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Abstract: The numerical integration of discontinuous functions is an abiding problem addressed by
various authors. This subject gained even more attention in the context of the extended finite element
method (XFEM), in which the exact integration of discontinuous functions is crucial to obtaining
reliable results. In this scope, equivalent polynomials represent an effective method to circumvent
the problem while exploiting the standard Gauss quadrature rule to exactly integrate polynomials
times step function. Certain scenarios, however, might require the integration of polynomials times
two step functions (i.e., problems in which branching cracks, kinking cracks or crack junctions within
a single finite element occur). In this context, the use of equivalent polynomials has been investigated
by the authors, and an algorithm to exactly integrate arbitrary polynomials times two Heaviside step
functions in quadrilateral domains has been developed and is presented in this paper. Moreover, the
algorithm has also been implemented into a software library (DD_EQP) to prove its precision and
effectiveness and also the proposed method’s ease of implementation into any existing computational
software or framework. The presented algorithm is the first step towards the numerical integration of
an arbitrary number of discontinuities in quadrilateral domains. Both the algorithm and the library
have a wide application range, in addition to fracture mechanics, from mathematical computing of
complex geometric regions, to computer graphics and computational mechanics.

Keywords: numerical integration; XFEM; polynomial functions; Heaviside step function; subdomain
quadrature

1. Introduction

The exact numerical integration of discontinuous functions by means of a standard
quadrature rule is a complex topic that has been investigated by various authors over
time [1–8]. This argument has been particularly relevant recently in the context of fracture
mechanics, where Galerkin-based methods, such as the extended finite element method
(XFEM) and the generalised finite element method (GFEM), have been used to analyse the
mechanical behaviour of structures and solids embedding cracks in their continuum [9–11].
The major advantages of such methods, in opposition to the standard finite element method
(FEM), are that they allow a regular discretisation and eliminate the need for remeshing [7].
These methods, in fact, use discontinuous functions (i.e., the Heaviside step function)
and highly localised functions to reproduce the effect of the discontinuity in the solution
field [12]. However, these functions result in discontinuous terms in the finite element
stiffness matrix, leading to a non-negligible computational error when integrating using a
classical quadrature rule due to the non-polynomial nature of the integrand [13]. Quadra-
ture of terms including discontinuous and singular functions is usually achieved in this
context by subdividing the elements crossed by discontinuities into quadrature subdo-
mains [7,12,14], although alternative quadrature methods via adaptive quadrature [15],
nonconvex polygons [16] and a regularised Heaviside step function [17,18] have been pro-
posed. Nonetheless, splitting the integration domain into subdomains spoils the elegance

Algorithms 2023, 16, 290. https://doi.org/10.3390/a16060290 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16060290
https://doi.org/10.3390/a16060290
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1560-7844
https://orcid.org/0000-0003-2758-0917
https://orcid.org/0000-0002-8705-5906
https://orcid.org/0000-0001-5464-6091
https://doi.org/10.3390/a16060290
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16060290?type=check_update&version=2


Algorithms 2023, 16, 290 2 of 21

of XFEM and somehow voids its main purpose of not requiring remeshing as quadrature
subcells are to be introduced. In this context, an efficient solution has been presented by
Ventura in [13,19], where the concept of equivalent polynomials was introduced, which
has been proven its effectiveness in exact numerical integration of polynomials times step
functions over various domain shapes [13,19,20]. The equivalent polynomials concept has
been explored by the authors, and it has been extended to the case of a double disconti-
nuity within a single finite element as a first step towards the integration of an arbitrary
number of discontinuities. This situation is not uncommon and can be encountered when
scenarios such as crack branching, kinking or junction occur [11,21–28]. In this context,
an efficient integration algorithm to exactly evaluate polynomials times double step func-
tion over quadrangular finite element domains is presented in this paper. The proposed
algorithm has been designed to tackle the integration issues that arise in problems involv-
ing more than one discontinuity (such as crack branching or multiple fractures) within
a single enriched finite element of a XFEM discretisation, providing an exact numerical
solution without subdividing the domain. The significance of this work is nonetheless
much deeper, aiming to provide an algorithm that could be remarkably useful not only
in fracture mechanic problems in the XFEM/GFEM domain but also in computational
geometry and as a mathematical tool to solve integrals over non-trivial shape domains with
ease. Along with the proposed algorithm, the double discontinuity equivalent polynomials
(DD_EQP) library is herein presented (Supplemetary Materials). The library is a double
discontinuity version of the equivalent polynomials library (EQP) recently developed by the
authors [20] to evaluate integrals of polynomials times step function over various shapes
of 2D and 3D domains of integration. DD_EQP is a simple and direct application of the
proposed integration algorithm; it can be used right away by users or implemented in more
complex computational software or frameworks effortlessly. The structure of the paper is
briefly summarised. In Section 2, a literature review about numerical methods in fracture
mechanics and problems involving multiple discontinuities is presented in order to give
context to the proposed algorithm. In Section 3, the theory behind the proposed algorithm
is introduced in the context of fracture mechanics by means of a quadrangular domain (as a
part of a bigger body discretisation) crossed by two discontinuities (i.e., cracks developing
within the element). The discontinuities are reproduced through Heaviside step functions.
As the occurrence of numerically integrating these functions arises, the proposed algorithm
for integrating polynomials times double step function over quadrangular domains by way
of equivalent polynomials is set out. In Section 4, the software library DD_EQP embedding
the proposed algorithm is presented as a handy tool to promptly use the formulation, and
some practical examples are carried out in order to validate the algorithm and demonstrate
its robustness. Finally, in Section 5, a discussion about the presented work is carried out,
outlining its advantages and its practical applications, as well as potential improvements
and possible future developments.

