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Abstract

Visual Place Recognition is a task that aims to predict
the coordinates of an image (called query) based solely
on visual clues. Most commonly, a retrieval approach is
adopted, where the query is matched to the most similar
images from a large database of geotagged photos, using
learned global descriptors. Despite recent advances, rec-
ognizing the same place when the query comes from a sig-
nificantly different distribution is still a major hurdle for
state of the art retrieval methods. Examples are heavy il-
lumination changes (e.g. night-time images) or substantial
occlusions (e.g. transient objects). In this work we ex-
plore whether re-ranking methods based on spatial verifica-
tion can tackle these challenges, following the intuition that
local descriptors are inherently more robust than global
features to domain shifts. To this end, we provide a new,
comprehensive benchmark on current state of the art mod-
els. We also introduce two new demanding datasets with
night and occluded queries, to be matched against a city-
wide database. Code and datasets are available at https:
//github.com/gbarbarani/re-ranking-for-VPR.

1. Introduction
The task of Visual Place Recognition (VPR) aims to an-

swer the question “Where was this picture taken?”. In the
literature the most popular approach is to cast the task as
an image retrieval problem, where a given query is local-
ized via comparison to a previously collected database of
geotagged images [1, 2, 4, 6, 7, 17, 23, 25, 29, 34, 63, 65],
and the query is considered correctly localized of its ground
truth position is less then 25 meters away form the predic-
tion. VPR can be used as a first step before more precise
visual localization, and can find multiple applications in
fields like autonomous driving, SLAM and augmented real-
ity. Given these applications, the task is usually performed
in large-scale outdoor scenarios, for which the database is
collected in an automated fashion, typically via Street View

Figure 1. Plot showing the Recall@1 and latency for different
methods on multiple datasets. Latency is to re-rank 100 candi-
dates of a single query, considering local features extraction to be
performed online. We can see that there is no single method that
outperforms all others on all scenarios, and the ideal choice of a
re-ranking method for a VPR system depends on multiple factors,
such as time requirements and expected domain shifts.

data [6, 8, 53, 54], which ends up being made up of mostly
day-time images. On the other hand, the queries that a real-
world VPR system receives once deployed may be subject
to high appearances changes, due to night-time images, oc-
clusions, critical meteorological conditions. This domain
shift between queries and database still represents a major
challenge in the literature [3,8,20,32,39,53,56,57,62,64].

To improve results and address these issues, a number
of previous works noted that local features [9, 24, 33, 55]
and image matching [15, 42, 43, 49] methods are inherently
more robust to domain shifts , and that these can be used to
re-rank a set of candidates (usually through spatial verifica-
tion) provided through image retrieval methods, leading to
large improvements in results [18, 55].

Our work aims to quantify the effectiveness of these
methods that provide a matching score between two im-
ages, when applied to re-rank the top-N candidates of a re-
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Figure 2. Overview of the re-ranking pipeline. First, a retrieval
method performs a similarity search on the global descriptors ex-
tracted from query and database to output a set of top-k candidates.
Then re-ranking is applied to refine the retrieved candidates.

trieval module for VPR. Despite the recent interest in this
category of methods, they are yet to be studied in the VPR
setting, and previous work only compare a small number
of these methods [18, 55]. Furthermore, previous compar-
isons of such methods in a VPR setting are hindered by the
use of different underlying retrieval methods: for example,
in [55] the authors use DELG, Patch-NetVLAD, TransVPR
and SuperGlue to re-rank a shortlist of candidates provided
by different retrieval methods, making it difficult to under-
stand whether better results are granted by re-ranking or the
retrieval module.

To establish which methods are most suited for re-
ranking in real-world VPR, we perform an extensive bench-
marks of existing image matching pipelines with a focus on
the domain shift problem. In particular, we focus on creat-
ing fair benchmarking conditions, by providing all the re-
ranking methods with the same pool of candidates to score.
Where possible, we use the same backbone for local feature
extraction, and use the same hardware to carry out exten-
sive efficiency evaluation. Our benchmark reveals that even
highly challenging datasets can be nearly solved by combin-
ing SOTA retrieval and re-ranking methods (e.g. on Tokyo
night, which uses only the night queries of Tokyo 24/7, we
achieved a Recall@1 > 95%).

