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Probabilistic Uncertainty Quantification
of Microwave Circuits Using

Gaussian Processes
Paolo Manfredi , Senior Member, IEEE

Abstract— In this article, a probabilistic machine learning
framework based on Gaussian process regression (GPR) and
principal component analysis (PCA) is proposed for the uncer-
tainty quantification (UQ) of microwave circuits. As opposed
to most surrogate modeling techniques, GPR models inherently
carry information on the model prediction uncertainty due to
unseen data. This article shows how the inherent uncertainty of
GPR pointwise predictions can be combined with the uncertainty
of the design parameters to provide global statistical information
on the device performance with the inclusion of confidence
bounds. The model confidence is possibly improved by increasing
the amount of training data. In addition, PCA is employed
to effectively deal with problems with multiple and possibly
complex-valued output components, such as those involving the
UQ of time-domain responses or multiport scattering parameters.
The proposed technique is successfully applied to two low-noise
amplifier designs subject to the process variation of up to
25 parameters. Comparisons against the state-of-the-art polyno-
mial chaos expansion method demonstrates that GPR achieves
superior accuracy, while additionally providing information on
the prediction confidence.

Index Terms— Gaussian process regression (GPR), kriging,
machine learning, principal component analysis (PCA), surrogate
modeling, uncertainty quantification (UQ).

I. INTRODUCTION

PROCESS variations are an unavoidable factor in mod-
ern mass-production electronics, which makes uncer-

tainty quantification (UQ) an essential task in the early stage
design of microwave components and recently prompted an
ever-growing interest in this field [1], [2], [3]. For exam-
ple, threshold voltage, gate length, and oxide thickness are
recognized as the leading variation sources in the CMOS
technology [4], [5] appearing in many microwave circuits, such
as power amplifiers.

Many surrogate modeling techniques were recently pro-
posed for UQ as more effective alternatives to direct Monte
Carlo (MC) sampling [6], [7], [8], [9], [10], [11]. Surrogate
models provide a computationally inexpensive emulator of the
true underlying model and can be classified as parametric or
non-parametric. The former requires to define a priori the form
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of the model, and they exhibit a complexity that increases
with the number of input parameters, possibly leading to
the so-called “curse of dimensionality.” This means that the
model may break down even before attempting to train it,
because the basis functions cannot be allocated in the available
memory.

A typical example are the methods based on the framework
of generalized polynomial chaos expansion (PCE) [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], which expand
the stochastic quantities of interest in terms of orthogonal
basis functions of the uncertain parameters. The number of
basis functions grows exponentially with the input dimension-
ality and/or the expansion order, thus becoming intractable
for problems with several parameters that require high-order
expansions. This applies also to sparse PCEs [23], although
they can be more effectively trained with a number of data
samples that is smaller than the number of basis functions.
Moreover, their accuracy cannot be improved beyond the
maximum theoretical accuracy determined by the predefined
form of the model. The popularity of PCE-based techniques
resides in the fact that they exhibit optimal exponential con-
vergence rate, provided that the correct polynomial basis is
used according to the probability distribution of the random
input parameters. Moreover, the first two statistical moments
(mean and variance) are analytically derived from the model
coefficients [24].

On the other hand, the complexity of nonparametric, kernel-
based models mainly depends on the available training data,
while in fact being almost transparent to the input dimension-
ality. Since in fact they do not assume any specific functional
form, their accuracy is not limited a priori. Furthermore,
the number of input parameters does not affect the model
complexity directly, although it does have an impact on
the number of observations that are required to train the
model, which in turn affects the training efficiency. Examples
are support-vector machines [25], least-square support-vector
machines [26], and Kriging, also known as Gaussian process
regression (GPR) [27], which were recently applied also to
UQ [28], [29], [30].

A common feature of most surrogate modeling approaches
is that, once the model coefficients are determined, the sur-
rogate is in fact deterministic. Hence, it does not provide
any indication on the confidence of the predictions, as if the
surrogate were implicitly considered to be arbitrarily accurate.
Confidence information is an important added value, since it
allows assessing the accuracy of predictions in the absence of

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-0574-8945


MANFREDI: PROBABILISTIC UQ OF MICROWAVE CIRCUITS USING GUASSIAN PROCESSES 2361

reference results, and it is possibly used to drive a refinement
of the model. In a surrogate-assisted MC analysis, the model
confidence can be used to assess the accuracy of predicted
statistical estimates in absolute terms, as well as to compare it
with the inherent confidence of MC estimates and determine,
e.g., whether the additional uncertainty introduced by the
surrogate model can be deemed to be negligible [31].

In this regard, an attractive feature of GPR is that it provides
a probabilistic, rather than a deterministic model. Indeed, the
GPR model is given in terms of a Gaussian process with
a mean function, or “trend,” and a covariance function.
The latter allows assigning confidence bounds to pointwise
model predictions. The confidence is representative of the
limited information that is used to train the model and is
typically reduced by adding further data. In the context of
microwave engineering, GPR has been widely applied to assist
the optimization of computationally expensive systems [32],
[33], [34], [35] (see also [36] and [37] for an overview
and comparisons with other approaches), as well as for the
generic surrogate modeling of microwave structures [38],
[39]. An application to UQ, in which a GPR model is used
in conjunction with least-square support-vector machines as
a mere deterministic surrogate of an expensive underlying
simulator, was proposed in [30].