2. Literature Review
2.1. Numerical Methods in Fracture Mechanics

The development of numerical methods to address fracture mechanics problems has
been tackled by various authors. The issue is not trivial since the FEM, being a piecewise
differentiable polynomial approximation, is ill-suited for problems involving discontinuities
(such as cracks) [29]. The use of FEM in such problems depends on an accurate and time-
consuming discretisation process [29,30], where the finite element mesh has to be carefully
defined following the discontinuity interface in order to obtain exact results. Moreover,
as the discontinuity evolves (i.e., crack growth problems), the mesh has to be regenerated
at each step of the analysis to track the discontinuity growth path [30], leading to high
computational costs. Methods such as the cohesive zone model (CZM) proposed by
Barenblatt [31] and Dugdale [32] and the boundary element method (BEM) [33] were a
first step towards the development of effective numerical methods for fracture mechanics
problems. The recent evolution of CZM, such as in [34–36], and advancements in BEM, such
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as the scaled boundary finite element method (SBFEM) [37,38], proved their effectiveness
in fracture mechanics, delivering accurate results. Along with these methods, partition
of unity methods (PUM) and element-free Galerkin-based formulations were developed
by various authors [39,40]. PUM allows for the definition of solution spaces with local
properties established by the user [5,41]. The method has been developed by Babuška and
Melenk [41] specifically to solve problems in which standard FEM fails or the results are
excessively expensive. PUM relies mainly on two features:

• Allowing the introduction of a priori knowledge about the solution in the approxima-
tion space [41];

• Permitting the building of approximation spaces of any desired regularity [41].

These properties allow us to overcome FEM limits, such as the restriction of local
approximation to polynomials and the poor approximation properties of polynomial
functions for certain problems [41]. The PUM enrichment approximation field can be
generally defined as

u(x) = ∑
I∈n

NI(x)uI + enriched terms (1)

where n is the nodal point set and NI(x) are the standard shape functions [29]. The PUM
is the base of methods especially designed to tackle problems involving discontinuities,
singularities, localised deformations and complex geometries such as GFEM and XFEM [12].
GFEM has been introduced by Strouboulis, Babuška and Copps [42], and it is an extension of
the traditional FEM used in numerical analysis. It allows for the incorporation of additional
enrichment functions or enrichment techniques to better capture localised phenomena, such
as singularities, discontinuities or highly varying solutions. GFEM enhances the capabilities
of FEM by enriching the basis functions used in the approximation, thereby improving the
accuracy of the solution in regions of interest [43]. The elements incorporating enrichment
functions have additional degrees of freedom associated with the enrichment, allowing
for a more accurate representation of the solution. The enrichment functions are often
defined based on the local behaviour of the solution. The main features of this method are
the use of meshes that are partially or totally independent of the domain geometry and
the approximation enrichment by special functions of interest [43]. XFEM, on the other
hand, is a specific type of GFEM developed by Belytschko et al. [7,14] for engineering
problems involving discontinuous and singular functions. XFEM introduces additional
degrees of freedom and enrichment functions, such as the Heaviside step function, that
can model the displacement field around discontinuities without the need for explicit
meshing of the crack surfaces [12]. This makes XFEM particularly useful for fracture
mechanics problems involving crack propagation or complex geometries. In XFEM, a
discontinuous displacement field along the crack surface is introduced by simply adding
more basis functions to the approximation. Additionally, when XFEM and level sets
are used together, the geometry and displacement field of a crack can be built in terms
of the original mesh nodal values. These benefits are especially significant when the
geometry changes, as in the case of a developing crack [12]. Still, in the context of Galerkin-
based methods, although computationally more expensive than standard FEM, mesh-
free methods represent a solid formulation to deal with fracture mechanics and large
deformation problems and provide an alternative approach to traditional mesh-based
methods [44]. These methods, such as smoothed particle hydrodynamics (SPH) [45]
and the reproducing kernel particle method (RKPM) [46], offer advantages in handling
crack propagation and complex fracture behaviour without the need for a predefined
mesh. Mesh-free methods utilise a set of scattered nodes to discretise the problem domain,
allowing for adaptive refinement and efficient computation [40]. The efficient use of
mesh-free methods in the context of crack propagation, branching and multiple cracks
has been extensively discussed in [11,22,24,47,48]. Mesh-free methods have gained major
attention lately; however, FEM is still a convenient method, and XFEM offers numerous
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advantages for problems involving discontinuities. Some of the aforementioned benefits of
FEM/XFEM are:

• FEM employs a structured mesh to discretise the domain into elements, resulting
in efficient data representation, storage and manipulation and enabling the use of
optimised algorithms and data structures to improve computational performance [49];

• FEM demonstrates excellent convergence properties. The accuracy of the solution
improves as the mesh is refined. Convergence analysis plays a crucial role in assessing
the reliability of numerical simulations [50];

• FEM generally provides higher accuracy for problems with smooth solutions. This
advantage arises from the use of polynomial interpolation functions within each
element, resulting in accurate approximations [51];

• XFEM is specifically designed to handle problems with discontinuities, and it can
accurately represent the crack geometry without explicitly meshing the crack sur-
faces [8]. This eliminates the need for crack-tracking procedures that may be required
in mesh-free methods [24,52];

• XFEM provides a more stable solution and higher accuracy compared to many mesh-
free methods in capturing stress and displacement fields near the crack tip by means
of enrichment approximation functions [44];

• Mesh-free shape functions do not possess Kroneker delta properties; this results in a
bigger computational effort compared to XFEM [44,53];

• In XFEM, the crack geometry is implicitly represented within the finite elements,
which reduces the dependency on the mesh density. This leads to a more efficient
computational process and reduces the computational cost [12]. Mesh-free methods
may require a large number of nodes or particles to accurately capture localised
phenomena, such as cracks [44].

It is important to note that the advantages mentioned above are specific to certain
aspects of FEM/XFEM over mesh-free methods and that the choice between them depends
on the specific requirements and characteristics of the problem at hand.