We therefore propose two new challenging datasets, in
order to provide a stimulating and challenging benchmark
to foster future research. In the creation of these two
datasets we focused on the two most challenging domains
for VPR: the first has night-time queries, whereas the sec-
ond has queries with heavy occlusions due to dynamic ob-
jects (e.g. vehicles and pedestrians). For both datasets,
we collected (and manually verified) queries from Flickr,
whereas as a database we use the San Francisco eXtra Large
(SF-XL) dataset.

Our contributions can be summarized in the following
points:

• We propose two new query sets to allow to evaluate
the performance on night-time and occluded images
against a city-wide database. Both query sets have
been collected from Flickr and manually curated.

• We construct a benchmark to explore the applicabil-

ity of spatial verification techniques for re-ranking in
VPR. We create comparable setups to isolate the per-
formances of the tested methods, quantify their gains
with respect to the state of the art in VPR.

• We find that re-ranking methods are able to greatly im-
prove the results over commonly used retrieval meth-
ods, and we observe that there is no clear winning so-
lution, as different scenarios require different methods.

2. Related Work

Visual Place Recognition through Image Retrieval
Image Retrieval is the most common way to approach

the task of Visual Place Recognition. A neural network
is used to extract global descriptors from the query and
database images, and then a kNN is performed to find the
matches to the query. Among the proposed global extrac-
tors, NetVLAD [4], a deep learning successor of VLAD
[22], established a milestone in the field of VPR. NetVLAD
led to the birth of a large number of work that proposed
improvements to it, commonly trained with variants of
the weakly supervised triplet loss: among them we note
ApaNet [66], CRN [23], SARE [29], SFRS [17], AppSVR
[36] and SralNet [35]. Such methods have been recently
outperformed by models that do not rely on NetVLAD, use
smaller descriptors, and propose new training techniques to
scale to large training sets: the most notable examples of
this trend are CosPlace [6], Conv-AP [1] and MixVPR [2].

A separate line of works [3, 8, 56] propose to explicitly
tackle the domain shift issue through domain adaptation,
although such methods are by nature focusing on a single
domain, lacking generalization capabilities.

While retrieval methods have been covered by a num-
ber of benchmarks throughout the years [7, 40, 44, 63], no
benchmark has focused on the possibilities that re-ranking
method offers and the computational trade-offs they entail.

Local features for spatial verification
Local features-based spatial verification represents an es-

tablished paradigm that has been applied to several com-
puter vision tasks, ranging from structure from motion
(SfM) [26, 28, 46], simultaneous localization and mapping
(SLAM) [11, 18, 43] and visual localization [26, 44, 49, 53].
For many years hand-crafted feature extractors have rep-
resented a remarkably strong baseline [5, 30], whereas
pioneering learning-based methods showed large margin
for improvements under perspective and lightning changes
[13, 61]. In recent years, we have witnessed a flourish-
ing literature on learnable detectors and descriptors ex-
ploiting local features for pose and homography estima-
tion [12, 14, 15, 21, 42, 43, 49]. Although these methods are
not specifically designed for retrieval, they can be naturally
used to re-rank retrieval candidates by assigning a higher
similarity to pairs of images that share more matches across
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Database Database source Database # images Query set Queries source # queries
Tokyo 24/7 [53] Google StreetView 75k Tokyo night (night queries from Tokyo 24/7) Collected with a smartphone by [53] 105
SVOX [8] Google StreetView 17k SVOX Night Oxford RobotCar 823

