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ABSTRACT
Many molecular systems and physical phenomena are controlled by local fluctuations and microscopic dynamical rearrangements of the con-
stitutive interacting units that are often difficult to detect. This is the case, for example, of phase transitions, phase equilibria, nucleation events,
and defect propagation, to mention a few. A detailed comprehension of local atomic environments and of their dynamic rearrangements is
essential to understand such phenomena and also to draw structure–property relationships useful to unveil how to control complex molecular
systems. Considerable progress in the development of advanced structural descriptors [e.g., Smooth Overlap of Atomic Position (SOAP), etc.]
has certainly enhanced the representation of atomic-scale simulations data. However, despite such efforts, local dynamic environment rear-
rangements still remain difficult to elucidate. Here, exploiting the structurally rich description of atomic environments of SOAP and building
on the concept of time-dependent local variations, we developed a SOAP-based descriptor, TimeSOAP (τSOAP), which essentially tracks time
variations in local SOAP environments surrounding each molecule (i.e., each SOAP center) along ensemble trajectories. We demonstrate how
analysis of the time-series τSOAP data and of their time derivatives allows us to detect dynamic domains and track instantaneous changes of
local atomic arrangements (i.e., local fluctuations) in a variety of molecular systems. The approach is simple and general, and we expect that
it will help shed light on a variety of complex dynamical phenomena.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0147025

I. INTRODUCTION
Structure–property relationships, at the heart of modern mate-

rials science, are hard to elucidate in complex molecular systems.
Multi-scale and many-body interactions among all the atoms make
it challenging, yet inspiring, to reconstruct the macroscopic behavior
of such systems from their underlying atomic structure.1,2 Ranging
from materials with an intrinsically dynamic character, such as soft
supramolecular architectures, to common crystal lattices, a thorough
knowledge of atomic arrangements, including their structural and
dynamic evolution, is required to unlock tangled material responses
and features.3–7 In crystalline solids, for instance, the materials’

plasticity and viscosity and their microstructural evolution are
dictated by the energy and kinetics of defects8 or structural
imperfections.9,10 Furthermore, atomically disordered domains,
such as surfaces, grain boundaries, and heterogeneous interfaces,
have been widely recognized to be linked to transport, mechan-
ical, electronic, and optical properties.11–14 Shedding light on the
intimate connection between complex atomic arrangements and
material dynamic properties would clearly pave the way for novel
design rules and optimization of molecular systems for tailored
behaviors.15,16 However, in most practical cases, this remains far
from being trivial.
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In recent years, advances in data availability and computa-
tional power have enabled the development of valuable tools for
gaining a deeper understanding of the chemical–physical phenom-
ena occurring in materials.17,18 In particular, molecular dynamics
(MD) simulations have been playing an increasingly significant
role in the exploration of materials, serving as a large source of
potential information.19–27 The use of MD simulations to elucidate
structure–property relationships substantially embeds a two-step
protocol: (i) the translation of MD trajectories into a numerical
representation of atomic neighborhood environments, resulting in
highly detailed and high-dimensional data, known as fingerprints
or descriptors, and (ii) the extrapolation of meaningful informa-
tion from the large volumes of generated datasets. Regarding the
latter step, Machine Learning (ML) algorithms have often exhib-
ited promising advantages in regard to handling large and complex
sets of data, thereby receiving increased interest.28–33 However,
a low-dimensional representation facilitating the navigation and
identification of hidden patterns and features would be desirable.

Within this framework, methods for adequately characteriz-
ing complex atomic arrangements from MD simulations have been
remarkably expanded. Over the last decades, many descriptors rely-
ing on the use of order parameters or mathematical quantities
have been proposed.1 Low-dimensional descriptors based on the
use of order parameters often allow gaining very accurate informa-
tion, though being dependent on a priori knowledge about system
features. However, methods relying on the use of structural environ-
ments (i.e., order parameters), such as coordination analysis, bond
order analysis,34 bond angle analysis (BAA),35 common neighbor
analysis, (CNA)36 adaptive CNA (A-CNA),37 and Voronoi analysis,
generally struggle to identify different local coordination environ-
ments when the geometric symmetry is lost or exhibit a short-range
nature (e.g., in crystalline systems close to the melting temperature).
On the other hand, coupling more mathematically sophisticated
descriptors to ML approaches enables effective characterization of
systems by exploiting the rich and high-dimensional datasets pro-
vided by MD simulations38–40 apart from being less dependent on a
priori knowledge. Nonetheless, advanced mathematical descriptors,
such as the Behler–Parrinello symmetry functions (BP),41 Cheby-
shev polynomial representations (CPR),42 adaptive generalizable
neighborhood informed (AGNI) features,43,44 smooth overlap of
atomic position (SOAP),45 and atomic cluster expansion (ACE),46

generally based on the representation of atomic environments, can
efficiently capture local structural properties but are less efficient in
providing information on microscopic dynamic events occurring in
the studied systems.

Among such abstract mathematical descriptors, SOAP
was recently found very efficient for characterizing of a wide
range of systems,47–50 including soft, disordered, and complex
assemblies.51–54 Despite being strongly connected to the structural
features of local environments, the SOAP fingerprint coupled with
unsupervised clustering approaches and statistical analyses has been
recently used to also reconstruct the dynamics of complex systems,
such as metal surfaces,55 metal nanoparticles,56 soft supramolecular
polymers,51,57 self-assembled micelles,52 and complex hierarchical
superlattices, to cite a few.54,58 Since SOAP descriptors are typi-
cally high-dimensional, both linear and nonlinear dimensionality
reduction (DR) approaches are often employed for facilitating both
analyses and data visualization.59–62 However, DR represents the

fundamental roadblock because it inherently leads to a loss of infor-
mation, resulting in challenging characterization of systems where
ordered and disordered domains coexist in dynamic exchange and
equilibrium. In addition, beyond a few valuable techniques,63,64 the
time evolution of structural changes, including rare fluctuations,
still remains weakly explored by simply classifying datasets with
unsupervised and sophisticated ML tools.

Time-dependent descriptors offer a different approach. For
example, a recently developed descriptor—Local Environments and
Neighbors Shuffling (LENS)65—monitors how much the micro-
scopic surrounding of each molecular unit changes over time in
terms of neighbor individuals/identities along an MD trajectory.
LENS allows the identification of dynamic domains and detec-
tion of local fluctuations in a variety of systems tracking events
of addition/subtraction of neighbors within a certain cutoff over
time. However, LENS does not contain structural information on,
e.g., the relative position or arrangements of neighbors inside the
cutoff sphere. In this way, it does not capture, e.g., local struc-
tural rearrangement, adjustment, or rattling. A time-dependent
descriptor capable of retaining rich structural information and
of efficiently monitoring structural changes over time would
be desirable.

