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Abstract: Carbon fiber reinforced plastic (CFRP) structures are highly sensitive to delaminations,
resulting from low energy impacts or manufacturing defects. Non-linear numerical algorithms are
mandatory to investigate the complex mechanisms governing the delamination growth phenomena.
Although the high computational costs associated to the non-linear algorithms are acceptable in
a detail verification design stage, less expensive procedures are desired in a preliminary design
stage or during optimization procedure. In this work, a fast numerical procedure, able to determine
the delamination growth initiation in composite structures in the framework of a damage tolerant
design approach when mixed mode I and II growth is expected, is introduced. The state of the art of
the fast delamination growth procedures is critically discussed and improvements to the existing
approaches are proposed to extend their applicability and to increase their accuracy. Comparisons
with the standard non-linear delamination growth approaches are presented to assess the effectiveness
of the proposed novel Fast approach. The results of the proposed fast approach are comparable
with the ones obtained by means of standard numerical non-linear technique, allowing up to 95%
computational cost saving.

Keywords: delamination; mode II; fast approach; damage mechanics; CFRP

1. Introduction

The highly specific stiffness and strength of carbon fiber reinforced plastic (CFRP) materials
have led to a progressive increase of their use in the aerospace industry. However, their integration
in aeronautical components has been delayed by their high manufacturing costs and their damage
mechanisms, which can be hard to predict. As a matter of fact, CFRP structures have been found to
be highly sensitive to delaminations, induced by manufacturing defects [1,2], or resulting from low
energy impacts [3,4]. Indeed, global and local instabilities can result in the growth of a pre-existing
delamination, leading to a premature collapse of the structure [5–7]. Therefore, the development of
innovative numerical tools, able to consider the effects of the delamination onset and propagation
in complex composite components, has become mandatory. In this scenario, newer and faster
methodologies, able to study the delamination growth in a preliminary design stage, are needed to
develop less conservative damage tolerant structures.

The mechanisms governing the delamination growth in composite structures, mostly under
compressive loading condition, have been widely investigated by several authors, from an
experimental [8–12], analytical [13,14], and numerical [15–20] perspective. In particular, the compressive
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behavior of delaminated panels has been simulated, adopting geometrically non-linear analyses,
while the onset of the delamination growth has been simulated based on energy release rate (ERR)
considerations. In [21], the post-buckling behavior of composite panel with embedded delaminations,
subjected to compressive load has been investigated by adopting an analytical procedure based on
the Rayleigh-Ritz formulation. The study demonstrated the correlation between the post-buckling
response and the delamination growth phenomenon.

The compressive behavior of CFRP laminates characterized by multiple delaminations has
been investigated both analytically and experimentally in [22]. In particular, the influence of the
delaminations on the strength and on the residual stiffness of the structure has been assessed. Finally,
the influence of the delaminations location, size, and distribution on the compressive behavior of the
laminate has been investigated by means of numerical simulations.

In [23], an experimental and numerical investigation on the inter-laminar damage behavior of
CFRP stiffened structures is presented. The delamination has been numerically simulated by means
of a virtual crack closure technique (VCCT) [24] and the numerical results have been correlated
with experiments.

A numerical investigation of delaminated CFRP panels has been performed in [25], where an
in-house numerical code was used to assess the influence of the delamination growth on the load
carrying capability of the laminates. 2D and 3D parametric numerical analyses have been performed
on CFRP flat laminates, subjected to compressive load, with two through-the-width delaminations. The
delamination growth has been simulated by means of VCCT, and the effect of multiple delaminations
on the post-buckling behavior has been analyzed. In [26,27], an accurate 3D model able to predict
inter-laminar crack onset and propagation by means of a cohesive zone model (CZM) was introduced.

In [28,29], experimental/numerical studies focused on the effects of reinforcements to delay the
skin-stringer debonding in CFRP components under flexural loading conditions have been presented.
In particular, in [28] the effect of the selective stitching on the onset and the propagation of delamination
has been assessed, while in [29] a novel numerical procedure able to account the “Fibre-Bridging”
effect was introduced.