SF-XL [6] Google StreetView 2.8M

SF-XL test v1 Flickr 1000
SF-XL test v2 Collected with a smartphone by [10] 598

SF-XL test night (ours) Flickr 466
SF-XL test occlusion (ours) Flickr 76

Table 1. Summary of the datasets considered in our experiments. The table reports the raw data sources, every author has cleaned and
processed them in customized way, refer to their papers for the details. In general streetview panoramas have been cropped in patches and
turned in multiples suitable references for the databases. Flickr queries have been filtered and manually checked for positive references.
Oxford RobotCar [31] data have been collected and processed with a modality analogues to streetview panoramas, although Tokyo 24/7 [53]
queries have been collected with smartphone devices they are scenes compatible with a moving vehicle point of view. While Flickr and
San Francisco Landmark [10] data contains a broader range of point of views and camera types.

local features.
However, methods trained for outdoor image matching

can be less robust to dynamic objects (e.g. they may match
the cars between two images instead of the buildings), than
other methods that were specifically trained for image re-
trieval and re-ranking [9, 18].

Generally, local features are represented as pairs of key-
point (i.e. the pixel coordinate of the feature) and descrip-
tor (a fixed size vector). Given a pair of images, the local
features are then cross-matched to find pairs of keypoints
across the two images, in a procedure known as spatial ver-
ification. While this step is usually performed with heuris-
tics like RANSAC [16], data-driven approaches like Super-
Glue [43] have been proposed for the task.

SuperGlue uses graph neural networks to learn data-
dependent priors on matches given two sets of keypoints as
an input. This approach has been subsequently generalized
by LoFTR [49], which removes the dependence from an un-
derlying detector exploiting cross-attention transformers for
directly selecting keypoints matches among an image pair.

Some of these methods have been evaluated on outdoor
datasets that are not commonly used in the VPR literature.
Some examples are Oxford5k [37] and Paris6k [38], not
suited for VPR since they do not provide a dense database
(densely covering a given area), and others, like Aachen
[44, 45], cover only a small area of a city, and are mainly
used for pose estimation. The same consideration holds for
Madrid Metropolis, Gendarmenmarkt and Tower of Lon-
don, proposed in [59].

Local features for re-ranking
Local features have been explored also for image re-

trieval, mainly with purpose of re-ranking the shortlist of
top-N candidates proposed by the retrieval module [9, 18,
50, 55]. To this end, the matching algorithm needs to be
turned in a scoring algorithm, commonly using the num-
ber of matches found in an image pair as a proxy of confi-
dence. In other cases, instead of an explicit re-ranking step,
local features are used either to enhance global descrip-
tors or to match directly reference images [33, 52, 58, 60].
DELG [9] uses a global extractor trained with a large mar-

gin cosine loss, coupled with local features refined follow-
ing unsupervised criteria for discriminativeness and reliabil-
ity. Patch-NetVLAD [18] obtains a set of dense local fea-
tures performing the VLAD aggregation on local patches,
while TransVPR [55] is based on a transformer architecture
that selects a subset of patches through its multi-scale atten-
tion maps. These last two methods were designed for VPR.
The majority of re-ranking methods exploit RANSAC, us-
ing the number of inliers to assign a score to the candi-
dates [9, 18, 33, 55].

Recently, researchers have been explored end-to-end
learnable architectures able to estimate a similarity score
between pairs of images, as alternative to RANSAC. In
[50], the authors feed the local and global features from
DELG to a transformers architecture and then cast the prob-
lem as a binary classification task. Similarly, CVNet [24]
builds a pyramid of 4D correlation maps from the feature
maps of a CNN. The 4D maps are then reduced to a sim-
ilarity score through 4D convolutions. Unlike many meth-
ods for homography estimation, the algorithms mentioned
in this section are trained without patch-level supervision.

3. Dataset

Previous datasets
Several datasets with query splits that explicitly aim to

measure the domain shift adaptation capability have been
proposed in the VPR literature [6, 8, 31, 53].

Among these, Tokyo 24/7 [53] presents three queries
splits taken from different times of the day, respectively
daytime, sunset, night, providing a widely used dataset for
cross-domain VPR. While Tokyo 24/7 provides a well cu-
rated dataset and is widely used in literature [4, 17, 27, 29],
we argue that it is quite limited in size: there are 105 queries
per domain and a database of 75k images, covering just a
small part of the city.