2.2. Multiple Discontinuities Problems

Problems involving multiple discontinuities have been addressed by various au-
thors [22,24,25,27,28,54,55]. A notable approach in the XFEM context has been proposed
by Daux et al. [26], in which a technique for modelling cracks with multiple branching is
carried out. A linear combination of Heaviside step functions (one for each discontinuity)
is used together with a junction function that defines the solution behaviour on either side of
the crack’s junction point. The junction function is still a discontinuous step function related
to the value of the Heaviside functions representing each discontinuity. The displacement
approximation formulation for this method can be written as

uh(x) = ∑
I∈n

uIφI(x) +
Nc
∑

J=1
∑

I∈LJ

aI,JφI(x)HJ(x)

+
Nt
∑

J=1
∑

I∈KJ

φI(x)
(

4
∑

L=1
bL

I,J FL
J (x)

)
+

Nx
∑

J=1
∑

I∈JJ

cI,JφI(x)JJ(x)
(2)

in which:

• LJ ⊂ I are the nodes to enrich for the j-th discontinuity, as such their support does not
contain the ends of the discontinuity, and aI,J are the respective enriched degrees of
freedom [26];

• KJ ⊂ I are the nodes to enrich for the j-th discontinuity extremity, as such their support
contains the ends of the discontinuity, and bL

I,J , L = 1, ..., 4 are the respective enriched
degrees of freedom [26];

• JJ ⊂ I are the nodes to enrich for the j-th junction, as such their support contains the
j-th junction, and cI,J are the respective enriched degrees of freedom [26].



Algorithms 2023, 16, 290 5 of 21

As for the standard XFEM formulation, this method introduces discontinuous func-
tions into the solution space of enriched elements that require special attention when
performing numerical integration in order to obtain correct stiffness matrix values. In [26],
the numerical integration of enriched elements is performed through the formulation pre-
sented in [7], where the integration domain Ω is split into subdomains Ωs, in which the
enrichment functions and the junction functions are continuous. Thus, a subdivision of
the integration domain is needed, although it is only necessary for quadrature [26]. The
approach presented in [26] is also reported in [25], where some numerical testing is carried
out. The approach in [26] offers an efficient method to address problems involving two or
more discontinuities within an enriched element; however, the splitting of the domain is
necessary in order to obtain precise integration results. Similar integration approaches are
also found in [27,28]. The proposed formulation fits well into this scope, delivering exact
results through an efficient numerical integration algorithm without defining subdomains.
Moreover, the formulation can handle not only intersecting cracks but also cracks that
cross an element without intersecting each other. This results in interesting applications in
other domains such as computational geometry and computer graphics or as an efficient
method for the evaluation of integrals over complex domain shapes, obtained by trimming
a regular quadrangular domain with one or two discontinuities (as explored in [56]).

3. Materials and Methods

Many computational and physical models often require the numerical integration of
polynomials times step functions. As a significant example, one can consider the stiffness
matrix computation of a mechanical system in the framework of XFEM for the mechan-
ical behaviour prediction of solids and structures containing one or more cracks [9–11].
As pointed out in Sections 1 and 2, introducing an integration algorithm to exactly inte-
grate polynomials times double step functions in quadrilateral domains is useful since it
significantly simplifies the numerical integration process in problems involving double
discontinuities within an enriched element, removing the need for domain splitting, which
is normally performed in such eventualities. Moreover, the proposed formulation facilitates
the coding of the integration procedures in a wide range of applications, reducing the imple-
mentation and computational time required to solve such integration problems. In addition
to computational mechanics, various fields, such as computer graphics, the evaluation of
geometric region properties and computer simulations in general, could benefit from the
proposed algorithm. In fact, similar integration problems have been recently addressed in
different studies [55–75]. The proposed integration algorithm is described in detail in the
following subsections by means of a practical example in which a quadrangular element
of a generic body discretisation crossed by two discontinuities is considered. The need to
integrate a polynomials times double step function emerged as the element stiffness matrix
had to be computed.

3.1. Problem Statement

Consider a body B and let u be the displacement field so that the local partition of
unity (PU) approximation field referred to the set of variables x = (x, y) is:

u(x) = ∑
I∈n

NI(x)(uI + aIΨ(x)) (3)

where n is the number of nodes of the finite element mesh, NI(x) are the shape functions
of the finite elements, Ψ(x) is the enrichment function and uI and aI are the standard and
enriched nodal variables, respectively. Assume that d is an ensemble of m discontinuity
surfaces, and let si(x) be the signed distance of a point x to the i-th discontinuity surface di.
In the case of a strong discontinuity (e.g., a crack), the discontinuity in the displacement
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field can be described considering the standard Heaviside step function as the enrichment
function Ψ [25]:

Ψ(x) = H(x) = sign(si(x)) =
{

1 if si(x) ≥ 0
0 if si(x) < 0

(4)

Note that, in the context of XFEM, the Heaviside enrichment component is to be
applied to the nodes of the elements crossed by the discontinuity, called enriched ele-
ments [13]. Moreover, the existence of the enrichment function in (4) in the enriched
elements through (3) results in the standard Gauss quadrature method for calculating the
element stiffness matrix being unsuitable. As stated in Section 1, the standard approach is
to divide the element domain into quadrature subdomains, which are defined by the i-th
discontinuity surface di [13]. In the following subsections, the method to avoid domain
subdivision will be deployed. In Section 3.2, the problem of a finite element cut by a
strong discontinuity and the solution proposed in [13] will be illustrated. Starting from this
solution, the problem of a finite element cut by two strong discontinuities is analysed and
the proposed algorithm will be introduced in Section 3.3.

3.2. Integration Algorithm for Single Discontinuity Problems

Consider the body B described in Section 3.1. Suppose that it is meshed utilising
bilinear quadrilateral finite elements, and analyse an element Ω of the mesh. Assuming
that Ω is split in two parts by a discontinuity line d (defined by (5)), it is possible to define
two subdomains on the two sides of the discontinuity: Ω+ and Ω− (Figure 1).