In [30], the tensile behavior of notched composite laminates was investigated both experimentally
and numerically, assessing the effects of the mutual interaction between inter-laminar and
intra-laminar damages.

Finally, in the recent years, novel high-performance computational tools, based on the isogeometric
analysis (IGA) [31] and the generalized differential quadrature (GDQ) method [32], have been developed.
In particular, in [33,34] the delamination in composites was deeply investigated by using isogeometric
analysis. In [35], a generalized large deformation contact algorithm able to take into account both
frictional contact and mixed-mode cohesive debonding was developed, based on IGA. Moreover,
in [36] the delamination process in multi-layered composite specimens was investigated, while in [37],
the mixed-mode delamination in moment-loaded double cantilever beam (MLDCB) specimens were
studied, both analytically and numerically. The differential equations of the problems in [36,37] were
solved in a strong form by using the GDQ method.

In general, the delamination growth phenomena are usually investigated by means of numerical
technique based on non-linear algorithms, which are characterized by high computational costs.
Despite this, such relevant computational costs could be acceptable in a detailed verification stage, less
expensive procedures are desired in a preliminary design stage or during optimization procedure.

In this work, a fast and linear procedure, able to predict the delamination growth initiation under
mixed fracture mode I and II in stiffened composite panels is presented. The proposed procedure
is expected to be applicable in the frame of a preliminary design/optimization stage on composite
structures subjected to instability loads. Actually, the state of art of fast procedures for the determination
of mode I based delamination growth initiation under compression load for delaminated stiffened
panels [38,39] has been improved, by extending the applicability and increasing the accuracy when
mixed mode I and II growth is expected.
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In Section 2, the theoretical background of the Fast numerical procedure is introduced, and the
improvements to the existing Fast approach of [38,39] are described from a theoretical point of view.
In Section 3, numerical analyses focused on the validation of the described method are introduced, and
the effectiveness of the proposed novel approach is assessed by comparisons with standard non-linear
numerical techniques.

2. Theoretical Background

Buckling is one of the most dangerous phenomena which a composite structure may be subjected
to. Indeed, in delaminated stiffened panels, the buckling can interact with the delamination and, in
particular conditions, the following scenarios may occur:

• The buckling only occurs on the thinner sub-laminate, as reported in Figure 1a.
• Buckling occurs on both thicker and thinner sub-laminates in the delamination region, as reported

in Figure 1b.
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Figure 1. Delamination buckling scenarios: (a) Local buckling of the thinner sub-laminate and (b) Mixed
buckling of both sub-laminates.

Generally, composite stiffened panels with thin bay delaminations subjected to compressive
loads firstly experience Type-a buckling scenarios. Then, the Type-a buckling scenarios may evolve
into the more critical Type-b buckling scenarios, characterized by more dangerous forms of buckling
and/or failure phenomena. Indeed, in the framework of damage tolerant design, the prediction of the
delamination evolution, which may result in Type-a scenarios evolving into Type-b ones, becomes crucial.

The proposed approach can be seen as an improvement of the previously developed mode I
Fast method presented in [38,39]. According to the mode I Fast approach, four linear analyses are
needed to simulate the delamination growth, as shown in Figure 2. In particular, a first eigenvalue
buckling analysis is used to evaluate the delamination buckling load and shape (location A in Figure 2,
characterized by a critical load Fcr and displacement ucr). Then, the buckling load and shape due
to a propagation of the initial delamination are obtained by means of a second eigenvalue buckling
analysis (location A’ in Figure 2, characterized by a critical load Fcr’ and displacement ucr’). Once the
local buckling has occurred, the residual contribution to the global stiffness of the buckled thinner
sub-laminate can be neglected. Hence, considering an unknown propagation displacement u* beyond
the critical displacements ucr and ucr’, the amount of energy E(u*) (area A’ACB in Figure 2), released by
the propagation of the delamination, can be evaluated by using two linear static analyses to determine
the stiffness KA and KA+∆A.
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Figure 2. Stiffened composite panel stiffness: K0: Before delamination buckling; KA: After the local
delamination buckling; and KA+∆A: After the propagated delamination buckling.