In [8] presented SVOX, a cross-domain dataset with
database from Google StreetView. The queries come from
RobotCar [31] and belong to a number of domains, namely
snow, rain, sun, night and overcast. SVOX uses a database
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a)

b)

Figure 3. Examples of queries from a) SF-Night and b) Sf-
occlusion.

smaller than Tokyo 24/7’s, and it only provides frontal-view
images, i.e. with the facing straight along the road.

Another cross-domain dataset is San Francisco eXtra
Large (SF-XL) [6], with a large-scale database that covers
the whole city of San Francisco with 2.8M StreetView im-
ages. SF-XL provides two query sets named test v1 and test
v2: (1) test v1 are 1000 images from Flickr, uniformly dis-
tributed across the whole city, providing some domain shifts
(mostly viewpoint and a few night images); (2) test v2 is a
set of 598 images taken with a smartphone in the city cen-
ter, with images providing mild to moderate viewpoint shift
w.r.t. to the database. Although SF-XL large scale makes it
a relevant option for research in VPR, its lack of well de-
fined query splits from multiple domains makes it difficult
to understand which methods can perform well in certain
domain shifts.

To overcome the aforementioned limitations of previous
datasets, we built two new sets of night and occluded im-
ages respectively, to be used against the database of SF-XL.

Our new datasets To obtain realistic and diverse queries,
we downloaded hundreds of thousands images from Flickr
for the area of San Francisco, similarly to [6, 37, 38, 41].

With the help of trained classifiers, we then removed in-
door images, and proceeded with the creation of two chal-
lenging sets of queries:

• SF-XL test night is a set of night images, which we
automatically selected with a trained classifier.

• SF-XL test occlusion is a set of images that present
heavy occlusions: the images were automatically se-
lected using an object detection model, keeping those
with a dynamic object (e.g. car, truck, person) with
width > 50% and height > 30% the size of the image.

Due to the inaccuracy of Flickr geotag information we man-
ually verified the positions of each image, which resulted in
466 and 76 images for the SF test night and SF test Occlu-
sion respectively. A sample of queries is shown in Fig. 3.

Given the availability in literature of an open-source
large-scale dataset that covers the city of San Francisco,

Retrieval
Method

Descriptors
Dimension

SF-XL test v1
R@1 R@5 R@10

NetVLAD 4096 33.1 45.0 50.4
TransVPR 256 9.7 16.6 20.3
CVNet 2048 70.1 81.2 84.6
DELG 2048 64.3 73.0 76.1
CosPlace 512 76.7 82.5 85.6
Conv-AP 4096 49.1 60.6 65.6
MixVPR 4096 72.3 79.5 81.4

Table 2. Recalls with different retrieval methods. We used only
global descriptors for this table (i.e. no re-ranking is applied to
DELG and CVNet). NetVLAD uses a VGG-16 [47] (and PCA),
TransVPR a custom transformer model, while for all other meth-
ods we used the author’s ResNet-50 [19] implementation.

namely SF-XL [6], we match our proposed sets of queries
against the SF-XL dataset, in practice using it as a database.

A summary of the datasets that we use in our benchmarks
is shown in Tab. 1.

4. Experiments

4.1. Benchmark Methodology

To further motivate our benchmark, we point out that
the application of spatial verification methods to the VPR
task is not straightforward in light of the fact that many of
them [43,49] are trained on 3D models from SfM [26], thus
having access to accurate matching labels. On the other
hand, in the place recognition settings, matches are more
loosely defined (within 25 m [4, 7, 40]) and thus positive
matches may share only a small portion of a scene. These
differences raise doubts on the performances of these meth-
ods against complex perspective shifts and transient objects.
In our proposed benchmark we shed a light on these previ-
ously unexplored research questions.

