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Polynomial interpolation via mapped bases without
resampling

S. De Marchi∗ , F. Marchetti∗∗ , E. Perracchione∗ , D. Poggiali∗

*Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova, Italy;
∗∗Dipartimento di Salute della Donna e del Bambino, Università di Padova, Italy

Abstract

In this work we propose a new method for univariate polynomial interpolation
based on what we call mapped bases. As theoretically shown, constructing the
interpolating function via the mapped bases, i.e. in the mapped space, turns
out to be equivalent to map the nodes and then construct the approximant in
the classical form without the need of resampling. In view of this, we also refer
to such mapped points as “fake” nodes. Numerical evidence confirms that such
scheme can be applied to mitigate Runge and Gibbs phenomena.

Keywords: Polynomial interpolation, Gibbs phenomenon, Runge
phenomenon, mapped bases.
2010 MSC: 65D05, 41A05, 65D15.

1. Introduction

Univariate polynomial interpolation has been widely studied in the past and
nowadays finds many applications, e.g. to scientific computing and time series
analysis. Recent research focuses on constructing admissible sets of points in
higher dimensions so that the interpolation problem is well-posed, see e.g. [26].
Further studies are also devoted to build sets of data that minimize the Lebesgue
constant for both multivariate interpolation problems and rational univariate
approximants, see e.g. [7, 8]. In this direction, many works based on conformal
maps have already been developed; for a general overview, we refer the reader
to [1, 6] and references within.

However, this might not be effective enough for applications, indeed choos-
ing ad hoc sets of nodes leads to resampling the (unknown) function. Therefore,
this is not always possible and one only disposes of a given set of nodes and
related function values sampled at those points. Alternatively to resampling,
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one could consider the idea of extracting “good” nodes from the given sam-
ples. In this view, an example are the so-called mock-Chebyshev points, which
present a quasi-Chebyshev distribution in the interval and they are extracted
from equispaced samples [9].

We here adopt a different solution and we propose the so-called mapped bases
approach, which is equivalent to build (under certain restrictions) an arbitrary
set of interpolation nodes with the sought properties, e.g. Chebyshev nodes for
reducing the Runge phenomenon [11, 12, 30, 31]. The main advantage is that
the resampling is not needed, i.e. we reduce to solving a classical interpolation
problem on these mapped or fake nodes and then we apply the same map to the
evaluation points.

As another immediate application, we focus on reducing the Gibbs oscil-
lations; refer e.g. to [2, 3, 18, 21, 22, 24] for a general overview. Precisely,
inspired by recent studies in the context of meshfree methods [10, 19, 28], by
selecting a discontinuous map, we can naturally reconstruct jumps with the
monomial/lagrangian basis.

The paper is organized as follows. In Section 2, after briefly reviewing the ba-
sics of univariate polynomial interpolation, we describe our interpolation method
based on fake nodes. In Section 3, we present algorithms devoted to the con-
struction of robust mapping functions for our interpolation strategy. Numerical
experiments and comparisons with standard approaches used to mitigate Runge
and Gibbs phenomena, are presented in Section 4. The last section deals with
conclusions and future work.

Finally, we point out that the Python software for interpolating at the fake
nodes is available for the scientific community in [20].

2. From polynomial interpolation to mapped bases

We first review the basics of univariate interpolation; refer e.g. to [15].
Let Ω = [a, b] ⊂ R be an interval and let Xn+1 = {xi}i=0,...,n ⊂ Ω be a set of

distinct nodes (also called data sites). The aim is to reconstruct a function f :
Ω −→ R given its samples at the nodes, i.e. given Fn+1 = {fi = f(xi)}i=0,...,n.
More precisely, in the interpolation setting, let Πn be the set of polynomials of
degree n, we seek for the polynomial Pn,f such that:

Pn,f (xi) = fi, i = 0, . . . , n. (1)

Pn,f can be expressed in the monomial basisM = span{1, x, . . . , xn} as

Pn,f (x) =
n∑
i=0

cix
i.