Building on such a concept, here we report a time-dependent
descriptor, TimeSOAP (τSOAP), that essentially exploits the struc-
turally rich description of molecular/atomic environments guaran-
teed by the SOAP vectors and measures to what extent the SOAP
power spectra of each unit within a complex molecular system
change over time. An ML-based analysis of the time-series τSOAP
data allows us to robustly and efficiently detect, e.g., structural tran-
sitions, phase transitions, and the coexistence of phases in a variety
of systems with rich and diverse intrinsic dynamics. It is worth
noting that the time derivative of τSOAP also provides sharp sig-
nals identifying local fluctuations, highlighting local and rare events
that may be overlooked with other approaches. The paper is orga-
nized as follows: In Sec. II (Methods), we present our τSOAP and
τSOAP-based descriptors and the coupled ML-based workflow. In
Sec. III, we discuss the results obtained by performing our τSOAP
analysis on various systems characterized by solid/liquid coexist-
ing phases, solid-like and fluid-like behaviors, respectively. Our tests
indicate that τSOAP analyses are flexible and robust and can shed
light on complex molecular/atomic systems with nontrivial multi-
layered dynamics, providing insights that are difficult to attain with
other approaches.

II. METHODS
A. SOAP as a descriptor of atomic environments

Recently, data-driven approaches capturing the structural com-
plexity of materials from equilibrium MD trajectories have been
proposed. A generic MD trajectory is represented by an ordered
list of N atomic coordinates R(t) in the 3D space at each simula-
tion time step, where N is the number of particles in the system.
In order to characterize complex atomic arrangements, descriptors
of atomic neighborhood environments have been widely employed.
By associating a feature vector to each R(t), the descriptors enable
passing from the 3D coordinate space to an S-dimensional fea-
ture space. Importantly, these representations are required (1) to
be permutationally, translationally, and rotationally invariant—in
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order for physically equivalent configurations to be recognized as
such—and (2) to smoothly vary with small changes in atomic posi-
tions. Among many developed descriptors, we adopt the Smooth
Overlap of Atomic Position (SOAP) to examine our sample of
materials ranging from crystalline to soft and liquid states. SOAP
is a state-of-art, high-dimensional representation of atomic envi-
ronments, and it has recently provided valuable insights into both
material properties and structural features.49,57,66,67

To define a SOAP power spectrum, Gaussian density distri-
butions are centered on each atom (i.e., on each considered SOAP
center). For a given atom, a smooth representation of the neighbor
density is generated from the sum of Gaussians centered on each
surrounding atom, given by

ρi
(r) =∑

j
exp [

−∣r − ri j ∣
2

2σ2 ] frcut(∣r − ri j ∣), (1)

where to each neighbor center j, located at a distance r = rij from the
i-th center, a Gaussian function is associated. σ is the distribution
width of each Gaussian. The environment related to each center i
incorporates information up to a fixed cutoff, rcut, where the func-
tion frcut smoothly goes to 0. Then, by expanding Eq. (1) in the
basis of orthonormal radial functions Rn(r) and spherical harmon-
ics Y l,m(r̂), the corresponding SOAP power spectrum is calculated.
For the i-th center, it can be expressed as

γi
nn′ l ∝

1
√

2l + 1

+l

∑

m=−l
(ci

nlm)
∗ci

n′ lm, (2)

with ci
nlm representing the expansion coefficients of the neighbor

density associated with the i-th center. The parameters n and n′

range from 1 to nmax, while the index l runs from 1 to lmax. From
the values of nmax and lmax, it is possible to derive the dimension S
of the full SOAP feature vector, which can be written as

pi = {γ
i
nn′ l}, (3)

representing the SOAP descriptor associated with the i-th center,
which includes all the contributions from Eq. (2). Here, we used
the in-house code SOAPify68 to compute the SOAP vectors, with
nmax, lmax = 8, and different rcut values depending on the charac-
teristics of the considered system (see the supplementary material,
Table S1). From the 3D coordinate vector corresponding to each
MD simulation time, we calculate the SOAP vector pi for a selected
set {i} of centers (referred to as SOAP centers). In summary, we
obtain a dataset containing S-dimensional SOAP vectors describing
the structural arrangements related to the {i} selected sites at each
sampled configuration. Since these SOAP vectors encode informa-
tion about the atomic environments surrounding each center, SOAP
is referred to as a “local” descriptor.

In order to evaluate how similar two environments centered in
two sites are, a similarity measure has been defined by means of a
linear kernel of their neighbor density representations as follows:

KSOAP
(i, j) = (qi ⋅ q j). (4)

Since q = p
∣p∣ , that is, the unit-normalized SOAP vector,

KSOAP
(i, j) goes from 0 for no overlapping to 1 for completely super-

imposed vectors. Furthermore, from Eq. (4), a metric referred to

as “SOAP distance” between two environments can be defined as
follows:

dSOAP
(i, j) =

√

2 − 2 ⋅ KSOAP
(i, j)∝

√

2 − 2pip j. (5)

Importantly, pi and pj describe the local environments related
to two different SOAP centers. Besides the SOAP kernel, this distance
representation provides a bounded similarity measure between two
local environments, indicating how their local densities match in the
S-dimensional feature space.

B. Tracking dynamical SOAP variations
with TimeSOAP

The output dataset containing the S-dimensional SOAP vec-
tors is typically high-dimensional, and although rich in information
on the atomic/molecular arrangements, it requires a crucial prepro-
cessing step to both facilitate the interpretation of the results and
effectively identify relevant molecular patterns. For this reason, after
estimating pi [Eq. (3)] for the whole set of SOAP centers {i} at
each sampled configuration of the MD trajectory, a SOAP-based
pattern recognition procedure typically relies on two successive key
phases: (1) use of dimensionality reduction (DR) of SOAP spec-
tra by means of, for instance, Principal Component Analysis69,70

(PCA), and (2) employment of unsupervised clustering techniques
for the identification of molecular motifs. Despite providing some
information on a wide range of molecular systems, this approach
presents a few key shortcomings: (i) Since the time information
is not emphasized, insights on consequential transition events as
well as the temporal persistence of the individual molecular con-
figurations is not retained, thus hindering a detailed comprehen-
sion of the rate of change of every individual molecular config-
uration; (ii) on such low-dimensional SOAP-based dataset, some
poorly populated configurations may remain undetected by (e.g.,
density-based) unsupervised clustering approaches; and (iii) low-
dimensional embedding of atom-density representations can fail in
faithfully preserving valuable information, such that a high number
of principal components would be desirable.71 This makes detect-
ing local fluctuations and rare events typically awkward with such
approaches.