Nevertheless, the use of GPR in a fully probabilistic
framework for UQ requires to correctly propagate the inher-
ent model uncertainty on local, pointwise predictions to
“global” statistical estimates. To our best knowledge, this
aspect received little attention in the literature. Some pio-
neering works in this regard [31], [40] consider a fully
Bayesian approach, in which the uncertainty associated with
the Bayesian inference of (some of) the GPR model para-
meters is propagated to UQ measures. Albeit very rigorous,
the complexity of this approach considerably increases for
high-dimensional problems as well as when kernel parameters
are assumed to be unknown and must be inferred from the
available data, which is the case of virtually any practical
application scenario. Another approach based on local mul-
tioutput GPR was proposed in [41]. The method has some
computational burden since it divides the input parameter
space into several subdomains, for which it trains separate
GPR models. Moreover, it has some limitations in that it
assumes the same covariance function for each output com-
ponent, it fits an individual GPR model for each statistical
moment, thus possibly resulting in nonphysical estimates
(e.g., negative variance predictions), and it neglects correlation
between the predictions at different points in the input space.
A later extension [42] assumes that the covariance matrix
describing the correlation between distinct output variables can
be factorized as the product of smaller matrices, which is not
necessarily the case.

A simpler, though rigorous probabilistic framework based
on GPR for the UQ of electronic circuits with the inclusion
of confidence bounds for the statistical estimates, such as
moments and probability distributions of the outputs of inter-
est, has been recently developed [43]. The idea is to derive
statistical estimates from pointwise predictions by suitably
taking into account their uncertainty. This article extends and

improves the above method for its application to the UQ of
microwave circuits. Specifically, more accurate closed-form
estimates are reported for the probabilistic prediction of the
variance of the quantities of interest, when the GPR model
is used as a surrogate in a MC-like analysis. The exten-
sion to complex-valued outputs, which is essential for the
frequency-domain characterization of amplifiers as well as
passive structures, is also discussed. The main difficulty in this
regard is the suitable handling of the real and imaginary parts
of the complex variable, since the standard GPR framework
only applies to real-valued quantities. In this scenario, analyti-
cal estimates are also provided for the mean of the magnitude
of the complex output.

Moreover, for problems with multiple outputs of interest,
PCA is leveraged to compress data and make the model
training more efficient [43], [44], [45], [46]. In this context,
the use of PCA compression is not per se new, yet it fits
particularly well in the context of GPR, because its linear-
ity allows retaining the convenient properties of Gaussian
random variables. It should be noted that PCA is already
widely adopted in microwave engineering to identify digital
predistortion parameters in power amplifiers [47], [48], [49],
[50], [51], [52], [53], for model-order reduction [54], [55],
[56], [57], or to reduce the dimensionality of correlated input
parameters in statistical and yield analyses [58], [59]. In [60],
PCA was used to reduce input space dimensionality in the
GPR modeling of stochastic electromagnetic field exposure.

The findings presented in this article can be applied in
conjunction with the state-of-the-art toolboxes for GPR mod-
eling. The method is applied to the UQ of the performance
of two low-noise amplifier (LNA) designs subject to process
variations, for which both steady-state harmonic balance
and small-signal ac simulations are considered. Comparisons
against PCE show that GPR always outperforms this state-of-
the-art method in terms of accuracy for a given training set
size, while additionally providing confidence information.

The remainder of this article is organized as follows.
Section II introduces the main notions on GPR modeling,
as needed for the subsequent discussion. Section III discusses
the application of GPR surrogates to UQ, and provides analyti-
cal probabilistic estimates for the predicted mean and variance.
The application to multiple outputs by means of PCA is
outlined in Section IV, whereas Section V extends the dis-
cussion to complex-valued outputs. Two application examples
are reported in Section VI, with comparisons against the PCE
technique. Finally, conclusions are drawn in Section VII.

II. THE GPR MODEL

We consider the generic system

y = M(x) (1)

where x ∈ Rd denotes a vector of selected circuit parame-
ters, which we will later assume to be uncertain, and M
represents the “full-computational” model that maps a given
configuration of x to the corresponding output y. The compu-
tational model M can be anything from a simple analytical
relationship to a complex circuit or full-wave simulator. In the
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context of this article, it will be the SPICE simulator used
to analyze the behavior of the considered microwave circuits.
Hence, x is a set of tunable circuit parameters, and y the
output of interest. For the sake of simplicity, we first base
the discussion on a scalar and real-valued output y, like for
example an amplifier gain. We discuss how to effectively deal
with multiple outputs in Section IV, and we further extend the
framework to complex-valued outputs in Section V.

The underlying assumption of GPR is that the target
function (1) is a realization of some prior Gaussian process
with a given mean function μ(x) and covariance or kernel
function k(x, x ′), that is,

Mprior(x) ∼ GP(
μ(x), k(x, x′)

)
. (2)

The “correct” realization is identified by conditioning the
prior process (2) based on a certain amount of training obser-
vations {(x†

l , y†
l )}L

l=1, where y†
l = M(x†

l ), for l = 1, . . . , L,
are computed using the full-computational model (1). This
results in the posterior Gaussian process

y ≈ MGPR(x) ∼ GP(m(x), c(x, x′)) (3)

where the posterior trend m(x) and covariance function
c(x, x ′) are readily obtained based on the prior parameters
and the training observations [27]. If the training observations
are assumed to be noiseless, which is reasonable if they come
from a computer simulation, they are interpolated by the
realizations, or “trajectories,” of the process (3). Without loss
of generality, in this article we will always assume noise-free
observations, although the proposed framework applies, with
minimal modifications, also to the case of noisy data. In that
case, however, the posterior Gaussian process is no longer
constrained to interpolate the observations.

It should be noted that, for a given value of x, the model out-
put is not a deterministic value, but rather a Gaussian random
variable with mean m(x) and standard deviation (c(x, x))1/2,
which allows assigning (local) confidence bounds to pointwise
predictions. Therefore, the posterior trend m(x) represents
the most likely model, whereas the standard deviation is a
measure of the residual uncertainty due to unseen data, and
it is typically reduced by increasing the number of training
observations.