The interpolation problem (1) then leads to finding the vector of coefficients
c = (c0, . . . , cn)ᵀ. As long as the nodes are distinct, the latter is uniquely
determined by solving the linear system

V c = f , (2)

2



where V = V (x0, . . . , xn) ∈ Rn+1×Rn+1 is the well-known Vandermonde matrix
and f = (f0, . . . , fn)ᵀ.

The polynomial interpolant can be written in the so-called Lagrange basis
L = span{`0, . . . , `n} so that

Pn,f (x) =
n∑
i=0

fi`i(x),

for x ∈ Ω and where

`i(x) = det(Vi(x))
det(V ) =

∏
0≤j≤n
j 6=i

x− xj
xi − xj

, (3)

is the i-th Lagrange polynomial and Vi(x) := V (x0, . . . , xi−1, x, xi+1, . . . , xn).
Most of recent research on the topic orbits around the Lebesgue constant

defined by:

Λn(Ω) = max
x∈Ω

n∑
i=0
|`i(x)|, (4)

and related upper bounds. The relevance of investigating in that field follows
from the fact that it is a measure of stability and accuracy. Indeed, letting

En(f) := max
x∈Ω
|f(x)− Pn,f (x)| = ‖f − Pn,f‖Ω,

for f ∈ C(Ω) we have

En(f) ≤ (1 + Λn(Ω))E?n(f), (5)

where E?n(f) is the best polynomial approximation error in the space Πn [11].
Moreover, let Ln : C(Ω) −→ Πn be the linear and bounded operator that

associates f ∈ C(Ω) to its interpolant Pn,f ∈ Πn on Xn+1, then

Λn(Ω) = sup
f∈C(Ω)
f 6=0

‖Ln(f)‖Ω
‖f‖Ω

, (6)

is the operator norm of Ln with respect to ‖·‖Ω.
Based on this, we now introduce a method that changes the given interpola-

tion problem without resampling the unknown function f at other interpolation
nodes. The idea of mapped polynomials is not new. Indeed, such kinds of
methods have been used in the context of spectral schemes for PDEs. Here
the map is used to mitigate the oscillations due to Gibbs and Runge phenom-
ena. For examples of well-known maps refer to e.g. [23, 25]. However, for our
purposes, that are devoted especially to applications when resampling cannot
be performed, we consider a generic map S : Ω −→ R. We investigate the
restrictions for the choice of S in Subsection 2.1.
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For x̃ ∈ S(Ω), we can compute the polynomial Pn,g : S(Ω) −→ R interpolat-
ing the function values Fn+1 at the fake nodes S(Xn+1) = {S(xi) = x̃i}i=0,...,n ⊂
S(Ω) defined by

Pn,g(x̃) =
n∑
i=0

cix̃
i,

for some function g : S(Ω) −→ R so that it belongs to Ck(Ω), k ≥ 0 and

g|S(Xn+1) = f|Xn+1
.

Hence, for x ∈ Ω we are interested in studying the function

Rsn,f (x) := Pn,g(S(x)) =
n∑
i=0

ciS(x)i. (7)

The function Rsn,f in (7) can be considered as an interpolating function at the
original set of nodes Xn+1 and data values Fn+1, which is a linear combination
of the basis functions Sn := {(S(x))i}i=0,...,n. As far as we know, a similar
approach has been mentioned in [5], without being later worked out. We thus
now study the proposed approach from different points of view.

In summary, the analysis of the interpolation process can be performed in
the following equivalent ways.

• The mapped bases approach on Ω: we interpolate f on the set Xn+1 via
Rsn,f in the function space Sn.

• The fake nodes approach on S(Ω): we interpolate g on the set S(Xn+1)
via Pn,g in the polynomial space Πn.

We discuss the two approaches below.

2.1. The mapped bases approach
From now on, we use the abridged notation S(xi) = Si. The first topic

to investigate is whether the choice of the map S that determines the finite-
dimensional space Sn is arbitrary or not. We say that S is admissible if the
resulting interpolation process admits a unique solution, which is verified as
long as the Vandermonde-like matrix

V s = V s(x0, . . . , xn) = V (S0, . . . , Sn),

is invertible, that is

det(V s) =
∏

0≤i<j≤n
(Sj − Si) 6= 0.