In this work, we propose an alternative procedure allowing to
retain the time information from the high-dimensional SOAP vec-
tors. Building upon the SOAP distance dSOAP

(i, j) introduced above,
we present a new SOAP-based fingerprint, named “TimeSOAP
(τSOAP),” which quantifies the local environment variation, over
time, of each individual SOAP center i. Indicating by λi the variable
form of τSOAP, its instantaneous value is defined as

λt+Δt
i =

√

2 − 2 ⋅ KSOAP
(it , it+Δt

)

Δt
∝

√

2 − 2pt
ip

t+Δt
i

Δt
. (6)

In contrast to Eq. (5), here both pt
i and pt+Δt

i describe the
local environments related to the same unit (i.e., the i-th SOAP
center) but at different simulation times, t and t + Δt, respectively.
Thus, λt+Δt

i measures how similar the i-th SOAP vector calcu-
lated at time t is to that calculated at the next sampled time step
(t + Δt). We analyze consecutive frames, that is, adjacent points,
where Δt represents the MD sampling time step (different for the
various systems, see Molecular Dynamics Simulations for more
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details). As a result, τSOAP evaluates how the i-th local environ-
ment changes, in terms of SOAP descriptor, at every consecutive
time interval Δt. We thus obtain λi(t), a τSOAP signal over time
for each individual in the selected set {i}, thereby allowing to
track the evolution of each SOAP constituent unit center along the
trajectory.

We can take a further step by estimating λ̇i, the first time deriva-
tive of the τSOAP signal. Using the NumPy72 Python package, we
have

λ̇t+Δt
i =

λt+Δt
i − λt

i

Δt
. (7)

By computing it along the MD trajectory, we get λ̇i(t). What
λ̇i represents is the rate of local environment changes over time
for the i-th SOAP center. This allows us to highlight the rele-
vant dynamic phenomena occurring along the trajectory, notably
discriminating between local environments characterized by a
constant variation and those exhibiting an increasing/decreasing
variation.

To increase the signal-to-noise ratio (S/N), both λi(t) and λ̇i(t)
are preprocessed by employing the Savitzky–Golay73 filter from
the SciPy74 python package, thus obtaining smoothed signals. A
common polynomial order parameter of p = 2 is used for each
signal λi(t), while different time windows are chosen depending
on the analyzed system, in order to reach a compromise between
an acceptable S/N value and a sufficiently smaller window com-
pared to the length of signal (see the supplementary material, Fig.
S1, for details). After having chosen the time window for λi(t), to
adequately smooth its first derivative λ̇i(t), we keep the same time
window and use two applications of the filter (following a general
rule: for the n-th derivative, use at least n + 1 applications of the
filter).

C. Dynamic domains detection
After increasing S/N, an ML-based analysis is performed on

λi(t) data to detect relevant dynamics domains in each system. As
a clustering method, we opted to use the KMeans algorithm from
the Scipy python package,75,76 since it was demonstrated to be robust
and capable of providing a good trade-off between clustering quality
and computational cost.65 Nonetheless, it is worth noting that the
analysis approach is versatile, and other clustering methods could
be used. KMeans requires the number K of clusters to be created in
the process to be predetermined. Here, with the aim of guaranteeing
a wide variety of micro-cluster dynamics regardless of the analyzed
system, we start anyway from K = 10 clusters. On the basis of the
exchange probability matrix and the dendrogram associated with
cluster interconnections, we then hierarchically merged the K clus-
ters a posteriori. The exchange probability matrix contains, indeed,
the percentage probability of a unit i belonging to a given cluster to
persist in that cluster or to jump to another cluster in the sampling
time step Δt; from this, by means of an “average” linkage method, we
built the associated dendrogram connecting the dynamic domains
that have a high probability of exchanging elements. Ultimately, to
establish the cutoff point of the dendrogram, we used the Elbow
Curve Method as an indicative guideline for selecting the optimal
number of clusters k (see the supplementary material, Fig. S2). How-
ever, for completeness, all the steps leading from the starting K = 10

clusters to the final k clusters are reported in the supplementary
material, Figs. S3 and S4.

On the other hand, the domain recognition on λ̇i(t) data has
been performed via a different approach. On obtaining the λ̇i distri-
bution and the associated Kernel Density Estimate (KDE) for each
system, we divide the KDE in deciles and consider the first and
the tenth deciles to detect units significantly falling far from the
mean local environment variation rate. The first decile and the tenth
decile capture units with rapidly decreasing and increasing, respec-
tively, local environment changes. This provides a clear distinction
between domains moving toward more dynamic and those moving
toward less dynamic configurations.

D. Molecular dynamics (MD) simulations
We test our τSOAP analysis on MD trajectories obtained for

different systems with nontrivial dynamics: a water–ice interface
system in correspondence of the transition temperature, a gold
nanoparticle at 200 K, a copper surface at 700 K, and DPPC
lipid bilayer where liquid and gel phases coexist at 293 K of
temperature.

The atomistic ice/liquid water phase coexistence at the
solid/liquid transition temperature is obtained by employing the
direct coexistence technique77,78 using the GROMACS software.79

In order to model both the ice and the liquid water phase, the
TIP4P/ICE water model80 is used. The direct coexistence technique
is based on the idea of placing in contact two or more phases (in this
case, the phase of ice Ih and the liquid water phase) in the same sim-
ulation box and at constant pressure. Since the energy is constant at
T = 268 K, while the system melts at T = 269 K,81 we set the tem-
perature at T = 268 K and keep it constant by means of the v-rescale
thermostat with a relaxation time of t = 0.2 ps.

To get the initial configuration of ice Ih, the Genice tool pro-
posed in the work of Matsumoto et al.82 is used, which generates
a hydrogen-disordered lattice with zero net polarization satisfying
the Bernal–Fowler rules. The solid lattice is equilibrated by perform-
ing a 10 ns-long anisotropic NPT simulation at ambient pressure
(1 atm). The c-rescale barostat83 is used with a time constant of
t = 20 ps and compressibility of 9.1 × 10−6 bar−1. On the other hand,
the liquid phase is obtained from the same initial configuration of
ice Ih but performing a NVT simulation at T = 400 K in order to
quickly melt the ice slab. Then, a 10 ns-long simulation at T = 268 K
is performed to equilibrate the liquid phase, using the c-rescale
barostat in semi-isotropic conditions and at a compressibility of
4.5 × 10−5 bar−1. Since the initial ice slab is composed of 1024 water
molecules, both the solid and liquid phases have the same number
of molecules and box dimensions. The two phases are put in con-
tact and, then, the system is equilibrated for t = 10 ns employing
the c-rescale pressure coupling at ambient pressure with the water
compressibility (4.5 × 10−5 bar−1

). The production NPT is carried
out in semi-isotropic conditions, applying the pressure only in the
direction perpendicular to the ice/water interface, thus reproduc-
ing the strictly correct ensemble for the liquid–solid equilibrium
simulation by the direct coexistence technique.84 Finally, a 100 ns-
long production run is performed, with a sampling time interval
of Δt = 0.1 ns.