There exist several common types of prior trends and covari-
ance functions. Examples of the former include (unknown)
constant values, with a fixed zero trend representing a
particular, yet popular choice, as well as polynomials, with
polynomial chaos expansions being a special case in the
polynomial-chaos-based Kriging [61]. A plethora of ker-
nel functions exist as well, with the anisotropic squared-
exponential kernel

k(x, x′) = σ 2 exp

(
−1

2
r2

)
(4)

and the anisotropic Matérn 5/2 kernel

k(x, x ′) = σ 2

(
1 + √

5r + 5

3
r2

)
exp

(
−√

5r
)

(5)

where

r =
√√√√ d∑

j=1

(x j − x ′
j)

2

θ2
j

(6)

being among the most popular ones. The trend coefficients,
as well as the kernel variance σ 2 and length scales {θ j}d

j=1
(commonly referred to as the “hyperparameters”), are typically
unknown and they must be computed as part of the training
process. This is typically done by solving an optimization
problem that either maximizes the likelihood function or
minimizes the cross-validation error over the training samples
[27], [62]. Bayesian inference is sometimes used as an alter-
native for the prior parameters, but it results in a much more
cumbersome posterior model, which is no longer Gaussian
distributed except for the case in which the kernel parameters
are known and only the trend coefficients are estimated [40],
[63], [64].

It should be noted that the choice of the prior trend and
kernel is not necessarily critical, as GPR has excellent learning
capabilities and generalization properties. The formulation
scales favorably with the number of input parameters, since
only the inner products in (6) needs to be computed. However,
increasing the number of input parameters does have an impact
of the training efficiency, since it increases the number of
required observations as well as the size of the optimization
problem to be solved for the estimation of the hyperparame-
ters. Indeed, as the initial value for the number of training
samples, it is reasonable to consider a multiple of the input
dimensionality, i.e., L = k · d , with k ≈ 3 − 10. This
is suggested both by some literature (e.g., [64]) and by
similar applications of other kernel-based methods (e.g., [44]).
Oftentimes, the length scale is assumed to be the same for
each input dimension, which simplifies the form of the kernel,
making it isotropic, and speeds-up the training phase. How-
ever, this choice may reduce the accuracy for high-dimensional
parameter spaces that exhibit large variations.

III. PROBABILISTIC UQ VIA GPR SURROGATES

In an UQ scenario, the input parameters x are treated as
random variables. Typically, the constructed model is used as
a computationally cheap surrogate of the full-computational
model (1) for a MC-like analysis. Therefore, the surrogate is
sampled with a finite set {x∗

i }N
i=1 of values of the uncertain

circuit parameters, drawn according to their distribution. For
a GPR model, this results in a vector of N correlated Gaussian
random variables y∗ ∼ N (m, C), whose mean vector and
covariance matrix are found as

m = μ∗ + K ∗ K −1(y† − μ†) (7)

and

C = K ∗∗ − K ∗ K−1 K T
∗ (8)

respectively, where
1) μ† ∈ RL is a column vector with entries μ†

l = μ(x†
l ),

i.e., the prior trend evaluated at the training samples;
2) μ∗ ∈ RN is a column vector with entries μ∗

i = μ(x∗
i ),

i.e., the prior trend evaluated at the MC samples;



MANFREDI: PROBABILISTIC UQ OF MICROWAVE CIRCUITS USING GUASSIAN PROCESSES 2363

3) K ∈ RL×L is a matrix with entries Klm = k(x†
l , x†

m),
i.e., the covariance matrix of the training samples;

4) K ∗ ∈ RN×L is a matrix with entries Kil = k(x∗
i , x†

l ),
i.e., the cross-covariance matrix between the training and
MC samples;

5) K ∗∗ ∈ RN×N is a matrix with entries Ki j = k(x∗
i , x∗

j),
i.e., the covariance matrix of the MC samples;

It should be noted that the abovementioned Gaussian dis-
tribution refers to the posterior prediction, whereas there is
no assumption on the probability distribution of the input
parameters x, which can be arbitrary.

The diagonal of matrix C in (8) provides the pointwise
variance of the MC predictions. The variance vanishes at the
training samples, and progressively reduces everywhere by
increasing the density of the training samples [63]. The rate
of variance reduction also depends on the kernel length scale,
and therefore on the specific problem at hand. Intuitively,
smoother functions require less dense sampling. Nevertheless,
the information of the prediction confidence could drive the
acquisition of additional training samples.

Drawing one random sample of y∗ corresponds to gen-
erating a prediction of the MC samples along a specific
posterior trajectory, from which an estimate of the moments
or the probability distribution of y can be obtained. By con-
sidering a large number of samples, many estimates are
produced, which allows assessing not only their expectation,
but also their dispersion and confidence bounds. It is impor-
tant to point out that, in the above process, it is essential
to take into account the existing correlation between the
samples y∗, which is given by the full posterior covariance
matrix C in (8). Assigning only a “local” uncertainty to
each sample would lead to erroneous results when propagat-
ing uncertainty. In the state-of-the-art GPR-based approaches
to UQ, the information on the prediction uncertainty is
neglected, and deterministic statistical estimates are obtained
by considering the mean prediction only, provided by (7)
(cfr., e.g., [61]).

The abovementioned post-processing can be time consum-
ing, especially if the number N of MC samples is large.
Fortunately, closed-form expressions can be derived at least
for the predicted mean and variance of y and, specifically,
for their expectation and standard deviation. Some prelim-
inary results in this regard were presented in [43]. This
article provides more accurate results for the prediction of
the variance, and it extends the framework to complex-valued
outputs.

A. Probabilistic GPR Prediction of the Mean

In a MC setting, the mean of y is estimated by calculating
the sample mean of the surrogate model predictions, that is,

μ̂y = 1

N

N∑
i=1

y∗
i . (9)

By considering that each sample y∗
i is drawn from a

multivariate normal distribution, with mean and covariance
given by (7) and (8), we can calculate the expectation and

the standard deviation of μ̂y to be

E
{
μ̂y

} = 1

N

N∑
i=1

mi (10)

and

Std
{
μ̂y

} = 1

N

√√√√ N∑
i=1

N∑
j=1

Ci j (11)

respectively.
It is worth noting the following.