Figure 1. A 2D quadrangular domain Ω crossed by a discontinuity line d.

d : ax + by + c = 0 (5)

The vector n+ in Figure 1 defines the positive portion of the element domain Ω and
points in the direction of Ω+. The coefficients a and b in (5) for the internal discontinuity
line d are used to describe the components of the vector n+, which is orthogonal to d.

The equivalent polynomial technique [13,19] allows us to map the integrand terms
containing the discontinuous Heaviside function onto an equivalent polynomial with the
same integral. This allows us to map the integrand onto a polynomial function, so that
standard quadrature rules (e.g., Gaussian) can be applied and partitioning into subdomains
is no longer required.

To describe the equivalent polynomial technique, the symbolic form of the finite ele-
ment stiffness matrix is taken as a reference [13], but the general idea is that any integrand
containing terms given by a polynomial times the Heaviside function can be exactly inte-
grated by replacing the discontinuous Heaviside function with an equivalent polynomial
counterpart.



Algorithms 2023, 16, 290 7 of 21

With reference to a classical linear small displacement elasticity problem, the displace-
ment and strain fields in a single enriched finite element can be written as:

u = NuΩ + ΨΩNaΩ (6)

ε = BuΩ + ΨΩBaΩ + (∇εΨΩ)NaΩ (7)

where uΩ and aΩ are the element standard and enriched nodal variables and ∇ε is the
symmetric gradient operator, so BuΩ = (∇εN)uΩ. E is the elastic operator, so that the
stress σ is given by σ = Eε [13]. Therefore, we consider that:

• The strain matrix B is defined by linear functions for the bilinear quadrilateral ele-
ment [13];

• ∇εΨΩ is identically zero [13].

Then, the element stiffness matrix for the nodal variables uΩ and aΩ is given by:

KΩ =
∫

Ω

[
kuu kua
kau kaa

]
dΩ =

∫
Ω

[
BTEB HBTEB

HBTEB H2BTEB

]
dΩ (8)

where the off-diagonal part HBTEB is not integrable by Gauss quadrature in the entire
domain Ω [13]. The solution proposed by Ventura [13,19] through equivalent polynomials
is based on substituting the discontinuous Heaviside function H(x) with an equivalent
polynomial function H̃(x), continuous over the entire domain, Ω, such that [20]:∫

Ω
H̃(x)pn(x)dΩ =

∫
Ω-

H(x)pn(x)dΩ +
∫

Ω+
H(x)pn(x)dΩ (9)

where pn(x) is an n-degree polynomial function to be integrated (such as BTEB in (8)).
If such polynomial H̃(x) exists, the integration can be performed on the entire domain

of the element using traditional Gauss quadrature [13]. Therefore, substituting the defi-
nition of H(x) from (4) into (9), a polynomial function pn(x) can be integrated over the
domain Ω+ (Figure 1) through the integral:

I =
∫

Ω+
pn(x)dΩ =

∫
Ω

H(x)pn(x)dΩ =
∫

Ω
H̃(x)pn(x)dΩ (10)

Thus, it is no longer required to partition the domain of integration, and the integral
in (10) can be evaluated over the entire domain, Ω. Based on the theory introduced in [13,19]
an equivalent polynomial library called EQP has been developed by the authors [20]. This
library is an effective practical tool that allows the user to evaluate integrals of polynomials
times step function over various shapes of 2D and 3D domains of integration.

3.3. Integration Algorithm for Double Discontinuity Problems

The case of multiple discontinuities within the same finite element is not uncommon
in the context of fracture mechanics [20], for instance when crack branching, kinking or
junction occurs, both in linear and nonlinear materials [11,21–24]. Consider the body R
introduced in Section 3.2 and a quadrangular element of its mesh, Ω, assuming it is divided
into four portions by the discontinuity lines q and r, as illustrated in Figure 2. Define ΩA
as the partition obtained when the normal to each discontinuity points inwards. Starting
from ΩA, the remaining partitions (ΩB, ΩC and ΩD) are defined counterclockwise by
convention.
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Figure 2. A 2D quadrangular domain Ω crossed by two discontinuity lines: q and r.

The element stiffness matrix (in the context of XFEM) has to be evaluated on each of
the four subdomains ΩA, ΩB, ΩC or ΩD. As seen in (8), such a matrix will contain discon-
tinuous functions times polynomials that cannot be integrated using standard quadrature
rules over the entire domain, Ω.

It should be observed that the definition of the Heaviside step function (4) is such
that the integrand function is zeroed on the subdomains with negative signed distance,
so that a proper definition of the discontinuities normal vectors allows us to perform the
quadrature on each subdomain. This also allows straightforward extension of the method
to the generalised Heaviside function, having values +1 and −1 on the two sides of the
discontinuity instead of +1 and 0, as per definition (4).

Assume an nth-degree polynomial pn(x) to be integrated across the subdomains ΩA,
ΩB, ΩC or ΩD obtained by partitioning a regular 2× 2 square centred in (0, 0) on the (x, y)
reference system with two lines q and r, so it is:

Ii =
∫

Ωi

pn(x)dΩ (11)

where: i = {A, B, C, D} and pn(x) = k0 + k1x + k2x2 + k3xy + k4y + k5y2 + ... + km−1xn +
kmyn.

To compute the integral in (11) for each value of i with standard quadrature approaches,
the definition of each integration subdomain Ωi is required. Due to the possibility of the
integration domains producing rather complex polygonal shapes depending on the slope
of the lines, this is not always an easy task.

The target is to use the equivalent polynomials for the two discontinuities p and r
in order to allow, for each subdomain Ωi, the integration over the entire element domain
Ω by means of the regular Gauss–Legendre quadrature rule, i.e., to compute (11) with
integrations on the entire element domain Ω instead of Ωi.

