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ABSTRACT:

The development of autonomous vehicles, both terrestrial and aerial ones (unmanned aerial system (UAS)), is causing the need of
properly formulating appropriate solutions for ensuring a safe interaction between them, human beings and the infrastructures and
environment in their operating area. To such aim, the knowledge of the positions of different platforms moving in the considered
area is fundamental. GNSS (Global Navigation Satellite System) is by far the most used positioning technique in order to determine
positions all over the world. Nevertheless, there are several conditions in which its use is unfortunately impossible or unreliable.
Hence, different techniques, based on the use of sensors either mounted on the moving platforms or on an ad-hoc infrastructure,
shall be used in order to determine the absolute and relative positions of the involved platforms. To this aim, this work proposes
the use of vision, in particular from UAS imagery, static LiDAR (Light Detection and Ranging) and UWB (Ultra Wide-Band)
transceivers, with initial encouraging results.

1. INTRODUCTION

The number of Unmanned Aerial Vehicles (UAVs) civil applic-
ations is continuously increasing thanks to their flexibility of
usage. In this work their use is proposed to support traffic
monitoring, vehicle and pedestrian tracking and collaborative
navigation, along with the use of a properly developed infra-
structure, i.e. a static LiDAR (Light Detection and Ranging)
and a set of static UWB (Ultra Wide-Band) transceivers, en-
suring Vehicle-to-Infrastructure (V2I) ranging (and, in partic-
ular, Pedestrian-to-Infrastructure ranging). UWB Vehicle-to-
Vehicle (V2V) ranging, i.e. UWB ranging and communications
between moving platforms, is also taken into account, in partic-
ular in the Pedestrian-to-Pedestrian case.

The aim of this work is twofold:

• first, traffic monitoring and tracking can be useful to study
car driver and pedestrian behaviors, in particular when in-
teracting with each other, which can be of fundamental
importance in order to develop safe and reliable autonom-
ous driving solutions (Puri et al., 2007, Khan et al., 2017,
Kanistras et al., 2013, Coifman et al., 2006) (generat-
ing datasets to this aim has already been considered by
some research groups, such as in (Krajewski et al., 2018,
Bock et al., n.d., Krajewski et al., 2020)). Furthermore,
crowd monitoring can support public event organizers and
decision makers to properly deal with certain emergency
conditions.

• On the other hand, despite the availability of affordable
GNSS (Global Navigation Satellite System) receivers en-
abled effective outdoor navigation on consumer devices
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almost everywhere, there are a number of critical condi-
tions where GNSS-based navigation does not provide an
accurate and reliable solution, such as indoors, in urban
canyons and tunnels (Nistér et al., 2004, Konolige et al.,
2010, Howard, 2008, Forster et al., 2014, Gurturk et al.,
2021, Masiero and Vettore, 2016). Mitigating the unreli-
ability and/or compensating the unavailability of a GNSS-
based solution usually involves the integration of inform-
ation provided by several sensors (Grejner-Brzezinska et
al., 2016, El-Sheimy et al., 2006), often including iner-
tial sensors (El-Sheimy and Youssef, 2020), magnetometer
and radio signals (Zhuang et al., 2016, Dabove et al., 2018,
Li et al., 2018, Adegoke et al., 2019, Sakr et al., 2020), in
order to reach a trustworthy solution (de Groot et al., 2018,
Hsu et al., 2015, Zeng et al., 2017).

This work is part of a project, conducted as a collaboration
between the ISPRS WG I/2 “Mobile Mapping Technology” and
the IAG WG 4.1.4 “Computer Vision in Navigation”, aiming
at both assessing the accuracy of vision based positioning and
navigation. More specifically, this paper focuses on a data col-
lection campaign made in order to investigate UAV and static
LiDAR-based pedestrian and ground vehicle tracking, and also
to exploit this information in a collaborative navigation ap-
proach (Yao et al., 2011, Alam and Dempster, 2013, Ansari,
2019, Masiero et al., 2021). In accordance with the aims of this
project, all the involved devices, mounted on aerial platforms,
ground vehicles and pedestrians, are assumed to be connected:
thanks to their communication abilities, each moving platform
can exploit the information shared by the others when comput-
ing its own solution.

Vision-based positioning and tracking techniques are quite pop-
ular, in particular for what concerns visual simultaneous loc-
alization and mapping (SLAM) techniques (Mur-Artal et al.,
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2015, Leonard and Durrant-Whyte, 1991, Strasdat et al., 2012,
Whelan et al., 2016). Furthermore, LiDAR can also be ex-
ploited in order to both determine the ego-motion of a platform
(Zhang and Singh, 2014, Zhang and Singh, 2017) and to as-
sess movement of other platforms and persons (Masiero et al.,
2022).

This paper will present the conducted data collection campaign
and some initial results related to pedestrian and car tracking,
which can be used either as stand-alone solutions or comple-
mentary information when GNSS is available.