1) The mean (10) is the average of the mean vector (7),
and corresponds to the average computed by sampling
along the posterior trend.

2) The standard deviation (11) is a measure of the predic-
tion uncertainty due to the fact that the GPR model is
trained with a limited amount of data, and it reflects the
additional uncertainty introduced by the surrogate model
in predicting the MC samples. By way of example, the
standard deviation would vanish if the training samples
and the MC samples coincided, as the GPR model would
interpolate them without introducing errors (cfr. [63]).
The GPR uncertainty in the prediction of the MC
samples can be eventually combined with the inherent
uncertainty of MC estimates due to finite sampling.

3) Since the sample mean (9) is a sum of Gaussian random
variables, its distribution is still Gaussian. Hence, its
mean and standard deviation are readily used to estimate
quantitative confidence bounds.

B. Probabilistic GPR Estimate of the Variance

The variance of y is estimated by calculating the sample
variance of the surrogate model predictions, that is,

σ̂ 2
y = 1

N − 1

N∑
i=1

(
y∗

i − μ̂y
)2

= 1

N − 1

N∑
i=1

⎛
⎝y∗

i − 1

N

N∑
j=1

y∗
j

⎞
⎠

2

. (12)

In [43], the expected value and standard deviation of (12)
were approximatively derived under the simplifying assump-
tion that μ̂y ≈ E

{
μ̂y

}
. For a more rigorous calculation, it is

useful to rewrite (12) as the quadratic form [65]

σ̂ 2
y = 1

N − 1
y∗T� y∗ (13)

where � is a N × N matrix with entries

�i j =

⎧⎪⎨
⎪⎩

N − 1

N
i = j

− 1

N
i �= j.

(14)

The properties of quadratic forms [65] allow obtaining the
expected value and standard deviation of (13) as

E
{
σ̂ 2

y

} = 1

N − 1
(mT�m + tr(�C)) (15)
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and

Std
{
σ̂ 2

y

} = 2

(N − 1)

√
mT�C�m + 1

2
tr(�C�C) (16)

respectively. It should be noted that the second result applies
only because the random variables y∗ are normally distributed.
However, contrary to the prediction of the mean, the distrib-
ution of (13) is no longer Gaussian, but rather a generalized
chi-square [66]. Hence, the knowledge of the standard devi-
ation only provides a qualitative indication of the prediction
confidence.

It is important to remark that the outlined estimates seam-
lessly apply with any definition of the prior trend and kernel,
including the PCE-based Kriging [61], and for any distribution
of the input parameters. The prediction uncertainty is reduced
by increasing the training samples since, as already discussed,
this reduces the entries of the covariance matrix (8) appearing
in the standard deviation of the estimates.

IV. MULTIOUTPUT PROBLEMS: PCA COMPRESSION

In practical applications, the output of interest is rarely
scalar, but most likely vectorial. Typical examples are the
steady-state response of an oscillator, or the (small-signal)
multiport scattering parameters of an amplifier. In the latter
case, the output is also complex-valued, which requires extra
care, since the standard GPR framework only applies to real-
valued quantities.

A common, albeit naive approach is to train individual GPR
models for each component, which however becomes unfeasi-
ble if the output size is large. Moreover, this would cause
the time/frequency resolution to largely affect the training
time. Indeed, the general inability of dealing with multiple
outputs is one of the main shortcomings of most of the
standard implementations of kernel-based machine learning
techniques, which jeopardizes their application to real-life
scenarios and motivates the adoption of more flexible, but data-
hungry, multioutput neural network architectures. An effective
approach to compress the training data, thereby reducing to a
feasible amount the number of individual models to be trained,
has been proposed in [44]. The method is based on PCA, and
fortunately it fits particularly well also to GPR models.

Let us assume that a training dataset Y † ∈ CS×L be
available, collecting training samples for S output components,
which we individually denote as ys . An output component can
be any voltage, current, or scattering parameter at a particular
time or frequency point. We further denote the vector of
training samples for each component, i.e., the rows of Y †,
as y†

s = (y†
s,1, . . . , y†

s,L), for s = 1, . . . , S.
The training dataset Y † is compressed using PCA, leading

to a reduced set of training observations [44]

z̃†
n =

S∑
s=1

Usn
(

y†
s − ȳs

)
(17)

with n = 1, . . . , ñ, and typically ñ 	 S. In (17), ȳs is the sth
component of the dataset mean, that is,

ȳs = 1

L

L∑
l=1

y†
s,l (18)

whereas Usn are the elements of the first ñ left-singular vectors
obtained from the singular value decomposition (SVD) of the
zero-mean dataset in which the entries of Y † are replaced with
y†

s,l − ȳs . The number of principal components ñ is determined
by truncating the SVD based on the relative magnitude of
the singular values. Setting a relative truncation threshold ε
determines an analogous maximum error on the norm of the
training dataset. A threshold of ε = 1% usually leads to
satisfactory accuracy, with good generalization also beyond
training data [45], and shall be therefore used in this article.
In the following, we momentarily restrict the discussion to
real-valued outputs, which makes all the quantities in (17) to
be also real-valued. We will relax this assumption in the next
section.

The compressed datasets (17) are used to train a small set of
ñ GPR models of the principal components in the form of (3).
When sampled in the context of a MC analysis, these models
yield ñ independent sets of multivariate Gaussian random
variables z̃∗

n ∼ N (m̃n, C̃n), where the mean vectors m̃n and
covariance matrices C̃n are computed from the respective GPR
models as in (7) and (8). It is worth noting that the MC
predictions within each set are still correlated, and hence the
covariance matrices C̃n are also full.