In what follows, we restrict to admissible maps and characterizations of
admissible functions are given in the following proposition.
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Proposition 2.1 The function S is admissible if and only if for any 0 ≤ i, j ≤
n, i 6= j we have

Si 6= Sj .

In other words, S is injective in Xn+1.

Proof: We know that det(V s) is non-zero if and only if Sj − Si 6= 0.

Remark 2.1 We point out that we can easily write

det(V s) = σ(S,X )det(V ),

where V is the classical Vandermonde matrix (see (2)) and

σ(S,X ) :=
∏

0≤i<j≤n

Sj − Si
xj − xi

.

This presents some similarities with the framework of generalized Vandermonde
determinants and Schur functions (cf. [17]).

Let (Υ, ‖·‖Ω) be a normed function space, which contains only real-valued
functions on Ω = [a, b] and let us assume that the function f belongs to Υ which
is so that

S0 ⊂ S1 ⊂ · · · ⊂ Sn ⊂ · · · ⊂ Υ.
In that case we have the following proposition, see e.g. [27, Theorem I.1, p. 1].

Proposition 2.2 If Υ is a normed space and Sn is a finite-dimensional sub-
space of Υ, given f ∈ Υ, there exists r?n ∈ Sn such that

‖f − r?n‖Ω= min
rn∈Sn

‖f − rn‖Ω := Es,?n (f).

Moreover, we make the assumption that we can choose the function S in such
a way that the space

S :=
⋃
n∈N
Sn,

is dense in Υ, i.e. for any ε > 0 there exists vε ∈ Sn such that ‖f − vε‖Ω< ε.
With the considered assumption, we have that Es,?n (f) −→ 0 as n −→ ∞ (see
e.g. [27, Theorem 1.1, p. 11]).

Thus, we can associate to the interpolant Rsn,f ∈ Sn its Lagrange form

Rsn,f (x) =
n∑
i=0

fi`
s
i (x),

where, in analogy with (3),

`si (x) := det(V si (x))
det(V s) =

∏
0≤j≤n
j 6=i

S(x)− Sj
Si − Sj

, (8)
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where V si (x) = Vi(S(x)).
Consequently, we can consider the Lebesgue constant Λsn(Ω) associated to

the Lagrange basis Ls = {`s0, . . . , `sn} and to the interpolation operator Lsn :
Υ −→ Sn, as previously discussed. Then, Λsn(Ω) is the operator norm of Lsn
with respect to ‖·‖Ω, that is

Λsn(Ω) = sup
v∈Υ
v 6=0

‖Lsn(v)‖Ω
‖v‖Ω

,

and hence
‖f −Rsn,f‖Ω≤ (1 + Λsn(Ω))Es,?n (f),

In order to present a bound for Λsn(Ω) in terms of the Lebesgue constant
related to the classical polynomial interpolation, we need the following result.

Proposition 2.3 Let `i be the classical i-th Lagrange polynomial and let `si be
defined as in (8). For all x ∈ Ω, x 6= xj with j 6= i, we have

`si (x) = γi(x)`i(x),

where
γi(x) := det(V si (x))

σ(S,X )det(Vi(x)) ,

with σ(S,X ) as in Remark 2.1. Moreover,

γi(x) = βi(x)
αi

,

with
αi :=

∏
0≤j≤n
j 6=i

Si − Sj
xi − xj

, βi(x) :=
∏

0≤j≤n
j 6=i

S(x)− Sj
x− xj

.

Proof: For x = xj , with j 6= i, `si (xj) = `i(xj) = 0. Then let x 6= xj ; from (3)
and (8) we have that

`si (x)
`i(x) = det(V si (x))det(V )

det(Vi(x))det(V s) = det(V si (x))
σ(S,X )det(Vi(x))

:= γi(x).