In our set of experiments, our aim is to maximize the
results given the following two-step pipeline (see Fig. 2):

1. first we obtain a shortlist of K candidates using global
descriptors methods (i.e. the K nearest neighbor to the
query in features space);

2. sort the K candidates with a re-ranking algorithm.
Given that a large body of literature on image retrieval
through global descriptors already exists in the specific task
of VPR [1, 2, 4, 6, 7, 63], our benchmark focuses on the sec-
ond step, i.e. the re-ranking algorithms. To this end, we
obtain a shortlist of candidates using CosPlace [6] (using
a ResNet-50 backbone), which outperforms all other meth-
ods on SF-XL test v1 (see Tab. 2). Then, we perform the
re-ranking step with a number of methods from the liter-
ature, namely SuperGlue, D2-Net, R2D2, DELG, Patch-
NetVLAD, TransVPR, LoFTR and CVNet. By providing
these algorithms with the same set of candidates to re-rank,
it is possible to disentangle the effect of the local features
from the global extractor performance. In this way we ob-
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Features
Extractor

Features
Matching

Tokyo night SVOX night SF-XL test v1 SF-XL test v2 SF-XL test night SF-XL test occlusion
R@100 = 96.2 R@100 = 90.3 R@100 = 92.5 R@100 = 97.7 R@100 = 41.6 R@100 = 60.5

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
- - 80.0 88.6 91.4 51.6 68.8 76.1 76.7 82.5 85.6 89.0 95.3 96.3 23.8 29.0 31.5 26.3 38.2 46.1
SuperPoint SuperGlue 95.2 95.2 95.2 77.9 85.2 86.5 88.6 91.6 91.9 92.8 96.7 97.7 33.0 38.0 39.1 38.2 44.7 50.0
D2-net RANSAC 92.4 96.2 96.2 78.9 85.1 86.4 87.5 90.3 90.8 94.0 96.3 97.0 32.6 38.2 39.5 40.8 48.7 51.3
R2D2 RANSAC 86.7 90.5 92.4 72.5 80.7 82.9 85.1 88.2 89.6 94.1 96.8 96.8 26.2 32.2 33.9 38.2 47.4 50.0
DELG RANSAC 94.3 95.2 96.2 80.1 84.1 86.0 88.5 91.2 91.5 93.8 96.2 97.0 32.2 37.6 39.2 38.2 50.0 53.9
DELG RRT 84.8 94.3 95.2 66.3 81.7 85.7 85.3 89.6 90.4 88.6 96.0 97.2 27.3 35.6 38.6 35.5 48.7 52.6
Patch-NetVLAD RANSAC 90.5 94.3 94.3 67.2 80.6 83.6 77.0 84.7 87.0 91.0 95.2 96.2 31.8 37.3 38.4 34.2 47.4 52.6
Patch-NetVLAD Rapid Scoring 73.3 87.6 92.4 42.2 66.3 73.1 69.3 80.3 84.1 90.0 94.6 95.8 21.7 31.3 35.4 25.0 38.2 42.1
TransVPR RANSAC 88.6 95.2 95.2 63.8 79.2 83.2 84.0 87.6 89.1 92.5 96.2 96.7 27.3 34.3 36.7 38.2 46.1 52.6

LoFTR 93.3 95.2 95.2 80.0 84.0 85.3 87.9 89.8 90.7 93.3 96.3 97.2 32.6 37.6 38.2 40.8 48.7 51.3
CVNet 94.3 96.2 96.2 74.6 85.2 86.5 84.8 91.0 91.6 88.0 95.8 97.0 31.5 39.3 39.9 42.1 52.6 56.6

Table 3. Recalls before and after applying re-ranking. The shortlist of candidates to be re-ranked is obtained with CosPlace, and the
results with such shortlist are shown in the first row. Re-ranking has been applied to the first 100 candidates (i.e. K = 100). Next to each
dataset’s name, we show the R@100, which in practice sets the upper bound of the maximum recalls achievable after re-ranking. Best
results are in bold, second best are underlined.