Samples of the original outputs are then recovered by
applying the inverse PCA transformation, leading to

y∗
s = ȳs +

ñ∑
n=1

Usn z̃∗
n . (19)

Given the linearity of (19), the samples y∗
s are still

Gaussian-distributed, with mean vector

ms = ȳs +
ñ∑

n=1

Usn m̃n (20)

and covariance matrix [65] gpr-pca-dosimetry

C s =
ñ∑

n=1

U 2
sn C̃n . (21)

It should be noted that, to avoid confusion, a tilde has been
used to discriminate between the quantities associated with
the principal components and the ones related to the original
outputs.

Based on (20) and (21), probabilistic estimates for each
output component are obtained as discussed in Section II.
For the closed-form probabilistic estimates of the predicted
mean and variance, (20) and (21) are plugged directly into
(10), (11), (15), and (16) to obtain more efficient vectorized
implementations, whose detailed discussion is however outside
the scope of this article.

V. COMPLEX-VALUED OUTPUTS

We now consider the case of complex-valued quantities of
interest. We start again from the scalar case, and we recall
that the mean and variance of a complex random variable
y = u + jv are computed as

E{y} = E{u} + jE{v} ∈ C (22)



MANFREDI: PROBABILISTIC UQ OF MICROWAVE CIRCUITS USING GUASSIAN PROCESSES 2365

and

Var{y} = Var{u} + Var{v} ∈ R (23)

respectively. Hence, sample estimates (9) and (12) are readily
combined with (22) and (23) to predict the mean and variance
of a complex output.

The classical GPR framework utilizes real-valued kernels
and therefore it only applies to real-valued data. There exist
some extensions of kernel-based techniques, including GPR,
to complex-valued quantities [67], [68]. However, their effec-
tiveness strongly relies on the specific features of ad hoc
complex kernel functions, which must be carefully chosen
depending on the problem at hand. A viable solution is the
so-called dual-channel formulation, which consists in training
a separate GPR model for the real and imaginary parts.

Let us denote with u∗ ∼ N (m′, C ′) and v∗ ∼ N (m′′, C ′′)
the vectors of MC predictions of the real and imaginary parts
of y, respectively. From the mean vectors and covariance
matrices of the two GPR models, the closed-form expressions
(10), (11), (15), and (16) are readily used to obtain the
expected value and standard deviation of the complex mean
and of the variance, thanks to the additive properties of the
expectation and variance operators. It is important to point out
that the standard deviation of the prediction of the variance
can be computed from the sum of the variances of the real
and imaginary parts because they are modeled as two separate
(and hence, independent) GPR models, and therefore their
covariance is zero.

Besides performing UQ of a complex output, it is often
of interest to perform UQ also of its magnitude |y| =
(u2 + v2)1/2, especially when the information on the phase
is of minor importance. Unfortunately, deriving closed-form
predictions of the magnitude from the model of a complex
variable is hindered by the square-root operator. Of course, one
can train a GPR model directly for the magnitude of the output,
instead of considering it as a complex number. However,
from a complex model, some closed-form estimates can be
derived, with no additional effort, for the squared magnitude
|y|2 = u2 + v2, which is still of interest in microwave circuits
because it is associated with power/gain.1 In particular, the
sample mean of the squared magnitude is computed as

μ̂|y|2 = 1

N

N∑
i=1

∣∣y∗
i

∣∣2 = 1

N

N∑
i=1

(
u∗

i

)2 + 1

N

N∑
i=1

(
v∗

i

)2
(24)

which can be cast as the sum of two quadratic forms

μ̂|y|2 = 1

N
u∗Tu∗ + 1

N
v∗Tv∗. (25)

With the above definition, and using again the properties of
quadratic forms, the expected value and the standard deviation
of μ̂|y|2 are computed as

E
{
μ̂|y|2

} = 1

N

(
m′Tm′ + m′′Tm′′ + tr

(
C ′ + C ′′)) (26)

1Besides, it practically makes no difference when working with logarithmic
scales.

and

Std
{
μ̂|y|2

}
= 2

N

√
m′TC ′m′ + m′′TC ′′m′′ + 1

2
tr
(
C ′C ′ + C ′′C ′′) (27)

where we used the additivity of the trace operator. Like in the
case of (13), the distribution of (25) is not Gaussian, which
does not allow obtaining quantitative confidence bounds from
the standard deviation.

A similar reasoning can be applied to the prediction of the
variance of |y|2. However, the calculation involves a quadratic
form of the squares of vectors u∗ and v∗, which are no
longer Gaussian-distributed. Hence, closed-form results can be
obtained only for the expectation of the variance prediction,
but not for its standard deviation.

We now come to the case of multiple complex-valued
outputs, which requires some further elaboration. We consider
a suitable complex-valued training dataset Y †. The PCA-
based framework outlined in Section IV can be applied, with
some care, also in this scenario. There are basically three
possibilities.

1) To perform the SVD of the complex dataset as is.
This leads to complex-valued PCA coefficients Usn and
principal components. The latter are then modeled using
separate GPR models for their real and imaginary parts,
leading to a total of 2ñ models to be trained.

2) To split the real and imaginary parts of the training
dataset and to stack them into a new, real-valued dataset
of double size. The SVD thereof leads to real-valued
PCA coefficients and principal components, which can
be therefore modeled using the standard GPR frame-
work. The real and imaginary parts of each original
output are then suitably recombined after the inverse
PCA transformation.

3) To split the real and imaginary parts of the training
dataset, and to model them completely independently.
This implies performing two separate, real-valued SVDs,
which potentially lead to a different number of principal
components.

Approaches 1) and 2) are expected to perform very similarly.
However, since the real and imaginary parts of the recon-
structed output are in that case a linear combination of the
same set of principal components, and hence of GPR models,
they become statistically correlated. This hinders in particular
the calculation of the standard deviation of the predicted
variance using the analytical relationships outlined in Sec-
tion III, since the covariance between the real and imaginary
parts should be also accounted for. Therefore, approach 3) is
preferable to take advantage of the closed-form predictions,
whereas 1) or 2) can be interchangeably used if the predictions
and confidence information are calculated numerically.