The second case study analyzed in this work is an icosa-
hedral gold nanoparticle (Au-NP) composed of 309 atoms. The
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parameterization of the model is performed according to the Gupta
potential.85 The Au-NP system is simulated for t = 2 μs at T = 200 K
sampling every Δt = 0.1 ns using the LAMMPS software.86 The
details are described in Ref. 56.

The third system, the atomistic model of copper FCC surface
Cu(210), is composed of 2304 Cu atoms and simulated at T = 700 K.
A Neural Network potential built by means of the DeepMD plat-
form87 is employed to perform Deep-potential MD simulations of
the Cu(210) surface with the LAMMPS software,86 as reported in
Ref. 55. The MD trajectory is conducted for 150 ns using a sampling
time interval of Δt = 0.3 ns.

Finally, the last case study is a DPPC lipid bilayer composed
of 1152 lipids simulated at T = 293 K. As detailed in Ref. 53, DPPC
lipids are simulated and parameterized in explicit water by using the
Martini2.288 Coarse-Grained (CG) force field. The CG-MD simu-
lation is performed for t = 1 μs and sampled every 0.1 ns with the
GROMACS software.79 However, in our analysis, we use the last
500 ns of MD trajectory.

III. RESULTS AND DISCUSSION
Herein, we use the descriptor τSOAP to elucidate the dynam-

ics of atomic/molecular structural environments, which are often
key determinants of global material performances. In order to show
the whole picture of dynamic information that can be extracted
from τSOAP signals, we analyze MD trajectories of different sys-
tems exhibiting various structures and nontrivial behaviors, thus
indicating the transferability of such an approach to a wide range
of materials. In particular, we first focus on ice/liquid water coex-
istence at the solid/liquid transition temperature, where structural
and dynamic properties continuously alternate from solid-like to
liquid-like character.89 We also carry out our analysis on systems
revealing solid-like dynamics, such as metal nanoparticles and sur-
faces well below the melting point. Ultimately, a fluid-like soft
system is included by testing our approach on a lipid bilayer below
the gel-to-liquid transition temperature.

A. Into the dynamics of ice/liquid water phase
coexistence via τSOAP signal

We start testing τSOAP on a system where crystalline ice and
liquid water coexist at the solid/liquid transition temperature, while
exhibiting a dynamic equilibrium between solid-like and liquid-like
regimes. We analyze a simulation box, in periodic boundary con-
ditions, having 1024 hexagonal ice (Ih) molecules in contact with
1024 liquid water molecules [see Fig. 1(a)] at T = 268 K. We consider
1001 consecutive frames sampled every Δt = 0.1 ns along 100 ns of
an MD trajectory. As a first step, we compute the SOAP vectors for
the oxygen atoms of each water molecule (2048 TIP4P/ICE water
molecules) along all frames of the trajectory (see Sec. II for details).
Before illustrating the τSOAP analysis, we start by briefly discussing
the results obtained via, e.g., a SOAP + PCA pattern recogni-
tion procedure—widely used for studying molecular systems—on
such ice/liquid water system, here presented as a first case study.
Figure 1(b) shows the results of this analysis, which detects, from
the SOAP-based dataset, two main clusters, corresponding to the ice
and liquid water domains (in green and gray). It is worth noting that
DR (via PCA) to a three-dimensional subspace already allows to cap-
ture >90% of the cumulative variance of the SOAP-based dataset

in this case (see Fig. S5a). A systematic analysis on the effect of
increasing the dimensionality provided essentially the same results,
demonstrating how two main SOAP domains are detected (ice and
liquid water) independently on the number of PCs used and of the
identified clusters (see also Fig. S5).

After computing SOAP vectors, τSOAP signals are estimated by
capturing the variations of local SOAP environments in Δt = 0.1 ns
[see Eq. (6)]. Figure 1(c) reports, on the left, the resulting λi(t) time
profiles related to each of the 2048 oxygen atoms, while, on the right,
it shows the ice/liquid water MD snapshots at t = 59 ns, t = 63 ns,
and t = 65 ns. Notably, three distinct λi(t) profiles are highlighted
in Fig. 1(c), left: (i) the black signal oscillating around λi = 0.2; (ii)
the cyan signal lying in the highest λi region; and (iii) the crimson
signal, which rapidly passes, at t ∼ 60 ns, from low to high λi values.
The oxygen atoms related to the latter three λi(t) profiles are instead
depicted on the MD snapshots in Fig. 1(c), right, with the respec-
tive color code, i.e., black, cyan, and crimson. The visualization of
these selected atoms clearly shows that the black and cyan oxygen
units belong to the ice and liquid water phase, respectively, regard-
less of the displayed time steps. On the other hand, the identified
crimson oxygen represents an atom involved in the ice/liquid water
transition occurring at t ∼ 60 ns. By lightening the behavior of such
atoms, we attempt to emphasize the potential meaning provided by
τSOAP descriptor on the single unit dynamics: Following the time
variation of atomic structural environments, τSOAP allows both to
distinguish atoms belonging to different phase states and to capture
those undergoing phase transitions.