It can be assumed that the ERR distribution along the delamination front follows the same
distribution of the square of the first buckling out-of-plane displacements:
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∆wi
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where N is the number of the nodes belonging to the delamination front. Moreover, the location m,
characterized by the maximum ERR, can be evaluated as:
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i

{
Gi(u∗)
Gk(u∗)

}
= max
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(

∆wi

∆wk

)2
 i = 1, . . . , N; k = 1, . . . , N. (2)

Hence, the delamination will propagate from the location m, as soon as the local ERR Gm(u*)
equates the critical value GIC.

Gm(u∗)
GIC

=
∆E(u∗)

∆Am ·
(∆wm)2∑

i

(
(∆wi)

2) · 1
GIC

= 1. (3)

One of the assumptions of the mode I Fast procedure is the predominance of mode I contribution
on the total ERR. This assumption considerably reduces the field of applicability of the procedure to
delamination very close to composite surface and characterized by very thin sub-laminates. Moreover,
the instability of sub-laminates is mandatory for the application of the mode I based procedure.
Hence, in order to extend the field of applicability of the fast procedure, in this paper, a Fast mode II
based approach is introduced, which is aimed to improve the described Fast method by considering,
in addition, the mode II contribution in the evaluation of the energy absorbed in the propagation
phase of delamination. Indeed, in case of global buckling of the skin taking place far after the local
buckling of the delaminated region (new assumption), the mode II contribution can be introduced into
the evaluation of the released energy leading to the mixed modes (mode I and mode II) propagation.
With this additional assumption, the global buckling phenomenon involves a displacement field, in
the delaminated zone, compatible with fracture mode II which causes a mixed mode I and mode II
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delamination growth. Therefore, it is necessary to evaluate the global buckling relating it to local
instability to evaluate the mode II contribution to delamination growth initiation. Assuming the critical
global displacement of the skin uglo, two cases can be considered.

Case 1: Delamination growth initiation occurring before the global buckling (u* < uglo). This case is
representative of mode I dominant propagation mode. Therefore, the theory developed for pure mode
I is still effective, as shown in Figure 3. In addition, a coefficient α, which correlates the contribution of
GIC and GIIC to the total ERR, is introduced, which ranges between zero (pure mode II) and one (pure
mode I). Hence, the total amount of energy released during the propagation can be evaluated as:

∆E(u∗)
∆Am ·

(∆wm)2∑
i

(
(∆wi)

2) [ α
GIC

+
(1− α)

GIIC

]
= 1. (4)

In this work, the coefficient α has been tuned by means of a non-linear VCCT analysis through
Equation (5):

α =
Gmax

I

∆E(u∗)
, (5)

where GI
max is the maximum value of GI found by non-linear VCCT analyses along the

delamination front.
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interaction: u* < uglo.

Indeed, with this approach an anticipation in delamination growth initiation is expected with
respect to the pure mode I approach. This anticipation in growth initiation is due to the presence of the
mode II contribution (neglected in the frame of pure mode I approach).

Case 2: Delamination growth initiation occurring after the global buckling (u* > uglo). In this case, the
structure experiences the global buckling of the skin before delamination growth initiation takes place.
Indeed, after the global buckling of the skin, the structure resulting stiffness can be assumed equal to
the stiffness of the stringers, since the skin loses all the capabilities to further carry compressive load.
Hence, the mode II released energy is related to both local and global critical load and the unknown
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propagation displacement u*. Therefore, according to Figure 4, the additional energy related to mode
II can be evaluated as:

FA = K0ucr + KA
(
uglo − ucr

)
, (6)

FA+∆A = K0ucr′ + KA+∆A
(
uglo − ucr′

)
, (7)

∆E(u∗) =
[
FA
− FA+∆A

](
u∗ − uglo

)
, (8)