Let H̃p+ and H̃r+ be the equivalent polynomials related to the normals np+ and nr+ ,
and H̃p− and H̃r− be the equivalent polynomials related to the reversed normals −np+ and
−nr+ . With reference to Figure 2, we have:

IA + ID =
∫

ΩA
⋃

ΩD

pn(x)dΩ =
∫

Ω
H̃q+(x)pn(x)dΩ (12)

IA + IB =
∫

ΩA
⋃

ΩB

pn(x)dΩ =
∫

Ω
H̃r+(x)pn(x)dΩ (13)

IB + IC =
∫

ΩB
⋃

ΩC

pn(x)dΩ =
∫

Ω
H̃q−(x)pn(x)dΩ (14)

IC + ID =
∫

ΩC
⋃

ΩD

pn(x)dΩ =
∫

Ω
H̃r−(x)pn(x)dΩ (15)
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Equations (12) to (15) give a system of four equations in the four unknowns IA, IB, IC
and ID that, in general, can be proved to be indeterminate. In particular, it can be observed
that if the intersection point between the two discontinuities q and r is external to the
element domain or is on its boundary, then the solution will be unique. If the intersection
point lies inside the element domain, the system will be indeterminate, with the system
coefficient matrix having rank three.

When the intersection point between the two discontinuities q and r is internal to the
element domain, the above observation suggests the introduction of an auxiliary integration
limit s along the abscissa axis of the element domain to eliminate indeterminacy. The line
x = s contains the discontinuities intersection point P and is parallel to the vertical axis of
the reference system. It should be noted that the introduction of the auxiliary integration
limit s keeps the reduced integration domain rectangular, so that standard quadrature rules
can be applied.

Let H̃(s)
q+ (x) and H̃(s)

r+ (x) be the equivalent polynomial functions for the discontinuities
q and r evaluated into the regular 2× 2 square element (called the parent element), with
respect to the domain bounded by s (Figure 3). Combining them together, it is possible to
find the equivalent polynomial H̃i(x):

Ii =
∫

Ωi

pn(x)dΩ =
∫

Ω
H̃i(x)pn(x)dΩ (16)

(a) (b)

Figure 3. Use of the auxiliary integration limit s to evaluate the equivalent polynomials H̃i(x). In

the figure H̃B(x) = H̃(s)
q+ (x)− H̃(s)

r+ (x). (a) Integration domain evaluated by means of H̃q+ (x) with
respect to the discontinuity q and the auxiliary integration limit s. (b) Integration domain evaluated
by means of H̃r+ (x) with respect to the discontinuity r and the auxiliary integration limit s.

With reference to Figure 3, the equivalent polynomial functions to perform the integra-
tion on each of the four areas in (16) are

H̃A(x) = H̃q+(x)− H̃B(x) (17)

H̃B(x) = H̃(s)
q+ (x)− H̃(s)

r+ (x) (18)

H̃C(x) = H̃r−(x)− H̃B(x) (19)

H̃D(x) = H̃r+(x)− H̃q+(x) + H̃B(x) (20)

with the equivalent polynomial functions H̃A(x) . . . H̃D(x) representing linear combinations
of equivalent polynomials for the single discontinuity lines q and r, they will depend on the
equations of the two discontinuities and, according to [13,19], will have the same degree of
pn(x) and the algebraic polynomial form:

H̃i(x) = c ·m(x) (21)
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where the vector m(x) gather a monomial basis, i.e., m(x) = (1, x, y, x2, ...), and c is a vector
of coefficients [20]. Since H̃i(x)pn(x) is a polynomial function that is continuous over the
entire domain, Ω, it can be exactly integrated with a proper quadrature rule [20]. It has to
be noted that the integrand in (16) has doubled its degree, compared to the one in (11), thus
slightly increasing the computational effort. The main advantage of this approach is that it
allows integration over the standard domain Ω or its rectangular restriction defined by the
line s, rather than the non-standard partitioned subdomains ΩA . . . ΩD.

3.4. Algorithm Description

The purpose of the proposed algorithm is to deliver the expression for the equivalent
polynomial function H̃i(x), in order to compute the integral in Equation (16) without
splitting the integration domain. The usefulness of the proposed algorithm is presented
by way of a generic example. Let us consider a polynomial pn(x) to be integrated over a
subdomain Ω̄A, generated by dividing a parallelogram Ω̄ with two lines q̄ and r̄, as shown
in Figure 4a. The problem is defined in the global coordinate system x = (x, y). Applying
Equation (16) after the equivalent polynomial function H̃A(x) determines:

I =
∫

Ω̄A

pn(x)dΩ̄ =
∫

Ω̄
H̃A(x)pn(x)dΩ̄ (22)

Beforehand, the problem has to be mapped to a standard quadrature domain. There-
fore, a change in variables from the (x, y) coordinate system to the parent coordinate system
(ξ, η) is employed in order to compute the integral over a standard and regular domain,
as illustrated in Figure 4b. By means of such a procedure, single parent geometry can be
used to address various scenarios. Thus, parallelograms having any position and size in
the global coordinate system can be mapped to the square parent geometry in the local
coordinate system (ξ, η) ∈ [−1,+1] illustrated in Figure 4b.

(a) (b)
Figure 4. Isoparametric mapping of a quadrangular element. (a) Element configuration in the global
coordinate system. (b) Element configuration in the parent coordinate system.

The mathematical concept used in the proposed algorithm (as well as in the DD_EQP
library) for this purpose is isoparametric mapping, which is commonly employed in the
FEM [9,49]. Let P(ξ, η) ∈ Ω be a generic point in the parent reference system, corresponding
to the point P̄(x, y) ∈ Ω̄ in the global reference system. The mapping of P(ξ, η) onto P̄(x, y)
is described by:

x =
v

∑
i=1

Ni(ξ, η)xi (23a)

y =
v

∑
i=1

Ni(ξ, η)yi (23b)
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where v is the number of nodes of the geometric element denoted by coordinates (xi, yi) in
the global reference system, and Ni(ξ, η) is the shape function in terms of local coordinates
for the parent element i-th node [20].