In order to systematically detect the complete scenario of dis-
tinct dynamic behaviors in our water system, an ML-based analysis
is carried out on all τSOAP signals. The results of the cluster-
ing investigation, performed via the KMeans algorithm, are shown
in Fig. 1(d). The final four identified clusters (gray, crimson blue,
and cyan) are displayed both on the time series of the λi(t) data
[Fig. 1(d): left] and on the λi(t) data distribution reported with
the correlated KDE [Fig. 1(d): right]. As already pointed out, the
four different dynamic domains identify those water molecules
undergoing specific transitions, i.e., instantaneously changing their
local structural environments. In particular, the gray domain is
dominated by oxygen units that are characterized by low λi val-
ues along the complete trajectory, i.e., by a weak variability of
their local atomic environments. On the other hand, oxygen atoms
showcasing high changes of their structural atomic distributions,
and hence high values of λi, belong to the blue cluster or cyan
domain. Oxygen units that, instead, tend to reveal medium values
of λi—because of their transition from one λi regime to the other
one—are classified into a distinct crimson cluster. It is interesting
to note how, differently from the SOAP + PCA pattern recognition
procedure shown in Fig. 1(b), an analysis of the time-series τSOAP
data reveals this third dynamically different environment—i.e., the
ice/liquid water interface, which gets lost in SOAP + PCA-based
analyses due to its reduced (negligible) statistical weight (see the
supplementary material, Fig. S5 for SOAP + PCA-based analyses
with increased number of clusters). Ultimately, the cyan domain is
detected as a different cluster of units with higher local environmen-
tal changes. The graphical representation of such clusters is shown in
Fig. 1(f) through an MD snapshot (see the supplementary material,
Movie S1). Not surprisingly, the gray cluster, characterized by the
lowest τSOAP signal, corresponds to the ice phase; the blue domain,
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FIG. 1. Automatic detection of molecular motifs in ice/liquid water coexistence. (a) MD snapshot of ice/liquid water simulation box made of 2048 TIP4P/ICE water molecules
at T = 268 K. Color code: red for oxygen and white for hydrogen atoms. (b) Example of a typical SOAP-based pattern recognition procedure. Left: PCA projection of the
SOAP-based dataset estimated from the ice/liquid water system in (a). Right: clustering analysis—on the same dataset—carried out with KMeans. The two main detected
clusters, colored in green and gray, are also visualized on the MD water snapshot (taken at 44 ns), showing the ice and water domains in gray and green, respectively.
(c) On the left, time-series of τSOAP signals, λi(t), shown for all the oxygen atoms in (a). The colored λi(t) profiles are related to three explicative oxygen atoms, i.e.,
(i) black, (ii) cyan, and (iii) crimson, displayed on the right with the respective color code. The reported MD snapshots are around t ∼ 60 ns. (d) τ SOAP-based analysis.
λi(t) profiles and their KDE are carried out for all the oxygen atoms of all water molecules in the system (a). The final k = 4 detected macro-clusters are shown as
colored in gray, crimson, blue, and cyan. (e) Interconnection probability matrix of the final k = 4 identified macro-clusters. (f) MD snapshot (taken at 44 ns) showing the
four main clusters identified by τ SOAP-based analysis (same color code of (d)): ice (in gray), solid/liquid interface (in crimson), liquid water (in blue), a distinct domain in
the liquid phase (in cyan).
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characterized by 0.4 < λi ≤ 0.54, is mainly correlated with the liq-
uid phase; and the crimson one, including oxygen atoms with
0.2 < λi < 0.4, is instead located at the solid/liquid interface. Finally,
the cyan cluster (λi > 0.54), although sited in the same region of
the liquid phase (blue cluster), is identified as presenting a differ-
ent dynamic behavior. In the considered ice/liquid water system, the
exchange probabilities among the final four clusters are displayed in
the matrix in Fig. 1(e): Although the oxygen atoms exhibit a proba-
bility higher than ∼94% to persist in a given cluster in the sampling
time step Δt (probabilities on the matrix diagonal), no negligible
transient events occur between red–blue and cyan–blue clusters,
demonstrating that a percentage of oxygen population is involved in
instantaneous transitions among dynamic domains (out of diagonal
probabilities).

After detecting the main dynamics clusters based on τSOAP
signals, λi(t), we carry out a further domain recognition analysis
based on λ̇i(t), that is, the instantaneous rate of local environment
variations λi(t). The key information that can be gathered from the
time derivative of λi(t) is pointed out in Fig. 2(a), where an explica-
tive example is reported. Here, both λi(t) and λ̇i(t) time profiles
are associated with the same oxygen atom i: In gray, λi(t) shows
the atom undergoing phase transition at t ∼ 60 ns when the time

signal significantly and rapidly passes from the low to the high λi
value region; in green, the first time derivative of the gray pro-
file exhibits a peak corresponding to phase transition while fluc-
tuating around zero in both the initial and final stages of the
trajectory. Clearly, λ̇i(t) tracks a notable signal leading up to a sub-
stantial dynamic change in the system. The first time derivative,
indeed, offers a neat discrimination between small oscillations of
λi(t)—which are intrinsic to the constituent units, independently
from the proper dynamic domain—and large fluctuations driving
significant changes in the atomic structure. Notably, λ̇i(t) also pro-
vides a detailed comprehension of the directionality of the local
environment variations, i.e., on the evolution of the material struc-
tures. While the presence of a peak, i.e., of a large fluctuation in
λ̇i(t) profile, suggests that a relevant event is occurring in that time
interval, the sign of such fluctuations points out the evolution of a
structural environment: A positive sign indicates that the atom is
undergoing a local reconfiguration toward a more dynamic domain;
a negative sign means that a local environment reconfiguration
toward a more static domain is occurring.

Figure 2(b) shows, on the left, the time profiles of λ̇i(t) related
to each of the 2048 oxygen atoms and, on the right, the KDE of
the λ̇i data distribution. We color in blue and orange the domains

FIG. 2. First, the time derivative of τSOAP signal for ice/liquid water system. (a) τSOAP (λ(t)) and its first time derivative (λ̇(t)) profiles associated with the same oxygen
atom are shown in gray and green, respectively. (b) λ̇i(t) signals and their KDE estimated for all the oxygen atoms in Fig. 1(a). Clustering color code: (i) blue for environments
corresponding to the first decile; (ii) orange for those corresponding to the tenth decile; (iii) white for λ̇i values in all the other deciles. (c) MD snapshots displaying blue,
orange, and white domains. Left: local detail of the orange cluster evolving toward melting (first and second snapshots). Right: local detail of blue cluster associated
with a small disordered region evolving toward freezing (third and fourth snapshots). (d) Orange local environments identify ice molecules moving out of hexagonal ice
configurations.
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corresponding to the first and the tenth decile, respectively, while
we merge all the other deciles in a single white cluster. It is worth
noting that the KDE distribution has a peak approximately corre-
sponding to λ̇i = 0, indicating that the local environment variations,
λi(t), are, on average, constant. On the other hand, atoms that
significantly increase or decrease, frame by frame, their local envi-
ronmental changes are captured by positive (in the orange region)
or negative peaks (in the blue region), respectively. In Fig. 2(c), we
visualize these three different domains (blue, orange, and white) on
a few snapshots along the MD trajectory, thereby showing that the
positive and negative peaks allow characterizing melting and freez-
ing phenomena occurring within small solid-like and liquid-like
regions. In the first snapshot of Fig. 2(c), we represent a small por-
tion of oxygen solid-like atoms (in orange) located at the ice/liquid
water interface and exhibiting positive τSOAP (λi) variations (i.e.,
undergoing rearrangements toward more dynamic configurations).
Accordingly, in the second snapshot, those rings appear as bro-
ken, thus proving a melting-type process. In the third snapshot
of Fig. 2(c), we report, instead, an example of oxygen units pre-
senting negative τSOAP (λi) variations (blue cluster), thus evolv-
ing toward more static configurations at the solid–liquid interface.
Indeed, as shown in the fourth snapshot, an ordered ring structure
forms, thus reproducing a typical freezing phenomenon. Ultimately,
Fig. 2(d) shows a further detail potentially revealed by our anal-
ysis. In particular, water molecules exhibiting a high positive rate
of change of their local SOAP environment (high λ̇i) turned out
to be also associated with ice molecules that, at the interface with
liquid water, undergo transitions out of the typical hexagonal pack-
ing, i.e., forming interface ice defects [Fig. 2(d)].90 In summary,
besides capturing the local atomic rearrangements and character-
izing their evolution, λ̇i(t) seems to be useful for defect detection
purposes also.