∆Etot = ∆E(uGLO) + ∆E(u∗). (9)
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Once the global energy release rate has been related to the applied displacements, in order
to determine the delamination growth initiation load, the maximum energy release rate along the
delamination front should be equated to critical energy release rate in mixed mode configuration.
Indeed, the GI and GII distributions along the delamination front can be assumed dependent on the
local nodal out-of-plane and radial displacements, respectively:

Gi
I(u∗)

Gk
I (u∗)

=

(
∆wi

∆wk

)2

i = 1, . . . , N; k = 1, . . . , N, (10)

Gi
II(u∗)

Gk
II(u∗)

=

(
∆ri

∆rk

)2

i = 1, . . . , N; k = 1, . . . , N, (11)

where ∆wi and ∆ri are, respectively, the opening and sliding displacements at location i of the
delamination front.

Hence, the total amount of energy released during the propagation can be evaluated as:

∆ETOT
∆Am

 (∆wm)2∑
i

(
(∆wi)

2) · αGIC
+

(∆rm)2∑
i

(
(∆ri)

2) · (1− α)GIIC

 = 1, (12)
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where the location m, characterized by the maximum ERR, can be evaluated as:

Gm
I (u∗)

Gk
I (u∗)

·
α

GIC
+

Gm
II (u∗)

Gk
II(u∗)

·
(1−α)
GIIC

= max
i

{
Gi

I(u∗)

Gk
I (u∗)
·
α

GIC
+

Gi
II(u∗)

Gk
II(u∗)

·
(1−α)
GIIC

}
=

= max
i

{(
∆wi

∆wk

)2
·
α

GIC
+

(
∆ri

∆rk

)2
·
(1−α)
GIIC

}
i = 1, . . . , N; k = 1, . . . , N

(13)

3. Numerical Applications and Discussion

In this section, a preliminary validation of the proposed methodology is attempted. Comparisons
against literature data on stiffened panels with circular delaminations have been used to prove the
effectiveness of the proposed approach if compared to standard algorithms implemented in commercial
finite element method (FEM) codes. The proposed fast delamination growth initiation procedure
has been adopted here to investigate the damage behavior of stiffened CFRP panels subjected to
compressive loads characterized by delaminations of different sizes and depths. Two test cases taken
from literature [38,40] have been considered. The results obtained with the mode I Fast and mixed
mode I and II Fast approaches have been compared each other and to standard non-linear VCCT results
to verify the accuracy of the proposed methodology.

3.1. Test Case 1: Validation and Applicability of the Mode I Fast Procedure

The mode I Fast procedure has been implemented in the ABAQUS FEM code [41] by using a
Python script interface. A refined FE model [42] has been introduced in the delamination region, to
accurately evaluate the local buckling of the delaminated region. Indeed, a mesh sensitivity analysis
has been performed to choose the optimum discretization for the finite element model. The structural
configuration adopted for this first test-case [38] has been schematized in Figure 5. The mechanical
properties of the adopted AS4/3501-6 material system are reported in Table 1. The stacking sequences
of the skin, stringer cap, and stringer web are respectively [+45◦/0◦/90◦/−45◦]3s, [+45◦/−45◦/0◦/0◦/90◦]s,
and [+45◦/−45◦/0◦/0◦/90◦]2s. A 20 mm radius delamination between the third and fourth ply (90◦/−45◦
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Table 1. AS4/3501-6 material properties.

E1
(GPa)

E2 = E3
(GPa)

G12 = G13
(GPa)

G23
(GPa)

ν12 = ν13
(-)

ν23
(-)

GIC
(J/m2)

GIIC
(J/m2)

tp
(mm)

147.0 9.0 5.0 3.0 0.3 0.42 175 532 0.188

The FEM model has been discretized with eight-nodes SC8R layered elements. The stringer
feet and the sub-laminates have been connected to the skin by means of TIE constraints, as shown
in Figure 6. Indeed, a more refined mesh has been adopted in the local delamination region while
a coarser discretization has been used for the rest of the panel. This choice allowed to obtain more
accurate results while reducing the computational cost.
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As remarked in [38,39], a number of linear analyses on the configurations with delamination size A
and A + ∆A are needed to evaluate the delamination growth initiation with the mode I fast procedure.