Model
Descriptors size
(num. × dim.) Backbone Designed for

re-ranking
Sparse

Keypoints

DELG 1000 x 128 ResNet-50 ✓ ✓
Patch-NetVLAD 2826 x 4096 VGG-16 ✓ ✗
TransVPR 522 x 256 Custom CNN+transformer ✓ ✓
R2D2 4126 x 128 custom L2-Net [51] ✗ ✓
D2Net 2775 x 512 VGG-16 ✗ ✓
SuperPoint 1034 x 256 custom VGG ✗ ✓

Table 4. Characteristics of local features extractors. The de-
scriptors size was computed for all methods on the same image of
resolution 480x640. For Patch-NetVLAD descriptors size depends
only on the resolution, because it uses dense keypoints/features,
whereas for all other methods the number of descriptors depends
on the visual content of the image.

tain an indication of the benefit one can expect from the
spatial verification step on this challenging task, quantifying
the expected gains when modularly integrating these mod-
els a pre-existing VPR pipeline.

Given that re-ranking is performed on K candidates, the
value of K is of great importance: higher values of K reduce
the speed of the search, but (might) also lead to higher re-
sults (we investigate this effect in Sec. 4.4). For our main
experiments we set K = 100, following [9, 18, 50, 55];
in Sec. 4.4 we investigate how different values of K affect
speed and results.

Following the VPR literature [4, 6, 7, 17, 29, 65], we use
the Recall@N (R@N) as metric, which indicates the pro-
portion of queries for which at least one of the first N predic-
tions is correct, i.e. within a given threshold distance from
the query. The threshold distance is set to 25 meters, al-
though in Fig. 4 we investigate how results change with a
distance of 50 and 100 meters. Note that a positive im-
age might not share any visual content with the query (e.g.
distance ¡ 25 meters but opposite viewpoint direction with
the query), although the chance that one of these positives is
matched to a query by pure chance decreases as the database
increases, and that it would otherwise be unfeasible to ob-
tain unbiased ground-truth covisibility (as it would rely on
one of the methods used for testing).

4.2. Implementation details

To provide a relevant benchmark, we use a large num-
ber of methods, some of which were specifically designed
for re-ranking and some for tasks like spatial verification
and image matching. Specifically, we use SuperGlue [43]
(which uses SuperPoint [12] local features), D2-Net [15],
R2D2 [42], DELG [9], Reranking Transformers (RRT) [50]
(which uses DELG local features), Patch-NetVLAD [18]
with both its RANSAC and Rapid Scoring implementation,
TransVPR [55], LoFTR [49] and CVNet [24].

For all methods, we use the official implementations and
weights released by the authors, without fine-tuning. When
more options were available we chose the configuration
with best performance on SF-XL test v2, with the only ex-
ception that we preferred models with ResNet50 backbone
to ResNet100 counterpart.

A number of methods use some kind of multi-scale ap-
proach, namely DELG, R2D2, D2-Net, Patch-NetVLAD
and CVNet. Most spatial verification methods rely on the
standard RANSAC with 8 parameters to describe a ho-
mography, with the exceptions of DELG, which uses an
affine version of RANSAC (i.e. with 6 parameters). Patch-
NetVLAD applies RANSAC multiple times to match mul-
tiple scales (for the multi-scale approach). Patch-NetVLAD
also provides a fast version, which uses a novel alterna-
tive to RANSAC called Rapid Scoring, which is a non-
iterative heuristics that has been proposed as a faster option
to RANSAC as it does not require an iterative algorithm to
be computed. Preliminary experiments with Rapid Scoring
on methods other than Patch-NetVLAD gave poor results,
and we found it to be sensible to outliers and reliable only
for moderate changes in viewpoint. For Patch-NetVLAD
and TransVPR we resized the images to have a resolution
of 480x640, following the original implementations.