At this point, it is important to mention that the separate and
PCA-compressed modeling of the real and imaginary parts
may destroy some physical properties of the data, such as
causality. Although this is not crucial in UQ, where the focus
is on estimating the statistical properties of the quantities under
study, a strategy that can simultaneously handle the real and
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Fig. 1. Schematic of the 900-MHz CMOS cascode amplifier.

imaginary parts would yield physically sounder models and is
the subject of ongoing research.

VI. NUMERICAL RESULTS

In this section, the proposed UQ framework is applied
to two LNA designs, namely a 900-MHz CMOS cascode
amplifier and a 2-GHz BJT amplifier. The circuits are sim-
ulated with HSPICE, which represents the full computational
model (1). For the GPR prior, we consider a constant unknown
trend, i.e., μ(x) = β0 in (2), and an anisotropic Matérn 5/2
kernel (5). The models are trained and evaluated by means the
MATLAB® Statistics and Machine Learning ToolboxTM [69].
However, any other toolbox for GPR modeling, such as the
MATLAB-based UQLab [62], or Scikit-learn in Python [70],
can be alternatively used for training the models as needed for
the following simulations. All simulations are performed on a
Lenovo Thinkpad X13 Yoga laptop with an Intel(R) Core(TM)
i7-10510U, CPU running at 1.8 GHz, and 16 GB of RAM.

A. 900-MHz CMOS LNA

The first test case is a 900-MHz cascode power amplifier
realized in the 250-nm process technology, whose schematic
is illustrated in Fig. 1. The device is taken from the HSPICE
2008-09 benchmark library [71]. The threshold voltage, gate
length, and oxide thickness of the CMOS transistors are
assumed to be affected by uncertainty. To stress the fact that
the probability distribution of the input parameters can be arbi-
trary, three different distributions are deliberately ascribed to
the aforementioned parameters, namely a Gaussian distribution
N (0.382, 0.038) V to the threshold voltage, a uniform distrib-
ution U(200, 300) nm to the gate length, and a beta distribution
B(2, 5) in the interval [4.9, 6.7] nm to the oxide thickness.
For the simulation, two input tones at 900 and 910 MHz are
considered, with a power of 0 dBm. A harmonic balance
simulation is performed to obtain the time-domain steady-state
output power at 8009 time points over a window of 200 ns.

Fig. 2. Convergence of the MC estimate of the variance for increasing sample
size.

Hence, the input of (1) is here a vector x = (x1, x2, x3), col-
lecting the three aforementioned uncertain parameters, which
is mapped by the SPICE simulator to a vector of S =
8009 time-domain values of the output power. To generate
reference results, we run a MC analysis by progressively
increasing the number of samples, drawn according to a Latin
hypercube design. Specifically, we start from N = 125 and
we double the number up to N = 4000. We assess the
convergence by calculating the integral over time of the
absolute deviation of subsequent variance estimates, that is,

� j = 1

T

∫ T

0

∣∣σ 2
MC, j (t) − σ 2

MC, j−1(t)
∣∣dt (28)

where σ 2
MC, j denotes the variance obtained from N = 2 j · 125

samples, and j = 1, . . . , 5. Briefly speaking, � j is a measure
on the improvement achieved by doubling the number of
samples.

Fig. 2 shows the behavior of � j , highlighting that there is
no substantial improvement from j = 4 on, which corresponds
to increasing the number of samples from N = 1000 to
N = 2000. Therefore, we shall use N = 1000 samples
as a reference, and we use the same set of MC samples to
calculate the GPR predictions. We train two GPR models,
with L = 20 and L = 40 samples, also drawn according
to a Latin hypercube scheme. The corresponding datasets
are compressed with PCA from S = 8009 components to
ñ = 11 and ñ = 12 principal components, respectively.

Fig. 3 shows the steady-state output power. The gray lines
are a subset of responses from the MC simulation, whereas the
green line is the mean power predicted with the GPR model
trained with L = 40 samples. Fig. 4 provides enlargements
around 50 and 100 ns. The top figures show, in addition to the
MC samples, the mean μMC of the MC samples (blue solid
line), its 95% confidence interval (dash-dotted blue lines),
as well as the 95% confidence bounds of the GPR prediction
of the mean (shaded areas). Red and green areas refer to
the models trained with L = 20 and L = 40 samples,
respectively. The mean predicted with an adaptive sparse PCE,
again in conjunction with PCA compression [44] and with a
maximum order of five, is also shown (dashed black lines).
The PCE is trained by means of the pertinent module in
UQLab [72] using the dataset with L = 40 samples, and it
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Fig. 3. Steady-state output power. Gray lines: subset of responses from the
MC simulation. Green line: mean predicted with the GPR model.

Fig. 4. Steady-state output power around 50 and 100 ns. Top: MC samples
(gray lines), MC mean (blue solid line), 95% confidence interval of the MC
mean (blue dash-dotted lines), 95% confidence bounds of the mean predicted
with the GPR models trained with L = 20 (red area) and L = 40 samples
(green area), and mean predicted with the PCE trained with L = 40 samples
(black dashed line). Bottom: variance, 2σ bounds of the MC variance and of
the corresponding GPR predictions, and PCE estimate.

has no confidence associated. The confidence of the MC mean
is instead computed based on the well-known estimate of its
standard deviation, i.e., [73]

Std{μMC} ≈
√

σ 2
MC

N
. (29)

Similar results are reported for the variance in the bottom
of Fig. 4. In this case, however, the MC and GPR confidence
intervals correspond to the 2σ bounds, which in both cases do
not indicate exactly a 95% confidence due to the non-Gaussian
distribution of the variance predictions. The standard deviation
of the MC variance is computed as [73]

Std
{
σ 2

MC

} ≈
√(

σ 2
MC

)2

N

(
κMC − 1 + 2

N − 1

)
(30)

where κMC denotes the kurtosis of the MC samples.
All the plots show that the confidence interval of the

GPR predictions shrinks by increasing the number of training

Fig. 5. PDF of the steady-state output power at 50 ns (left) and 100 ns
(right). Histogram and blue solid line: distribution of the MC samples; red
and green areas: 95% confidence bounds of the GPR predictions; black dashed
line: prediction of the PCE.

samples and tightens around the MC prediction, which is
mostly enclosed by it. This is further appreciated in the
enlargements in the insets. The prediction is more accurate
for the mean, for which both models provide extremely thin,
and hence nearly indistinguishable bounds. It is also noted that
the GPR confidence bounds are narrower than the ones of the
MC estimates, indicating that the surrogate model introduces
marginal additional uncertainty. The PCE results also agree
well with the reference MC curves.