First, the delamination buckling displacement and load for the structure with delamination size A
are obtained by means of a linearized buckling (Figure 7).
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Figure 7. Deformed shape of linear buckling analysis for the stiffened panel with delamination size A.

Then, the critical applied displacements ucr, the critical compressive load Fcr, and the linear nodal
opening ∆wi trend on the delamination front with a size A are evaluated. Hence, the node with
maximum ERR is identified, as shown in Figure 8a.
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A further linear buckling analysis is performed by releasing the node with maximum ERR on the
delamination front, thus considering the delamination size A + ∆A shown in Figure 8b, to obtain the
critical load and displacement Fcr’ and ucr’.

Then, the stiffness K0 of undamaged structure, the post-buckling stiffness KA of the structure with
delamination size A, and the post-buckling stiffness KA+∆A of the structure with delamination size
A + ∆A are evaluated by means of static linear analyses. In order to evaluate the stiffness KA and
KA+∆A, the thinner sub-laminate has been removed from the finite element model to take in account
the stiffness lost related to the delamination buckling. Finally, the applied loads and displacements at
growth initiation and the ERR on the delamination front are evaluated.

Several analyses have been carried out by considering different mesh densities along the tangential
and radial directions of the local delamination region, in order to assess the mesh-dependency for the
proposed approach. In particular, different mesh densities have been considered in a circular area
around the delamination front, where the nodal displacements are evaluated. Therefore, the number
of elements in the radial direction has been progressively increased. In Figure 9, the configurations
characterized by two, four, and eight elements are shown, and the influence of the mesh densities on
the critical propagation strain is reported as well.
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Figure 9. Influence of the element discretization in the radial direction on the critical propagation strain.

Moreover, the influence of the mesh discretization in the tangential direction on the critical
propagation strain has been assessed in Figure 10. Indeed, the number of elements in the radial
direction has been progressively increased, as shown in Figure 10 for the configurations characterized
by 56, 80, and 96 elements.

According to Figures 9 and 10, the discretization of the elements in the delaminated region has a
negligible influence on the critical propagation strain.

Finally, the effectiveness of the mode I Fast approach has been demonstrated in Figure 11, where
the ERRs predicted by both the standard VCCT and the proposed methods on the delamination front
at growth initiation have been compared. Good agreements on the compressive buckling strains
εbuckling and the compressive delamination initiation strains εdel and loads Fdel between the proposed
linear approach and VCCT can be found as well, as reported in Table 2. Moreover, the advantage of
the Fast procedure in terms of computational efforts, respect to the standard VCCT approach, can be
appreciated by comparing the computational times reported in Table 2.
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Figure 11. Comparison of proposed approach and virtual crack closure technique (VCCT) in terms of
normalized energy release rate (ERR) distribution along delamination front.

Table 2. Critical propagation loads and computational time comparison.

Approach εbuckling (µε) εdel (µε) Fdel (kN) Computational Time (s)

Fast Procedure 980.3 1700.7 366.6 295
VCCT 1024.8 1780.0 382.9 4349

The mode I Fast procedure is based on the hypothesis that the delamination mainly propagates
due to the effect of the fracture mode I. However, this hypothesis limits the field of applicability of
the approach to very thin panels with very superficial delaminations. Hence, an investigation of the
influence of the delaminated sub-laminate relative thickness on the delamination growth initiation
load has been performed and compared to VCCT results. Figure 12 reports the error, with respect to the
VCCT approach, on the delamination growth initiation load as a function of the delamination depth.



Appl. Sci. 2019, 9, 4761 11 of 18
Appl. Sci. 2019, 9, 4761 15 of 25 

 

 
Figure 12. Application limits of linear procedure. 