4.3. Quantitative evaluations of results

Results from our experiments are shown in Tab. 3. We
point out how the majority of the methods effectively pro-
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vide a boost with respect to the baseline performance. For
example, LoFTR and SuperGlue grant on average a 21%
and 13% boost, respectively on night and occlusion bench-
marks. This supports one of the motivation of our paper,
that is showing the potential of methods based on local fea-
tures to overcome the limitations of global descriptors in
these challenging scenarios. We summarize other detailed
findings from the experiment table in the following points:

• Interestingly, methods designed for Image Matching
turn out to be highly competitive even when extended
to VPR systems. In particular, SuperGlue achieves the
best recalls for Tokyo night, SF-XL test v1 and SF-
XL test night. This disproves the intuitive hypothesis
that these models would suffer the absence of a train-
ing protocol that explicitly encodes a prior on ignoring
transient objects. The same considerations hold as well
for D2-Net and LoFTR, which perform very closely to
SuperGlue across the board.

• Among the native re-ranking methods, DELG paired
with RANSAC is the more versatile option. It reaches
the best performance on SVOX night, and on every
other dataset its R@1 is comparable with the high-
est score. Regarding CVNet, it grants the highest
R@5 and R@10 in almost every benchmark, despite
some drops in R@1 for SVOX night and SF-XL test v1.
TransVPR and Patch-NetVLAD end up being by far
the less robust to the night domain.

• CVNet is the single best model on SF-XL test occlu-
sion. This confirm the effectiveness of its training
procedure that involves Hide-and-Seek [48] augmen-
tations for robustness against occlusions.

• Rapid scoring reaches very modest results, failing to
provide a faster alternative for matching. Likewise,
scoring with RRT improves the baseline but it is signif-
icantly worse than RANSAC variant on night datasets.

• Finally, it emerges how our newly proposed datasets
are far from solved; we believe that this new and
challenging benchmarks will inspire the community,
paving the way for future research.

4.4. Ablation on K and different positive threshold
distances

Given that re-ranking can be orders of magnitude more
expensive than standard retrieval (through a nearest neigh-
bor search), it is important to understand the ideal num-
ber of candidates to be re-ranked for an efficient VPR sys-
tem. To this end, we use the best-performing methods from
Tab. 3 and run a new set of experiments by using different
values of K, precisely any K ∈ {1, 2, 3, ...100}. Further-
more, we investigate how this affects the Recall@1 not only
when using a threshold for positives of 25 meters, but also
when increasing it to 50 and 100 meters. Given the large
number of combinations, we report the results on the two

datasets that we believe would best represent a real-world
scenario: SF-XL test v1 and SF-XL test night.

Interestingly, we find that no single method achieves best
results across the board:

• Firstly, it can be noted that simply increasing the
threshold up to 100m allows to count more matches as
correct. This is relevant as many applications that do
not require high localization precision can exploit this
effect. In particular, increasing the threshold grants
higher gains on the more challenging datasets.

• DELG and CVNet exhibit superior performance when
the threshold is increased to 100 meters: this is proba-
bly due to them being trained on the Google Landmark
Dataset, which provides photos of buildings from far
apart. In particular DELG scores higher on SF-XL test
v1 whereas CVNet is superior in handling night images
and transient occlusions.

• D2-Net, SuperGlue and DELG provide more precise
matches under domain shift. They achieve the top
scores with a threshold of 25 meters on SF-XL test
night.

• As a rule of thumb, the higher the K the better the re-
sults. However, it should be noted that the more chal-
lenging the dataset, the earlier this curve plateaus. This
effect is especially visible with lower thresholds; in
particular on SF-XL test occlusion in many cases in-
creasing K leads to higher false positives ratio. Con-
sidering that the cost of re-ranking scales linearly with
K, the choice of this parameter must be devoted the
utmost attention.

• Lastly, we can see that the upper bound (i.e. the Re-
call@K with CosPlace) is still much higher than any
of the re-ranking methods, proving that there is still a
large margin for improvements.

4.5. Qualitative evaluations of results

To give an intuition to the reader over the strengths and
weaknesses of three re-ranking methods (i.e. SuperGlue,
DELG and CVNet), we report in Fig. 5 a number of queries
and the first prediction with each method.