Furthermore, Fig. 5 shows the probability density function
(PDF) of the output power at 50 and 100 ns. The histogram
is the distribution of the MC samples, whereas the blue line
is its kernel density estimate. As in Fig. 4, the red and green
areas indicate the 95% confidence bounds of the distributions
obtained with the GPR models trained with L = 20 and
L = 40 samples, whereas the dashed black line is the
distribution predicted by the PCE. The GPR confidence bounds
are obtained by calculating the kernel density estimates of the
distributions along 1000 posterior trajectories. Like for the
moments in Fig. 4, it is observed that the bounds mostly
enclose the MC result, and they narrow as the number of
training samples is increased. Moreover, the agreement is
similar or better compared to the PCE prediction, especially
at 50 ns.

To better assess the accuracy of the GPR and PCE models,
we introduce the root-mean-square error (RMSE) and the
coefficient of determination (R2), respectively defined as

RMSE =
√√√√ 1

N

N∑
i=1

|yi − y∗
i |2 (31)

and

R2 = 1 −
∑N

i=1 |yi − y∗
i |2∑N

i=1 |yi − ȳ|2 (32)

where yi denotes the reference MC samples, y∗
i are the

corresponding predictions, and ȳ is the mean of the MC
samples. Since the output is a function of time, the RMSE
and R2 are also computed as a function of time. Table I
reports the average and the worst RMSE e R2 values over
time achieved by the GPR and PCE models, trained with
both L = 20 and L = 40 samples. It is observed that for
both training set sizes, the GPR model outperforms the PCE
one. In particular, the accuracy of the PCE model trained with
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TABLE I

ACCURACY OF THE GPR AND PCE MODELS FOR THE
900-MHZ CMOS LNA EXAMPLE

TABLE II

COMPUTATIONAL TIMES REQUIRED BY THE GPR- AND PCE-BASED

UQ OF THE 900-MHZ CMOS LNA

40 samples is comparable to the one of the GPR model trained
with 20 samples only.

Finally, Table II collects the main figures concerning the
simulation times. It is observed that the time required by the
PCA compression is negligible. For the GPR, the training time
(i.e., the calculation of the prior trend and kernel hyperparame-
ters) is smaller than the evaluation time (i.e., the calculation
of the posterior mean vector and covariance matrix for the
set of MC samples). Most of the time is required by the
calculation of the confidence bounds for the moments (mean
and variance) and the distributions. The former are computed
for all the 8009 times points, whereas the latter only for
the two time points shown in Fig. 5. Hence, the calculation
is much more efficient for the moments because it benefits
from the closed-form formulas. On the other hand, the PDF
is usually computed for a smaller set of outputs. The PCE
has a comparable training time and a negligible evaluation
time, since only a deterministic prediction is provided. It is
also important to mention that, for more complex circuits,
the post-processing times become negligible compared to
the SPICE simulations. For this simple design, the SPICE
simulation is rather fast, and the MC analysis itself took
only 95.3 s.

B. 2-GHz BJT LNA

The second application example considers the 2-GHz BJT
LNA described in [74], and already investigated in [16] by
assuming uncertainty in d = 25 circuit parameters, including
the transistor’s forward current gain, some of its parasitics,
the external lumped components, and the widths of the
microstrip line sections. All these parameters are assumed to

Fig. 6. S11 of the BJT LNA. The gray lines are a subset of samples from the
MC simulation. The blue solid and the green dashed lines are the magnitude
of the average S11 obtained from the MC samples and with the GPR model,
respectively. The green shaded area is the 95% confidence interval of the GPR
prediction. The black dashed line is the average obtained with the PCE model.

be Gaussian-distributed and independent, with a 10% relative
standard deviation.

The two-port scattering parameters S11 and S21 of the LNA
are simulated at 201 frequency points with a small-signal ac
analysis. A GPR model is trained with L = 100 response
samples. As described in Section V, the real and imaginary
parts of the scattering parameters are modeled separately,
leading to two datasets with S = 402 output components each.
The PCA compression of these datasets leads to 11 principal
components for the real part, and 10 for the imaginary part.
Reference results are generated based on N = 1000 MC
simulations.

Fig. 6 shows the results obtained for the magnitude of S11.
The gray lines are a subset of MC responses, highlighting the
large variability of S11 resulting from the uncertainty in the
circuit parameters. The magnitude of the average S11 obtained
from the MC samples (blue solid line) is compared with
the GPR (dashed green line) and PCE (dashed black line)
predictions, showing excellent agreement. The 95% confidence
(2σ ) bounds of the GPR prediction are also shown by the
shaded green area. The enlargement around 2 GHz, displayed
in the inset, allows for a better assessment of the accuracy of
the predictions and, in particular, of the tightness of the GPR
confidence bounds.