Likewise, the discontinuities q̄(x) and r̄(x) equations, defined in the global reference
system, have to be mapped onto q(ξ) and r(ξ), defined in the parent coordinate system
(Figure 4). This is achieved by:

• Calculating the signed distances (Di) in the global coordinate system between each
discontinuity and each node of the integration domain;

• Writing the discontinuity coefficients (a, b and c) in the parent coordinate system as a
function of Di by solving a linear equations system;

• Substituting the variables x and y in q̄(x) and r̄(x) by means of Equation (23), so that
q(ξ) and r(ξ) are obtained in terms of the coefficients a′, b′ and c′ dependent on Di.

For a 2D square parent element, the coefficients are:

a′ =
D2 − D1

2
(24a)

b′ =
D3 − D1

2
(24b)

c′ =
D2 + D3

2
(24c)

After q̄(x) and r̄(x) are transformed into q(ξ) and r(ξ), the correct expression for the
equivalent polynomial function H̃i(x) with respect to the parent domain coordinate system
can be generated. The coordinates and integration domain transformation in the quadrature
are then introduced using the Jacobian matrix, which contains the partial derivatives of the
interpolation functions Ni that are differentiated with respect to the parent system variables
(ξ, η) [76].

I =
∫

Ω̄
H̃i(x)pn(x)dΩ̄ =

∫
Ω

H̃i(ξ)pn(ξ)|J|dΩ =

=
gp

∑
j=1

wj H̃i(ξ j, ηj)pn(ξ j, ηj)|J(ξ j, ηj)|
(25)

where |J| is the Jacobian matrix determinant. The integral in Equation (22) is calculated
in (25), applying the standard scheme of the Gauss–Legendre numerical quadrature [77].
In (25), gp stands for the number of Gauss–Legendre quadrature points and wj stands for
each point weight. It needs to be emphasised that the proposed algorithm is intended for
integration over the entire domain Ω̄ yielding the result of the integral over the subdomains
Ω̄A, Ω̄B, Ω̄C and Ω̄D. Thus, the discontinuities equations have to be accurately defined, so
that the unit vectors ni

+ point inwards. Additionally, it has to be noted that the disconti-
nuities do not necessarily have to intersect Ω̄ or one another (the proposed algorithm can
handle all possible scenarios). The composition and the degree of the polynomials that
can be precisely integrated using the suggested technique rely on specific requirements
necessary to find the equivalent polynomial, as can be deduced from Refs. [13,19].

4. Results

The algorithm presented in Section 3.4 has been implemented into a Fortran library
called double discontinuity EQP, DD_EQP, which provides the expressions of the equivalent
polynomial functions H̃i(x) for 2D quadrangular integration domains as a function of
the position of two discontinuity lines. In this Section, the library is used to validate
the proposed algorithm and prove its robustness by means of numerical examples. The
equivalent polynomial functions H̃i(x) are evaluated into a regular square parent element.
More details about the mathematical formulation employed to compute the equivalent
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polynomial H̃i(x) for each discontinuity can be found in [13,19]. It has to be noted that
the exact same procedure can be applied to a standard triangular parent element and
that an extension of the proposed formulation to three-dimensional parent elements such
as tetrahedrons and hexahedrons is possible, but it will not be discussed further in this
paper. Moreover, in [20], the standard equivalent polynomial formulation (see Section 3.2),
which is the base for the proposed algorithm, has been applied to non-polygonal element
shapes such as circle or sphere parent elements. An extension of the proposed method
to other non-conventional polygonal shapes can be achieved (as long as the conditions
to define an equivalent polynomial for the chosen polygonal shape are met). However,
since quadrangular bilinear elements are commonly employed in finite element analysis in
contrast to generic polygons [9,49,76], this paper focuses on this particular element shape.

In the following subsections, the library architecture is presented and two numerical
examples are carried out. The results obtained by means of the proposed algorithm are
then compared with other integration methods and validated.

4.1. Library Architecture

The library source code is freely available and usable. The fundamental file of the
library is dd_eqpol.f90, in which the algorithm to map the discontinuities from the global
coordinate system to the parent coordinate system (retrieving their coefficients) and the
algorithm to evaluate the equivalent polynomial functions H̃i(x) are contained. Other files
that include the coefficients’ analytical expressions, required to evaluate the equivalent
polynomial functions, complete the system. Table 1 contains a list of the monomials that the
integrand polynomial function can be made up of. Nevertheless, in each of the analysed
domains, the library may be extended to any polynomial degree. Note that the method
provides exact results for constant Jacobian and approximate results for non-constant
Jacobian [13,19].

Table 1. Integration domain, domain type, parent element domain and monomial basis included in
the library.

Domain of
Integration Etype Parent Domain Monomial Basis

Parallelogram 21 1, x, x2, y, xy, y2

The library is completed by the module file class_Quad.f90, which contains the 2D
square finite element Class and all the methods needed to perform the element isoparamet-
ric mapping and to evaluate the integral in (25). The module file i_functions.f90, containing
the methods to handle the data input via text file, is also provided. A main program file,
main.f90, which implements both the library and the 2D square element Class is provided
for the purpose of usage demonstration. The practical use of the library follows these steps:

1. Primary data preparation:

• Individuation of the domain nodal coordinates in the global coordinate system;
• Individuation of the discontinuities coefficients in the global coordinate system;
• Selection of the domain portions to be evaluated.

