustrative 
only. 

4.3 Undamaged hinged beam – progressive cracking 

The hinged beam in Fig. (5) has been examined. 
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Fig. 5. Undamaged hinged beam subjected to a cross-sectional load 𝐹D. 

 
As in the last example, the beam is subject to a force that increases monotonically over 
its centreline. The outcomes of the analysis are illustrated in Fig. (6). 
 

 
Fig. 6. Progressive cracks develop when the stress increases with each subsequent time step 
until failure occurs. 

5 Conclusions 

This paper presents two shell-type XFEM elements: a triangular element with three 
nodes and a quadrangular element with four nodes. These elements have been incorpo-
rated into OpenSees in order to assess the propagation of cracks in brittle and quasi-
brittle materials. The presented XFEM elements are an improvement on the recently 
disclosed finite elements with drilling degrees of freedom by the Authors [6]. The im-
plementation of the proposed XFEM elements implied some major modifications di-
rectly into the OpenSees code to take into account the rise of number of degrees of 
freedom in the enriched element nodes during the analysis. Utilizing the suggested 
XFEM elements, fracture propagation in a planar shell subject to monotonically rising 
stresses was evaluated. The numerical applications findings support the presented for-
mulation and enable the usage of the Open-Sees framework to solve fracture mechanics 
problems. Future enhancements for the presented elements will include the ability for 
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a single XFEM element to handle various discontinuities and a nonlinear compressive 
behaviour. 
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