If i 6= j, then `si (xj) = 0. Let x 6= xj , we can write

`si (x) =
∏

0≤j≤n
j 6=i

S(x)− Sj
Si − Sj

,

=
∏

0≤j≤n
j 6=i

x− xj
xi − xj

· xi − xj
x− xj

· S(x)− Sj
Si − Sj

,

=
∏

0≤j≤n
j 6=i

x− xj
xi − xj

∏
0≤j≤n
j 6=i

S(x)− Sj
x− xj

∏
0≤j≤n
j 6=i

xi − xj
Si − Sj

.

6



By defining

αi :=
∏

0≤j≤n
j 6=i

Si − Sj
xi − xj

, βi(x) :=
∏

0≤j≤n
j 6=i

S(x)− Sj
x− xj

,

we obtain
`si (x) = βi(x)

αi
`i(x).

Theorem 2.4 We have that

Λsn(Ω) ≤
(
L

D

)n
Λn(Ω),

where
L = max

j
max
x∈Ω

∣∣∣∣S(x)− Sj
x− xj

∣∣∣∣,
D = min

i
min
j 6=i

∣∣∣∣Si − Sjxi − xj

∣∣∣∣,
and Λn(Ω) is the Lebesgue constant in (4).

Proof: Taking into account Proposition 2.3, we consider the absolute values

|`si (x)| = |βi(x)|
|αi|

|`i(x)|.

We proceed by giving an upper bound for |βi|:

|βi(x)| =
∏

0≤j≤n
j 6=i

∣∣∣∣S(x)− Sj
x− xj

∣∣∣∣ ≤ ∏
0≤j≤n
j 6=i

Lji ,

where
Lji := max

x∈Ω

∣∣∣∣S(x)− Sj
x− xj

∣∣∣∣.
Thus,

|βi(x)| ≤ Lni ,
with Li := maxj 6=i Lji . We then give a lower bound for |αi|:

|αi| =
∏

0≤j≤n
j 6=i

∣∣∣∣Si − Sjxi − xj

∣∣∣∣ ≥ ∏
0≤j≤n
j 6=i

Di = Dn
i ,

where
Di := min

j 6=i

∣∣∣∣Si − Sjxi − xj

∣∣∣∣.
7



We have that
|`si (x)| ≤

(
Li
Di

)n
|`i(x)|.

Therefore, defining L := maxi Li, D := miniDi and considering the sum of the
Lagrange polynomials, we obtain

Λsn(Ω) ≤
(
L

D

)n
Λn(Ω).

We conclude by observing that maxi maxj 6=i Lji = maxj Lj .
In the next subsection, we will show that the presented bound is largely

pessimistic for certain choices of the map.

2.2. The fake nodes approach
The construction of the interpolating function Rsn,f is equivalent to build a

polynomial interpolant at the fake nodes, as defined in (7). Therefore, in what
follows we concisely analyze the parallelism with the polynomial interpolation
problem in S(Ω).

If `i is the i-th Lagrange polynomial related to the set S(Xn+1), then for
x̃ ∈ S(Ω), we have

`i(x̃) =
∏

0≤j≤n
j 6=i

x̃− S(xj)
S(xi)− S(xj)

,

and the Lebesgue constant is given by

Λn(S(Ω)) = max
x̃∈S(Ω)

n∑
i=0
|`i(x̃)|. (9)

For x ∈ Ω, we observe that

`i(x̃) = `i(S(x)) =
∏

0≤j≤n
j 6=i

S(x)− S(xj)
S(xi)− S(xj)

= `si (x).

As a consequence, we obtain
Λsn(Ω) = Λn(S(Ω)),

and
‖f −Rsn,f‖Ω= ‖g − Pn,g‖S(Ω),

which implies in particular that
‖f −Rsn,f‖Ω≤ (1 + Λn(S(Ω)))E?n(g).