2. Isoparametric mapping onto the parent element domain and computation of the
coefficient vector of the equivalent polynomial by means of the DD_Heqpol_coefficients
subroutine.
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3. Quadrature by way of any chosen rule (i.e., (25)) in which the equivalent polynomial
values at the quadrature points are provided by the function HeqPol and the Jacobian
matrix determinant is given by the function detJ.

In order to obtain exact quadrature results by means of the current version of the
library, the following conditions have to be met:

• The Jacobian of the transformation in (25) has to be constant;
• The polynomial pn in (22) is a linear combination of the monomials presented in

Table 1.

It should be noted that two calls are needed if users seek to directly incorporate
the core of the library into their own quadrature algorithm: one call to the subroutine
Heqpol_coefficients for each integration domain (step 2, mentioned previously), and one to
the function HeqPol for each quadrature point (step 3, mentioned previously). Notice that
users can add their own quadrature algorithm directly into the element Class. In this case,
a new method has to be defined within the element Class and a call to this method in the
EvalQuad and EvalQuadFromFile subroutines has to be foreseen.

4.2. Numerical Examples

The presented examples are reproducible by means of the usage example files exam-
ple_1.txt and example_2.txt provided along with the library. The results produced by the
library are exact with machine precision.

4.2.1. Parallelogram Partitioned by Two Discontinuities Intersecting within the Element

The parallelogram element Ω̄ shown in Figure 5a as a part of a bigger body discretisa-
tion is examined in the first example. All dimensions are in meters. The element is crossed
by two discontinuities, described by means of the lines q and r:

• q : 7
4 x− y− 7

2 = 0;
• r : 7

4 x + y− 21
2 = 0.

and split into the subdomains Ω̄A, Ω̄B, Ω̄C and Ω̄D. The objective is to evaluate the inertia
tensor and the area of Ω̄B, namely solving the integral in (26) by means of the proposed
formulation without subdividing the integration domain Ω̄.∫

Ω
m(x)Hq(x)Hr(x)dΩ (26)

where vector m(x) contains the monomial basis listed in Table 1 and Hq(x) and Hr(x)
are the step functions for each discontinuity line (see (4)). Note that the normal to each
discontinuity line has to be accurately defined for the sake of obtaining the targeted domain
portion (as discussed in Section 3.3).

The software maps the parallelogram Ω̄ onto the parent coordinate system, which is
used to compute H̃B(x) and carry out the integration.



Algorithms 2023, 16, 290 14 of 21

(a) (b)
Figure 5. Software illustrative examples. (a) Example 1: parallelogram domain cut by two discontinu-
ities intersecting inside the domain. (b) Example 2: parallelogram domain cut by two discontinuities
intersecting outside the domain.

After launching the library example program, the user has to choose whether to input
the data manually as the program executes or select an input data file.

Input from file? (y/n): y
example_1.txt

For the first example, the input data is provided by the text file example_1.txt.

\\ DOUBLE DISCONTINUITY EQP LIBRARY
\\ EXAMPLE 1: DISCONTINUITIES INTERSECTING INSIDE THE DOMAIN
$ElementType
\\ 21 : Quad
21
$Coords
\\ Set the coordinates for the element
\\ 1st col : x
\\ 2nd col : y
\\ Coordinates Scheme :
\\ Quad Element :
\\ 4-------------3
\\ | |
\\ | |
\\ | |
\\ | |
\\ | |
\\ 1-------------2
2.0 1.5
6.0 2.5
4.5 4.0
0.5 3.0
$NumOfDiscont
\\ Number of discontinuities crossing the element (1 or 2)
2
$DiscontCoefficients
\\ a,b,c coefficients for each discontinuity
\\ coefficients are separated by a blank
1.75 -1.0 -3.5
1.75 1.0 -10.5
$ElementPart
\\ In case of 2 discontinuities choose the element portion
\\ to integrate
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\\ Part : A, B, C, D, all
\\ 3-----4
\\ | \A /|
\\ |B \/D|
\\ | / \ |
\\ |/ C \|
\\ 1-----2
B

where ’\\’ identifies a comment in the input section, while ’$’ identifies an input command.
The program creates an output file containing the integration results for all the mono-

mials listed in Table 1, referred to as the selected domain part. The integration result for
the monomial p = 1 corresponds to the area of the selected domain part, while the results
for the monomials y2, x2 and x, y correspond to the elements of the inertia tensor I. The
results produced by the library for the area A and the inertia tensor I of Ω̄B, evaluated with
respect to the global coordinate system (x, y), are:

A = 4.371 m2 (27)

I = ρs

[
33.200 −28.814
−28.814 27.670

]
(units: kg m2) (28)

where ρs is the material surface density (kg/m2).
In order to estimate the performance and robustness of the proposed algorithm, the

integration problem has been addressed by means of the method proposed in [26] (via the
integration procedure defined in [7]). The domain Ω̄ has been split into i = 4 subdomains
(Ω̄A, Ω̄B, Ω̄C, Ω̄D), in which the functions Hq(x) and Hr(x) are continuous and the integral
for the portion of interest Ω̄B has been evaluated by means of Gauss quadrature. The
integral in (26), computed above by way of the DD_EQP library, has also been evaluated
numerically using the adaptive integration method “NIntegrate” of the software Wolfram
Mathematica. Finally, the integration subdomain Ω̄B has been defined in the global reference
system (x, y) by way of the intersections between the discontinuity lines q and r and the
parallelogram domain Ω̄, and the definite integral at the left-hand side of Equation (16)
has been exactly computed. The obtained results coincide up to machine precision for all
evaluation methods, as shown in Table 2.

Table 2. Proposed algorithm error compared to other integration methods.