4.6. Is the night domain a real challenge?

In this section we disentangle if the errors in night time
datasets are due to the difficult illumination or other fac-
tors. We considered the 101 queries of Tokyo night for
which CosPlace provides at least one positive within the
first 100 candidates. Of these 101 queries, we found that
CVNet is able to solve every single query, while DELG
and SuperGlue fail in one case (which is shown in Fig. 5
(d)). Given these results, we argue that the difficulty of the
SF-XL test night dataset is not solely due to the night do-
main: for example, a factor could be that the night photos
from Flickr often contain several other challenges, repre-
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Figure 4. Re-ranking with different values of K, from 1 to 100. The ”Upper Bound” is the Recall@K without applying re-ranking (i.e.
with CosPlace). For DELG and Patch-NetVLAD we used the version with RANSAC.

sentative of realistic use-cases. For instance heavy view-
point shifts, and artificial lights such as signboards, dec-
orative lights can highly affect the visual appearance of a
place (e.g. see queries in Fig. 3). These results prove that
state-of-the-art local features are indeed very robust to illu-
mination changes, and that our newly proposed SF-XL test
night highlights the real challenges that photos in the wild
can present.

4.7. Computational cost

In Fig. 1 we study the computational requirements for
the considered re-ranking methods in relationship to their
performances on SF-XL test night and SF-XL test occlu-
sion. We plot the time required to re-rerank the top-100
candidates for a single query, considering online extraction
of local features for the candidates from the database. Al-
though many works consider this step to be computed of-
fline, without any quantization techniques the storage cost
would quickly explode on realistic large scale databases
for VPR. For instance, storing SuperPoint local descrip-
tors for the SF-XL database would require roughly 1 Tb.
Since quantization techniques must be studied accurately

for each case [7, 33], we kept the most generally appli-
cable implementation and considered online local features
extraction. In general, methods with lighter backbones
for feature extraction are the fastest, namely R2D2 and
TransVPR. Whereas DELG, either with RANSAC or RRT,
is the costlier approach. Including performances into the
equation, SuperGlue, LoFTR and CVNet attain the best
trade-off overall. Nevertheless, these delays of the order of
hundreds of seconds may not be acceptable in many practi-
cal applications, and this trade-off should be carefully eval-
uated together with the ablation on the number of candi-
dates to re-rank presented in Fig. 4. It shows that, despite
it is common practice in the re-ranking literature to adopt
K = 100 or more [9,18,33,50,55], in many cases it is pos-
sible to cut down inference time substantially reducing K
without suffering big performance hits.

5. Conclusion

In this paper we investigate how re-ranking techniques
can be used to improved results in visual place recognition.
Specifically, we experiment on the relevant setting when the

7



(a) A failure of SuperGlue due to a dynamic object (a tram), which SuperGlue (unlike DELG and CVNet) has not been trained to ignore. We can also see
that CVNet finds a positive with very different viewpoint than the query, even though candidates closer to the query are available.

(b) DELG and CVNet failures for this case are most likely due to those methods using a combination of local and global scoring system. The global
features see trees and a red line (which for the query is on the bus, and for the predictions is an awning).

(c) This example shows the robustness of CVNet to strong occlusions, which is learned thanks to its use of Hide-and-Seek data augmentation [48].

(d) The only example from Tokyo night where DELG and SuperGlue fail to find the correct prediction.

Figure 5. Qualitative examples of 3 queries and the first prediction with 4 relevant methods, namely CosPlace (retrieval baseline)
SuperGlue, DELG and CVNet. Predictions are in green if they are less than 100 meters away from the query’s ground truth.

queries come from a different domain than the database,
with a focus on night and occluded queries. We propose
two challenging query sets, on which even the best combi-
nation of methods achieve a Recall@1 < 50%.

We provide a large set of experiments to show which
methods perform best for the task of cross-domain re-
ranking for VPR, finding that many methods achieve pareto-
optimal solutions when time and recalls are considered.

We also find that different domain shifts require different
approaches, and that there is no clear winner across all
datasets, even when latency is not an issue.

We believe that our work can shed light on how to design
a highly performant VPR system on multiple conditions,
and that our proposed datasets will foster further research
to continue to improve the state of the art.
Acknowledgements. This work was supported by CINI.
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