According to Figure 12, a limited range of applicability between 10–20% of delamination depth 
is observed for the mode I Fast approach. Indeed, very thin delaminations lead to a significant delay 
in delamination growth with respect to the local delamination buckling. This delay involves 
significant geometrical non-linear effects in contrast with the main hypothesis of linear structural 
behavior for the applicability of the mode I fast procedure. Moreover, very thick delaminations, 
involving mixed mode I and mode II growth, do not satisfy the main assumption on the 
predominance of mode I for the applicability of mode I fast procedure. 

In order to increase this limited range of applicability and to obtain more accurate results, a 
modified version of the mode I fast procedure has been investigated which considers the influence 
of fracture mode II in the evaluation of energy released during the propagation. 

3.2. Test Case 2: Validation and Applicability of the Mixed Mode I and II Fast Procedure 

The mixed mode I and II Fast procedure has been also implemented in the ABAQUS FEM code 
[41] by using a Python script interface. The effectiveness of this enhanced version of the fast 
procedure compared to the mode I fast procedure has been tested on CFRP stiffened panels with a 
circular delamination with variable size and depth. The structural configuration [40] adopted for this 
second test-case has been schematized in Figure 13. The mechanical properties of the adopted 
(T800/924) material system are reported in Table 3. The stacking sequences of the skin and each of the 
stringers are respectively [(+45°/−45°/0°/90°)4]S and [(−45°/+45°/0°)2]S2. 

Figure 12. Application limits of linear procedure.

According to Figure 12, a limited range of applicability between 10–20% of delamination depth is
observed for the mode I Fast approach. Indeed, very thin delaminations lead to a significant delay in
delamination growth with respect to the local delamination buckling. This delay involves significant
geometrical non-linear effects in contrast with the main hypothesis of linear structural behavior for
the applicability of the mode I fast procedure. Moreover, very thick delaminations, involving mixed
mode I and mode II growth, do not satisfy the main assumption on the predominance of mode I for
the applicability of mode I fast procedure.

In order to increase this limited range of applicability and to obtain more accurate results, a
modified version of the mode I fast procedure has been investigated which considers the influence of
fracture mode II in the evaluation of energy released during the propagation.

3.2. Test Case 2: Validation and Applicability of the Mixed Mode I and II Fast Procedure

The mixed mode I and II Fast procedure has been also implemented in the ABAQUS FEM code [41]
by using a Python script interface. The effectiveness of this enhanced version of the fast procedure
compared to the mode I fast procedure has been tested on CFRP stiffened panels with a circular
delamination with variable size and depth. The structural configuration [40] adopted for this second
test-case has been schematized in Figure 13. The mechanical properties of the adopted (T800/924)
material system are reported in Table 3. The stacking sequences of the skin and each of the stringers
are respectively [(+45◦/−45◦/0◦/90◦)4]S and [(−45◦/+45◦/0◦)2]S2.

Table 3. T800/924 material properties.

E1
(GPa)

E2 = E3
(GPa)

G12 = G13
(GPa)

G23
(GPa)

ν12 = ν13
(-)

ν23
(-)

GIc
(J/m2)

GIIc
(J/m2)

tp
(mm)

155.0 8.57 7.4 4.8 0.33 0.52 280 519 0.125

In particular, two configurations, named SS#1 and SS#4, have been analyzed, characterized by
bay circular delaminations with a radius of 25 mm and 17.5 mm, respectively. For each configuration,
different delamination depths have been considered, and the influence of the size and depth of the
delamination on the delamination growth initiation is assessed. The VCCT method has been adopted
to prove the effectiveness of the proposed mixed mode I and II fast procedure in terms of critical load
and ERR distribution along the delamination front.
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Figure 13. Test case 2 geometrical description (dimensions in mm) and boundary conditions.

In Figure 14, the global model and the local thicker and thinner sub-laminates are shown. Indeed,
the delamination depth is compatible with low velocity impact induced damages.
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Figure 14. Details of global-local approach adopted in FE simulation.