Integration Method Error %

Domain splitting method ([7,26]) 0.0%
NIntegrate adaptive integration method 0.0%

Definite integral Equation (16) computation 0.0%

4.2.2. Parallelogram Partitioned by Two Discontinuities Intersecting Outside the Element

The parallelogram element Ω̄ shown in Figure 5b as a part of a bigger body discreti-
sation is examined in the second example. As before, all dimensions are in meters. The
element is crossed by two discontinuities, described by means of the lines q and r:

• q : 2
9 x + y− 9

2 = 0;
• r : y− 2 = 0.

and split into three subdomains: Ω̄A, Ω̄B and Ω̄C. The aim is to evaluate the inertia
tensor and the area of Ω̄C, namely solving the integral in (26) by means of the proposed
formulation, without subdividing the integration domain Ω̄.

The input is analogous to the previous example in Figure 5a.
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The results produced by the library for the area A and the inertia tensor I of Ω̄C,
evaluated with respect to the global coordinate system (x, y), are:

A = 6.450 m2 (29)

I = ρs

[
50.817 −58.396
−58.396 78.392

]
(units: kg m2) (30)

where ρs is the material surface density (kg/m2). As in the example in Figure 5a, the
integral in (26), computed above by means of the DD_EQP library, has also been evaluated
numerically by means of the method proposed in [26], via the adaptive integration strategy
NIntegrate of the software Wolfram Mathematica, and by way of definite integral computation
after defining the integration subdomain Ω̄C. Once again, the obtained results coincide to
the level of machine precision for all evaluation methods, as shown in Table 2.

4.2.3. Outcomes

The outcomes of the examples presented in Sections 4.2.1 and 4.2.2 validate both
the algorithm and the DD_EQP library itself, demonstrating the robustness, precision
and versatility of the proposed formulation. It has to be noted that, when equivalent
polynomials are used, the integrand function doubles its degree, thus requiring a higher
computational effort compared to other methods (such as in [7,25,26]) [13,19]. On the other
hand, the proposed formulation removes the necessity of defining subdomains, smoothing
the overall integration process.

5. Discussion

The integration algorithm presented in this paper, as well as the DD_EQP library im-
plementing it, are helpful tools to evaluate the integral of multiple discontinuous functions
by means of any numerical quadrature strategy, removing the need for dividing the domain
of integration. The context for the proposed algorithm is mainly XFEM analysis of cracked
bodies, in which scenarios involving crossing discontinuities are common [27,28,54,78–80].
Moreover, as pointed out in Section 2, the existing methods for addressing multiple discon-
tinuities problems make use of integration strategies in which partitioning of the domain
is required. The proposed algorithm is a perfect fit in this context, delivering a solution
for such an issue and eliminating the need for domain splitting. It can thus potentially be
adopted in many XFEM practical applications in which double discontinuities crossing the
domain occur, such as hydraulic fractures and multiple cracking in rocks [81–84], brittle
cracking and fracture propagation in brittle and quasi brittle materials [85–87], and also
fracture behaviour in bones and bone-inspired bio-materials [88,89], where crack branching,
junction and kinking are frequent. Nonetheless, the algorithm can be extended to various
domains, such as computational geometry, where it is possible to use the library to compute
the geometrical characteristics of complex figures made by cutting a simple shape (i.e., a par-
allelogram) using multiple lines. The proposed formulation could fit problems addressed
by various authors in this field, such as in [68,72,90–94]. The use of both the algorithm and
the library can also be extended to simulations where the objects’ shapes and locations vary
dynamically, such as, for instance, an object that breaks into fragments or computer graph-
ics in general [95–98]. Thus, the effectiveness of the presented algorithm and the simplicity
of the use of the library and its ease of implementation into any computational framework
make them well-suited means for a broad variety of potential applications, since numerical
integration of polynomial functions with jump discontinuities is a frequent problem in
various fields [16,55,56,99–111]. However, it has to be noted that the use of equivalent
polynomials leads to a higher computational effort during quadrature than splitting the
integration domain since the integrand function doubles its degree [13,19]. This aspect
can be particularly burdensome in analyses containing numerous enriched elements. The
optimisation and acceleration of the computation process could be possible improvements.
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Future developments for the proposed formulation include the capability of handling an
arbitrary number of discontinuities and the extension of the presented formulation to other
domain shapes, both 2D and 3D (such as triangular, tetrahedral and hexahedral elements).
Finally, the implementation of the proposed algorithm into computational frameworks
for practical use on a larger scale in the context of fracture mechanics and computational
geometry may also be addressed.

6. Conclusions

The integration of polynomials times double step functions within quadrilateral do-
mains has been explored in this paper. The study focused on investigating the behaviour
and properties of these integrals and their applications in various fields, especially XFEM
analysis. The integration of polynomials times double step functions within quadrilateral
domains represents a challenging task, mainly due to the piecewise nature of the double
step functions. However, an integration algorithm to effectively perform these integrations
by means of equivalent polynomials has been developed and presented in this paper, along
with a software library for its implementation. Both the library and the presented algorithm
are ready-to-use handy tools for numerically computing integrals of polynomial functions
across generic subdomains generated by two discontinuities partitioning a regular integra-
tion domain. In this paper, two practical numerical examples of the library usage have been
carried out, and the results demonstrated the ease of calculation, the removal of complicated
subdomain processing and the absolute accuracy of the proposed algorithm. Moreover,
a comparison with other integration methods for the same numerical examples has been
carried out and validated the proposed formulation. In addition, the utter generality and
extensibility of the mathematical framework that underlies the library and the proposed
formulation are among their key points. Furthermore, in addition to XFEM analysis in the
context of fracture mechanics, the integration of polynomials times double step functions in
quadrilateral domains exhibited promising applications in various fields, such as numerical
simulations, computational geometry and engineering problems that involve modelling
phenomena with sharp transitions or abrupt changes. The capability to accurately integrate
such functions within quadrilateral domains without subdividing the integration domain
could define pathways for more precise calculations in these contexts. Future research can
further explore advanced numerical techniques and optimisation approaches to improve
the efficiency and accuracy and enable the possibility of taking into account an arbitrary
number of discontinuities.
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