Fig. 7 illustrates the results for the variance of S11. Similar
to Fig. 6, the blue line indicates the value obtained from the
MC samples, whereas the dashed green and dashed black lines
are the predictions of the GPR and PCE models, respectively.
It is noted that the PCE estimate is in this case way less
accurate compared to the GPR prediction. However, the lack
of confidence information would not allow recognizing it
in the absence of references results. On the contrary, the
shaded green area indicates again the 2σ interval of the GPR
prediction. Even though it no longer corresponds to a 95%
confidence since, as already noted for the previous example,
the distribution of the variance prediction is not Gaussian,
the interval still provides a good indication of the prediction
confidence, with the reference MC result being well enclosed,
as shown in the inset.
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Fig. 7. Variance of S11 obtained from the MC samples (blue solid line) and
with the GPR (green dashed line) and PCE (black dashed line) models. The
green shaded area indicates the 2σ interval of the GPR prediction.

Fig. 8. S21 of the BJT LNA. The gray lines are a subset of samples from the
MC simulation. The blue solid, green dashed, and black dashed lines are the
average of |S21| obtained from the MC samples and with the GPR and PCE
models, respectively. The green shaded area is the 2σ interval of the GPR
prediction.

Fig. 8 provides similar results for S21, which also corre-
sponds to the small-signal gain. As opposed to Fig. 6, the
solid blue, dashed green, and dashed black lines now indicate
the average of the magnitude, rather than the magnitude of
the average of the scattering parameter. The GPR prediction
thereof is obtained by means of (26) and (27), in conjunction
with PCA compression. As for the variance, the distribution
of this prediction is not Gaussian. Therefore, the reported 2σ
bounds do not correspond to the 95% confidence interval.
Nonetheless, the interval provides again a good indication
of the model confidence, and it does enclose the MC result.
On the contrary, the PCE prediction is again less accurate, but
this cannot be easily assessed without the information on its
confidence.

Finally, Fig. 9 shows the probability distribution of |S21|
(gain) at the target operating frequency of 2 GHz. The his-
togram is the distribution of the MC samples, whereas the blue
solid line is its kernel density estimate. The shaded green area
indicates the 95% confidence interval of the GPR prediction,
obtained by sampling 1000 posterior trajectories with the same

Fig. 9. Probability distribution of the LNA gain at 2 GHz. Histogram
and blue solid line: distribution of the MC samples and its kernel density
estimate, respectively. Green shaded area: 95% confidence interval of the GPR
prediction. Black dashed line: PCE prediction.

Fig. 10. Accuracy and training cost of the GPR and PCE models. Left:
average and maximum RMSE; central: average and minimum R2; right: CPU
time required to train the models.

set of MC samples, whereas the dashed black line is the PCE
estimate. A superior accuracy of the GPR prediction over the
PCE one is again established, and it is further confirmed by
the tightness of the confidence bounds, which wrap the MC
result.

To further investigate the accuracy and the training effi-
ciency of the GPR in comparison with the PCE method,
we consider models trained with different sample sizes, and
we calculate the RMSE and R2 values over frequency. Fig. 10
shows the average and maximum RMSE (left), the average
and minimum R2 (central), and the training time (right) for
the two methods, when the training set size L is increased
from 100 to 500 samples in steps of 100 samples. From the
comparison, we can draw some interesting conclusions. First
of all, the GPR always outperforms the PCE in both metrics,
and for all sample sizes. For the RMSE, the maximum error
obtained with the GPR is comparable with the average error
achieved by the PCE. On the contrary, the training of the GPR
models is slightly more costly, yet they scale similarly. This
is due to the larger number of uncertain parameters, which on
the one hand motives the use of a larger number of training
samples, and on the other hand requires the optimization of a
larger number of hyperparameters, since an anisotropic kernel
is used. In this regard, the plot considers only the actual train-
ing time. The time required by the PCA compression, which
is common to both methods, is always well below one second,
and hence negligible. The evaluation time is instead roughly
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constant with the training set size, even for the GPR model, for
which it amounts to up to 17 s to evaluate the posterior mean
vector and covariance matrices, and to about 8 s to extract
the expected value and standard deviation of the mean and
variance estimates. As to the PCE instead, the evaluation time
is within one second, as in the previous application example.
For reference, the MC simulation took 1249 s with HSPICE.
We can therefore conclude that, compared to the PCE and for
a given training set size, the GPR method is more accurate,
at the price of a slightly higher training cost. Moreover, as we
show in this article, it additionally provides information on
the confidence of the predicted statistics.

VII. CONCLUSION

This article presented a probabilistic machine learning
framework for the UQ of microwave circuits. The method is
based on GPR and allows estimating statistical information,
like moments and PDFs, with the inclusion of confidence
information.

Closed-form results are reported for the expected value
and standard deviation of the predictions of the mean and
of the variance of a stochastic output, and of the mean of
the magnitude of a complex one. Confidence bounds can be
obtained numerically for higher order moments and distribu-
tion functions, as well as for any other statistical metric. Such
confidence information reflects the uncertainty introduced by
the GPR surrogate in the prediction of the response samples in
a MC-like analysis. In future research, it could be integrated
into an adaptive learning strategy to optimize the surrogate-
based UQ. Moreover, it could be combined with the inherent
uncertainty of MC estimates to simultaneously account for
finite sampling and limited training set size.

Multioutput problems are dealt with by leveraging PCA
compression, which allows reducing the number of output
components to be modeled by one or two orders of magnitude.
In case of complex-valued outputs, the real and imaginary
parts are split and modeled individually to avoid introducing
statistical correlation between them. In this regard, more
rigorous approaches to simultaneously handle complex-valued
data, and preserve physical properties like causality, will be
considered in future research.

The application to two LNA designs, one with 25 uncertain
parameters, illustrated and validated the advocated approach.
Accurate results were obtained with a very limited number of
training samples. Moreover, it was shown that the predicted
confidence provides a good indication of the model accuracy,
and it is improved by increasing the number of training
samples. Comparisons with one of the prime and state-of-
the-art tools for UQ, i.e., the sparse PCE, show that GPR
achieves higher accuracy at the price of a slightly higher
training cost, while providing in addition information of the
prediction confidence.
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