The previous results suggest how the use of τSOAP descriptor
and its first time derivative is a possible strategy to unveil micro-
scopic phenomena occurring at the ice/water interface in dynamic
equilibrium. In particular, by reliably detecting local fluctuations
along with rearrangements and their evolution, the time variations
of structural atomic environments show considerable potential for
tracking crystallization or melting processes from MD trajectories.95

In order to outline the main features of τSOAP and the differ-
ences with respect to other analysis approaches often used to study
the dynamics, we also compared τSOAP with a time-lagged Inde-
pendent Component Analysis (tICA),91,92 a DR approach used to
process high-dimensional input data by retaining valuable temporal
information (see the supplementary material, Fig. S6). Concerning
the study case of ice–liquid water transition, we projected the high-
dimensional SOAP space on its highest-autocorrelation linear tICA
subspace. The results in Figure S6 demonstrate how tICA essentially
finds two main environments, corresponding to the ice and water
domains. However, similar to a classical SOAP + PCA analysis [see
Fig. 1(b)], such SOAP + tICA DR approaches do not recognize the
ice/water interface as a separate environment, nor does it capture
the local individual transitions as done by τSOAP (Figs. 1 and 2).
This shows how such standard pattern recognition approaches
(e.g., PCA or tICA coupled with clustering analyses) can effectively
detect dynamic domains with dominant statistical weight, while
sparse and local fluctuations get typically lost due to their negligible

statistical occurrence. In this sense, τSOAP has the advantage to pre-
serve any change in local structural environments, from the slowest
to the fastest visited along the studied trajectories, thereby avoiding
specific screening of structural variations.

B. Application to discrete solid-like dynamics
As completely different test cases, we test our approach on sys-

tems revealing solid-like dynamics. We discuss the results of our
analysis applied on MD trajectories of (i) a 309-atom icosahedral
gold nanoparticle, denoted as Au-NP, at 200 K [Fig. 3(a)], and (ii)
a copper Cu(210) FCC surface at 700 K [Fig. 4(a)].

Regarding case (i), we analyze 20 000 consecutive frames of a
2-μs long MD trajectory sampled every Δt = 0.1 ns at T = 200 K.
It is well known that metal nanoparticles may exhibit nontriv-
ial dynamics at room and at even sufficiently lower temperatures.
Despite the reduced atomic motion and, accordingly, the more
stabilized ideal icosahedron architecture, some local fluctuations
and atomic rearrangements can be observed in the Au-NP even at
T = 200 K. τSOAP signals in Fig. 3(b), indeed, present a sudden
increase after ∼0.1 μs, demonstrating that some atoms are expe-
riencing intense instantaneous local environment variations. Our
cluster analysis on λi(t) recognizes five main dynamic domains
whose transition probabilities are reported in Fig. 3(c). This transi-
tion matrix proves a negligible attitude of the gold atoms to transfer
to diverse dynamic domains, while they prefer to remain in their
own cluster with probabilities higher than 98.4%. The MD snap-
shots in Fig. 3(d) show that these clusters identify distinct dynam-
ical behaviors and structural domains (see also the supplementary
material, Movie S2). First, the cluster analysis is able to accurately
distinguish the inner core of the Au-NP (in gray): a more static
region characterized—not surprisingly—by low λi(t) values along
the whole simulation, from an interface region (in crimson) between
the inner core and the outermost layer. Second, such a clustering
approach sharply separates the surface of the Au-NP into two coex-
isting regions (pink and blue) related to different characteristic λi(t).
While the pink face turned out to be more static, the blue domain
reliably detects the portion of the surface where a fracture forma-
tion may occur, breaking down the symmetry (Fig. 3(d), second
MD snapshots on the right). Interestingly, τSOAP also identifies
some local events such as the formation of concave ”rosettes” (a
vertex, having five neighbors in an ideal icosahedron, penetrates
inside the NP surface, thus passing to six neighbors). In Fig. 3(d)
(third snapshot on the right), two rosettes can be observed as belong-
ing to a more dynamic cluster—significantly varying their local
environments—(in blue), while the associated vertices are identified
as more stable (in crimson).

Furthermore, the estimation of λ̇i [Fig. 3(e)] provides interest-
ing details on the dynamic evolution of the system. A rather large
percentage of Au atoms is characterized by constant variations of
their surrounding environment (λi(t) = const, and λ̇i ∼ 0). Rare and
sharp fluctuations are anyhow clear in the λi(t) profile. To qualita-
tively illustrate some of these λ̇ peaks, five MD snapshots presenting
different predominant domains are shown Fig. 3(f). In the first
and second snapshots, the domain characterized by positive λ̇i (in
orange) prevails, suggesting that the atoms belonging to that cluster
are collectively involved in a significant increase in the instantaneous
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FIG. 3. τ SOAP-based analysis on 309-atom icosahedral gold nanoparticle (Au-NP). (a) MD snapshots of ideal Au-NP (top), and equilibrated one at T = 200 K (bottom).
(b) λi(t) profiles and the related KDE for the Au atoms in the system (a). The final k = 5 macro-clusters identified by KMeans are shown in gray, crimson, pink, blue, and
cyan. (c) Exchange probability matrix of the final k = 5 detected macro-clusters. (d) MD snapshots with the five main clusters identified in (b): inner core in gray, interface
region between the inner core and the outermost layer in crimson, more static surface face in pink, more dynamic surface face in blue, atoms undergoing the highest local
environmental changes in cyan. (e) Domain detection based on λ̇(t) profiles and their KDE: The blue domain is associated with the first decile, the orange domain is linked
to the tenth decile, and the white domain includes λ̇(t) in all the other deciles. (f) MD snapshots displaying the emergence of blue, orange, and white domains along the
MD trajectory. On the left, the predominance of the orange cluster before (first snapshot) and during the symmetry breakdown (second snapshot) is shown. The central
snapshot exhibits a prevalence of white domain, together with a balance between orange and blue ones. On the right, a prevalence of the blue domain can be observed
(fourth snapshot) before the formation of a more static configuration (white cluster: fifth snapshot). (g) Blue, orange, and white domains associated with the rearrangement,
over time, of a local configuration from “vertex” to “rosette.”