2. CASE STUDY

A three-day data collection test, including three pedestrians,
two UAS platforms, one terrestrial vehicle was organized at
the Agripolis Campus of the University of Padua. All the ter-
restrial platforms were provided of reliable positioning systems,
GNSS based, with corrections from a permanent base station
at distance ≤ 150 m. Additionally, all the moving platforms
were provided with a camera, in video acquisition mode, and an
UWB transceiver (see Fig. 1). Some targets, properly surveyed
(at few centimeter-level of accuracy), have also been distributed
on the ground, mostly in correspondence with the UWB anchor
locations, to be used as reference ground information for the
UAVs, as shown in Fig. 2.

(a)

(b)

Figure 1. Sensors on pedestrians.

Figure 2. Example of target and Pozyx UWB anchor.

In the portion of the dataset considered in this paper, the static
LiDAR was mounted on a building close to the case study area,
in order to have a quite view of the scene (Fig. 3).

Figure 3. LiDAR view of the case study area.

Finally, a UAV monitored the scene flying at few tens of meters
of altitude from the ground (Fig. 4 shows a top view of most of
the test area).

Fig. 5 shows an example of the pedestrian tracks (5-minute long
example).

3. PRELIMINARY RESULTS

First, UWB ranging has been tested, comparing UWB measur-
ments with reference distances computed by means of GNSS.
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Figure 4. Top view of the test area.

Figure 5. Example of pedestrian tracks (5-minute long).

For what concerns Pedestrian-to-Pedestrian UWB ranging,
Fig. 6 provides the results of such comparison. It is worth to no-
tice that, despite some outliers are quite visible, the two curves
are reasonably similar.

Figure 6. Pedestrian-to-pedestrian ranging: Comparison of
UWB ranges with GNSS-based distances.

The success percentage of ranging is also a very important
factor, remarkably impacting in a trilateration-based position-
ing system. Hence, Fig. 7 and Fig. 8 show the success rates as
a function of the distance between the considered devices in the
Pedestrian-to-Pedestrian and in the Pedestrian-to-Infrastructure
case. Such two figures show a higher success rate for the
Pedestrian-to-Pedestrian case in the (0–30) m interval, whereas
a much larger maximum range is obtained in the Pedestrian-to-
Infrastructure case.

Figure 7. Pedestrian-to-pedestrian UWB ranging: success rate as
a function of the distance.

In an initial assessment of the UWB only solution for pedestrian
tracking, it allowed to obtain a median 2D positioning error at
meter level, which is more than expected (see (MacGougan et
al., 2009)), but probably caused by the presence of many metal-
lic objects (e.g. cars) in the scene.

Instead, the results of LiDAR-based tracking were at decimeter
accuracy level, when available. Actually, solution was not
available on those parts of the tracks outside of the LiDAR field-
of-view.

Finally, UAV vision was used for car tracking, ensuring a reli-
able reference solution by fixing a geodetic GNSS receiver on
the top of the vehicle. In order to study the driver behavior it is
quite important in this case to assess the vehicle speed, which
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Figure 8. Pedestrian-to-infrastructure UWB ranging: success
rate as a function of the distance.

is reported in Fig. 9 (results are reported for a 30 s interval),
where the reference speed (blue solid line) is compared with
the estimated speed (red dot marks), with an average discrep-
ancy of around 0.1 m/s.

Figure 9. Comparison between the vision-based estimated car
speed (red dot marks) and the GNSS-based reference velocity

(blue solid line).

4. CONCLUSIONS

This paper shows a portion of the data collected in data collec-
tion campaign aiming at providing a dataset useful to invest-
igate the combined use of different sensors in order to track
pedestrians and terrestrial vehicles. To such aim, different kind
of sensors, both static (on the ground and from a quite high
point of view) and mounted on moving platforms (UAV and
carried by the pedestrians) have been considered, including ra-
dio (UWB), vision (standard RGB camera) and LiDAR.

The initial results show that there is a quite decent potential
in the use of the considered sensors. Nevertheless, each of
them has some strengths and weaknesses, e.g. LiDAR and cam-
era imagery can ensure very good positioning results, but only
when the tracked object/person is in the sensor field-of-view.
Despite radio connection is also quite limited at large distances,

overall it allowed to obtain much more continuous solutions,
i.e. with much less gaps.

Our future investigations will aim at a more in depth compar-
ison between the performance that can be obtained with these
sensors, at investigating their combined use, improve the col-
laborative aspect of the collected dataset, focusing in particular
in the development of a scalable, non-centralized positioning
approach (Pascacio et al., 2021, Mu et al., 2011, Kerr, 1987,
Steinmetz et al., 2019), and at implementing also some ma-
chine/deep learning based techniques in order to detect and re-
cognize objects, obstacles, pedestrians and other vehicles in the
neighborhood of the each vehicle.
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