For both configurations, different delamination depths have been considered to assess the
effectiveness and the limits of applicability of proposed mixed mode I and II fast procedure with
respect to the standard mode I fast procedure. In Tables 4 and 5, the delamination growth initiation
applied strains obtained by the standard VCCT approach, by the mode I Fast approach, and by the
mixed mode I and II Fast approach for different delamination depths have been reported for the SS#1
and SS#4 configurations, respectively. Moreover, the delamination growth initiation applied strain
deviations of both mode I Fast and mixed mode I and II Fast approaches with respect to the VCCT
method have been reported as well.
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Table 4. Results summary for SS#1 damage configuration (25 mm radius delamination).

Delamination
Interface

Delamination
Depth εcr Error Analysis Method

4th–5th
(90◦/+45◦) 12.5%

2415.33 VCCT
2887.44 19.5% Mode I Fast
3104.18 22.2% Mixed mode I and II Fast

5th–6th
(+45◦/−45◦) 15.62%

2678.00 VCCT
2645.89 1.2% Mode I Fast
2788.06 3.9% Mixed mode I and II Fast

6th–7th
(−45◦/0◦) 18.7%

3607.00 VCCT
3284.56 9.8% Mode I Fast
3620.72 0.4% Mixed mode I and II Fast

7th–8th
(0◦/90◦) 21.8%

3938.00 VCCT
3266.97 20.5% Mode I Fast
3528.79 11.6% Mixed mode I and II Fast

8th–9th
(90◦/+45◦) 25%

3752.00 VCCT
3474.52 8.0% Mode I Fast
3602.93 4.1% Mixed mode I and II Fast

Table 5. Results summary for SS#4 damage configuration (17.5 mm radius delamination).

Delamination
Interface

Delamination
Depth εcr Error Analysis Method

4th–5th
(90◦/+45◦) 12.5%

2890.67 VCCT
2843.92 1.6% Mode I Fast
3007.27 3.9% Mixed mode I and II Fast

5th–6th
(+45◦/−45◦) 15.62%

3288.00 VCCT
3065.76 7.2% Mode I Fast
3165.35 3.9% Mixed mode I and II Fast

6th–7th
(−45◦/0◦) 18.7%

4804.00 VCCT
4361.94 10.1% Mode I Fast
4509.78 6.5% Mixed mode I and II Fast

7th–8th
(0◦/90◦) 21.8%

5500.00 VCCT
4734.76 16.2% Mode I Fast
4954.13 11.0% Mixed mode I and II Fast

8th–9th
(90◦/+45◦) 25%

5926.00 VCCT
5838.88 1.5% Mode I Fast
5874.92 0.9% Mixed mode I and II Fast

Figures 15 and 16 compare the results of the mode I Fast and mixed mode I and II Fast approaches,
in terms of delamination growth initiation load deviation from the VCCT results, of the SS#1 and SS#4
configurations, respectively. Indeed, the mixed mode I and II Fast procedure allows the extension of
the range of applicability of the mode I Fast procedure, reducing the error in term of delamination
growth initiation load evaluation.

Then, the strain energy release rate (SERR) distributions for the analyzed configurations have
been investigated in order to assess the effectiveness of the mixed mode I and II Fast procedure in
predicting the actual growth location along the delamination front. Again, the effectiveness of the
mixed mode I and II Fast approach can be appreciated by comparing the results, in terms of mode I and
mode II SERR distributions, to the VCCT ones. In particular, in Figures 17 and 18, the comparisons
between SERR considering a delamination between the fifth and sixth ply (+45◦/−45◦ interface), for
SS#1 and SS#4 configurations respectively, are shown.
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Figure 17. Comparison of strain energy release rate (SERR) distribution for SS#1 damage configuration.
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Figure 18. Comparison of SERR distribution for SS#4 damage configuration.

In both cases (of Figures 17 and 18), the implemented mixed mode I and II Fast approach provides
good results, showing an excellent agreement with SERR distribution predicted with the non-linear
technique. The distribution of mode II SERR is related to the radial component of the displacement
field on the delamination front. Hence, it is strongly influenced by depth of delamination and ply
interface. Indeed, nonlinear analysis performed on SS#1 damage configuration with six plies for
delaminated sub-laminate, at −45◦/0◦ interface, shows (Figure 19) that radial component distribution
on delamination front is far from GII distribution probably because the strain energy release rate
distribution undergoes significant variations from the delamination buckling condition to delamination
growth condition, eventually, passing through the global buckling of the skin.
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Figure 19. Radial displacement field from non-linear analysis.