local environment variations. Indeed, this predicts the symmetry
breaking shown in the second snapshot. However, the prevalence
of λ̇i ∼ 0 represented by the white domain, along with a balance
between positive (orange) and negative (blue) peaks, establishes a
dynamic equilibrium leading to no relevant events along several tra-
jectory frames (one example is presented in the third snapshot). In
the last two snapshots, instead, a significant collective decrease of the
instantaneous local variations (negative λ̇i) emerges (prevalence of
blue domain in the fourth snapshot), thus predicting the evolution
of the associated atoms toward more static environments (shown in
the final snapshot). Ultimately, the information on the directionality
of local rearrangements is also highlighted in Fig. 3(g): While posi-
tive λ̇i values (in orange) mark a vertex evolving toward a less stable
configuration where a missing atom appears, negative λ̇i (in blue)
predict rearrangement of the structure toward a stable rosette-like
configuration.

For case (ii), we use 502 consecutive frames of 150 ns-long
MD simulation of a Cu(210) surface composed of 2304 Cu atoms
[Fig. 4(a)] sampled every Δt = 0.3 ns at T = 700 K. Although
metals tend to be traditionally considered as hard matter, it is

now well known that their constituent surface atoms may exhibit
nontrivial dynamics, undergoing rearrangements well below the
melting temperature.55,93 Our clustering procedure applied on
τSOAP profiles identifies three main domains related to Cu atoms
exhibiting very competing behaviors [Fig. 4(b)]: one dense and
more static cluster in gray along with two less populated but more
dynamic domains in red and cyan. The exchange probability matrix
in Fig. 4(c) points out that the transient events among diverse
domains mainly engage Cu atoms belonging to the red and cyan
clusters. Figure 4(d) graphically represents the identified clusters at
two explicative time steps, t = 85.8 ns and t = 92.7 ns: Not surpris-
ingly, the gray domain corresponds to the crystalline bulk of the
Cu(210) surface, reasonably detected by our analysis as the most
static with small local environment variations (low λi(t) values); on
the other hand, the surface atoms are identified as more dynamic
clusters, thereby including all λi(t) > 0.07. However, two subsurface
regions are recognized by KMeans: in crimson, a domain character-
ized by 0.07 < λi(t) ≤ 0.16, and in cyan, a cluster with the highest
local environment variations. The two MD snapshots in Fig. 4(d)
show significant correspondence between that more static surface
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FIG. 4. τSOAP-based analysis on a copper FCC surface, Cu(210), composed of 2304 atoms. (a) MD snapshots of ideal Cu(210) surface (top), and equilibrated one at
T = 700 K (bottom). (b) λi(t) signals and the related KDE for Cu atoms of system in (a). The final k = 3 macro-clusters identified by KMeans are shown in gray, crimson,
and cyan. (c) Exchange probability matrix of the final k = 3 detected macro-clusters. (d) MD snapshots showing the three main clusters identified in (b): crystalline bulk in
gray, subsurface region in crimson, more dynamic surface atoms in cyan. (e) Domain detection based on λ̇(t) profiles and the related KDE: The blue domain is associated
with the first decile, the orange cluster is linked to the tenth decile, the white domain is related to all the other deciles. (f) MD snapshots of blue, orange, and white
domains (in transparency) related to two different frames. Top: At t = 25.8 ns, the circled portion of the surface exhibits a prevalence of blue domain, thus predicting stable
reconfigurations in the two successive frames (green atoms). Bottom: At t = 29.1 ns, the same circled portion exhibits a predominance of orange cluster, thus predicting
dynamic reconfigurations in the two successive frames (green atoms).

region (crimson) and more stable surface atomic arrangements
with increased coordination (see also the supplementary material,
Movie S3).

The Cu(210) domain characterization based on λ̇i confirms
the effectiveness of this analysis in providing some key informa-
tion on the time evolution of the material structure. Figure 4(e)
highlights, also in this case, that the average rate of the local envi-
ronment variations is null, i.e., most of the Cu atoms in Cu(210)
show a steady-state behavior of λi(t). In addition, the cluster repre-
sentation in Fig. 4(f) suggests that the domain with λ̇i ∼ 0 essentially
corresponds to the ice crystalline bulk (in white). On the other hand,
most of the surface atoms are highly dynamic; consequently, a bal-
ance between domains with positive (orange) or negative (blue) λ̇i is
established over time. Consistent with the test cases discussed above,
this dynamic balance indicates that no substantial reconfiguration
toward more stable/dynamic arrangements is occurring. Neverthe-
less, some interesting cluster details are worth noting in Fig. 4(f): The

snapshot on the top, corresponding to t = 25.8 ns, exhibits a portion
of the surface with a clear predominance of atoms evolving toward
more static configurations (in blue); the zoom onto that portion clar-
ifies its stability in the two successive sampled times (t = 26.1 and
t = 26.4). On the contrary, when the same surface region is charac-
terized, after some frames, by a prevalence of positive λ̇i (in orange
in the snapshot on the bottom at t = 29.1 ns), the associated atoms
experience an evident rearrangement as highlighted by the green
atoms onto the zoom. Again on this system, λ̇i was revealed to be
useful in predicting the evolution toward more static/more dynamic
configurations.

C. Phase coexistence in soft dynamical systems
As a final test case, we apply our τSOAP-based dynamic

domain recognition on a soft system characterized by a two-
phase coexistence: gel and liquid. Specifically, we analyze the last
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FIG. 5. τ SOAP-based analysis on a lipid bilayer composed of 1152 DPPC lipids at T = 293 K. (a) MD snapshots of DPPC lipid bilayer (top and lateral views). (b) λi(t)
signals and the related KDE for all the phosphate atoms of all lipid molecules in the DPPC bilayer (a), along the last 500 ns of the MD trajectory. KMeans clustering identifies
k = 2 final macro-clusters shown with crimson and cyan. (c) Exchange probability matrix of the final k = 2 macro-clusters. (d) MD snapshot of the two detected domains
[same color code as (b)]: gel phase in crimson and liquid phase in cyan. (e) Domain detection based on λ̇(t) profiles and the related KDE: The blue domain is associated
with the first decile; the orange cluster is linked to the tenth decile; the white domain is related to all the other deciles. (f) MD snapshots of blue, orange, and white domains
related to different frames along the trajectory.

500 ns of 1 μs-long CG-MD simulation of a DPPC lipid bilayer
composed of 1152 self-assembled DPPC lipids [see Fig. 5(a)] at
T = 293 K, thus considering the last 5001 consecutive frames (Δt
= 0.1 ns). Although the gel-to-liquid transition temperature of a
DPPC membrane is at ∼315 K, here we investigate the dynamics
of the lipid bilayer at a slightly lower temperature, thereby avoiding
addressing the critical dynamics issues occurring at the transition
temperature.

Our clustering analysis, displayed in Fig. 5(b) on λi(t) profiles
and on the related KDE, identifies two main dynamic domains: one
colored in crimson including λi < 2.8 and the other one in cyan,
containing the highest values of τSOAP fingerprints. Figure 5(c)
reports, instead, the interconversion matrix between the two clus-
ters. Beyond a small probability (3.6%) to transient from cyan to
red cluster, the lipids manifest relatively high stability to preserve,
along the complete trajectory, a specific local environment varia-
tion (λi), typical of each individual dynamics cluster. The graphical
representation of the lipid bilayer in Fig. 5(d) suggests a close link
between the dynamic domains and the phase states: The crimson
cluster characterized by small λi is indeed associated with a more

static, gel, phase, while the cyan domain, with higher local environ-
ment variations, is connected to a more dynamic—liquid—phase.
Although the ability of SOAP to distinguish environments char-
acterized by diverse structural features is known,53,57 this case
demonstrates how τSOAP is able to clearly detect the nucle-
ation and emergence of distinct dynamic domains in intrinsi-
cally disordered systems, in a very agile and efficient way. This
offers an additional proof of the versatility and robustness of this
descriptor.

Further analysis on λ̇i(t), reported in Fig. 5(e), reveals a pre-
dominance of λ̇i ∼ 0 (white cluster) along with a balance between
positive (orange) and negative (blue) peaks over time. We recall
indeed that a null time derivative of λi(t) represents the behavior
of those units exhibiting a constant variation of their local environ-
ment, with some statistical oscillations classified in the orange and
blue domains. Within such a resulting scenario, the proposed analy-
sis predicts gel–liquid phase coexistence in dynamic equilibrium, as
shown in the MD snapshots in Fig. 5(f). In other words, the lipids are
not evolving toward a more static/dynamic configuration, whereas
each remains in its proper dynamic domain.
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IV. CONCLUSIONS
Investigating the dynamics of individual units in many

atomic/molecular systems is essential to understand the behavior
of complex molecular systems, and their physical and chemical
properties, collective transitions as well as to design next-generation
materials and molecular systems with desirable dynamical
behaviors.94 However, because of the complexity of local structural
environments along with their dynamics in such systems, a general
approach is still lacking. Although faithful representations of atomic
neighborhood environments—such as the SOAP descriptor—are
available and widely employed, here we want to draw attention to
the time evolution of these structures, which is typically overlooked
in molecular motif recognition procedures.95

In this work, we propose an alternative perspective allowing
us to track the dynamical changes in atomic structural environ-
ments of the interacting subunits, thus enhancing the detection of
dynamic domains and emerging phenomena. Building upon the
SOAP descriptor, we implement τSOAP, a new fingerprint that
quantifies the variations of local SOAP environments surround-
ing each constituent unit along its MD trajectory. τSOAP, indeed,
retains the time information from high-dimensional SOAP vec-
tors, thereby aiming at emphasizing the importance of consequential
events for reconstructing dynamics and detecting rare fluctuations.
Coupled to an ML-based analysis, we demonstrate the potentiality
of such an approach to identify domains with different structural
and dynamical behaviors. Ranging from an ice/liquid water sys-
tem where solid-like and fluid-like domains coexist in dynamic
equilibrium, to solid-like materials, and soft matter presenting gel
and liquid coexisting phases, we prove that our analysis reliably
addresses phase transitions, rare dynamic events, and coexisting
phases. Moreover, by estimating the first time derivative of τSOAP
signal, we gain further information on the direction of the local
structural changes. Indeed, besides detecting local rearrangements,
the first time derivative of τSOAP enables the characterization of
their evolution toward either strongly or weakly dynamic environ-
ments. Finally, we can envisage that descriptors like τSOAP, and its
first time derivative, may be also useful in enhanced sampling meth-
ods, providing degrees of freedom along which structural variations
or transitions within the system can be accelerated.

Nonetheless, τSOAP-based investigation presents a few limi-
tations. Although τSOAP signal tracks the evolution of each con-
stituent unit along the whole MD trajectory, thus providing time
history data, the coupled ML-based approach relies on the instan-
taneous values of local environment changes, without performing
time-series clustering for identifying dynamic domains. Impor-
tantly, time-series clustering and classification based on the fre-
quency/duration of local environment variations could have a strik-
ing advantage in regard to discriminating fluctuations leading up to
significant structural changes in the system. Notably, by including
in our ML-based framework the first time derivative of τSOAP, we
start providing further insights on predicting the evolution of local
changes and specifically how selected environments reconstruct or
evolve in time. In summary, our approach turned out to be robust
and versatile to capture fluctuating environments from SOAP spec-
tra in a variety of systems by means of a completely agnostic and
data-driven analysis.

SUPPLEMENTARY MATERIAL

The supplementary material contains details about the length of
MD simulation trajectories and SOAP vector parameters; the Elbow
Curve Method profiles for the identification of the optimal num-
ber of final clusters; KMeans clustering analysis on the τSOAP data
starting from K = 10 clusters with their relative transition probabil-
ities and the associated dendrograms; SOAP + PCA-based analyses
related to TIP4P/ICE ice/liquid water system; SOAP + tICA-based
analyses related to TIP4P/ICE ice/liquid water system. This material
is provided as a PDF file. Complete details of all molecular mod-
els used for the simulations, and of the simulation parameters (e.g.,
input files), as well as the complete TimeSOAP analysis code, are also
available at https://doi.org/10.5281/zenodo.7962820.
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