Figure 20 shows the predicted SERR distribution compared to VCCT. As expected, the radial
displacement for the SS#1 damage configuration is not suitable for the evaluation of the GII distribution.



Appl. Sci. 2019, 9, 4761 16 of 18
Appl. Sci. 2019, 9, 4761 23 of 25 

 

 
Figure 20. SS#1-comparison between mixed mode I and II fast procedure and VCCT of SERR 
distribution 

4. Conclusions 

In this work, the delamination growth initiation in stiffened composite panels subjected to 
compressive load has been investigated. A modified version of a previously developed mode I Fast 
procedure, based on linear analyses, has been proposed here for the study of circular delamination 
growth initiation under mixed mode I and mode II propagation. The approach has been preliminary 
validated for embedded delaminations in composite stiffened panels. Several stiffened panel 
configurations, taken from literature, with embedded bay skin delaminations characterized by 
different sizes and depths have been analyzed. 

The proposed mixed mode I and mode II Fast approach has been used to investigate the 
influence of the size and depth of the delamination on the damage tolerance of stiffened CFRP panels, 
comparing the results with standard numerical non-linear technique. The results have demonstrated 
that the delamination size and depth strongly influence the delamination growth leading to a change 
in the propagation mode. Indeed, the mixed mode I and mode II Fast procedure has been found able 
to extend the field of applicability of the previously developed mode I Fast procedure by including 
also configurations characterized by a not negligible mode II contribution to the delamination 
growth. 

Different element sizes, considering mesh density variations along the radial and tangential 
direction, in the area around the delamination front have been used in order to prove the robustness 
and mesh independency of implemented method. 

The results of the proposed fast approach have been found in excellent agreement with standard 
numerical non-linear technique data in term of delamination growth initiation load prediction and 
strain energy release rate distribution along the delamination front, allowing up to 95% 
computational cost saving with respect to the standard non-linear VCCT approach. However, the 
proposed novel procedure fails to predict the strain energy release rate for geometrical configuration 
with very thick delaminations where the strain energy rate distribution strongly changes from 
delamination buckling to delamination growth stages. 
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Figure 20. SS#1-comparison between mixed mode I and II fast procedure and VCCT of SERR distribution.

4. Conclusions

In this work, the delamination growth initiation in stiffened composite panels subjected to
compressive load has been investigated. A modified version of a previously developed mode I Fast
procedure, based on linear analyses, has been proposed here for the study of circular delamination
growth initiation under mixed mode I and mode II propagation. The approach has been preliminary
validated for embedded delaminations in composite stiffened panels. Several stiffened panel
configurations, taken from literature, with embedded bay skin delaminations characterized by
different sizes and depths have been analyzed.

The proposed mixed mode I and mode II Fast approach has been used to investigate the influence
of the size and depth of the delamination on the damage tolerance of stiffened CFRP panels, comparing
the results with standard numerical non-linear technique. The results have demonstrated that the
delamination size and depth strongly influence the delamination growth leading to a change in the
propagation mode. Indeed, the mixed mode I and mode II Fast procedure has been found able to
extend the field of applicability of the previously developed mode I Fast procedure by including also
configurations characterized by a not negligible mode II contribution to the delamination growth.

Different element sizes, considering mesh density variations along the radial and tangential
direction, in the area around the delamination front have been used in order to prove the robustness
and mesh independency of implemented method.

The results of the proposed fast approach have been found in excellent agreement with standard
numerical non-linear technique data in term of delamination growth initiation load prediction and
strain energy release rate distribution along the delamination front, allowing up to 95% computational
cost saving with respect to the standard non-linear VCCT approach. However, the proposed novel
procedure fails to predict the strain energy release rate for geometrical configuration with very thick
delaminations where the strain energy rate distribution strongly changes from delamination buckling
to delamination growth stages.
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