Since we can suppose without loss of generality that g is a regular function,
for an appropriate choice of the map S, and hence of the nodes S(Xn+1), we
might improve the results with respect to classical polynomial approximation in
Ω. The main difficulties are in finding a good map. In the next section we thus
propose two receipts for computing suitable maps that, as numerically shown
later, enable us to naturally mitigate Runge and Gibbs phenomena.
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3. Algorithms and good choices for the mapping function

In this section, we describe how, given an ordered set of distinct interpola-
tion nodes Xn+1 = {xi ∈ Ω | x0 = a, xn = b, xi < xi+1}, we can effectively
construct suitable maps S in Ω = [a, b]. We remark that the function S has
to be admissible according to Proposition 2.1. In what follows, we propose two
different ways of constructing the map S and in doing so we deal with the Runge
and Gibbs phenomena respectively.

Case 1: the Runge phenomenon
In order to prevent the appearance of the Runge phenomenon, our aim is

to find a map S such that the resulting set of fake nodes S(Xn+1) guarantees a
stable interpolation process. The natural way is to consider the set of ordered
Chebyshev-Lobatto (CL) nodes on Ω

Cn+1 = {ci}i=0,...,n =
{
a− b

2 cos
(
π
i

n

)
+ a+ b

2

}
i=0,...,n

.

Indeed, as well-known the Lebesgue constant of the CL nodes grows logarith-
mically with respect to n [11]. Finally, the construction of the map S on Ω is
described in the following algorithm.

Algorithm 1. S-Runge.

Inputs: Xn+1.
Main procedure:

1. Define the set of CL nodes Cn+1.
2. For x ∈ [xi, xi+1], i = 0, . . . , n− 1, define S as the piecewise linear
interpolant

S(x) = β1,i(x− xi) + β2,i,

where
β1,i = ci+1 − ci

xi+1 − xi
, β2,i = ci.

Outputs: S.

Since the CL nodes are distinct, the obtained map is admissible. The presented
procedure is robust and does not require any additional hypothesis on Xn+1,
indeed it works also for scattered data. However, other choices for particular
sets of interpolation nodes could be considered. For instance, if Xn+1 = En+1,
where En+1 is the ordered set of n+ 1 equispaced nodes on Ω, we can map the
interpolation nodes analytically on the set Cn+1 using

S(x) = a− b
2 cos

(
π
x− a
b− a

)
+ a+ b

2 . (10)

In the next section, we show examples for both choices, i.e. scattered and
equispaced sets of nodes.
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Case 2: the Gibbs phenomenon
Let us suppose that the underlying function f presents jump discontinuities,

whose positions and magnitudes are encoded in the set

Dm+1 := {(ξi, di)|ξi ∈ (a, b), ξi < ξi+1, i = 0, . . . ,m, and di := |f(ξ+
i )−f(ξ−i )|}.

In what follows, we suppose to know the discontinuities and the related
jumps. Such assumption is not restrictive, indeed for the one dimensional case,
many algorithms for detecting the discontinuity points are available. Among
the huge existing literature on that, we refer the reader to e.g. [4, 29].

We remark that when discontinuities occur, in order to satisfy the interpola-
tion conditions, the interpolant is forced to strongly vary near the jumps, hence
the Gibbs phenomenon becomes evident. To overcome this problem, our strat-
egy consists in constructing the map S in such a way that it sufficiently increases
the gap between the node right before and the one right after the discontinuity.
To accomplish this, we introduce what we will call the shifting parameter k > 0.
As experimentally observed, its selection is not critical. Indeed, the resulting
interpolation process is not sensitive to its chosen value, provided that it is suf-
ficiently large, i.e. in such a way that in the mapped space the so-constructed
function g has no steep gradients.

In the next algorithm, we formalize our idea for computing the map S in
presence of discontinuities.

Algorithm 2. S-Gibbs

Inputs: Xn+1, Dm+1 and k.
Main procedure:

1. αi := kdi, i = 0, . . . ,m.
2. Letting Ai =

∑i
j=0 αj , define S as follows:

S(x) =
{
x, for x ∈ [a, ξ0[,
x+Ai, for x ∈ [ξi, ξi+1[, 0 ≤ i < m, or x ∈ [ξm, b].

Outputs: S.

Since the resulting fake nodes S(Xn+1) are distinct, the so-constructed map
is admissible.

We now provide examples devoted to show the robustness of our procedures.

4. Applications to Runge and Gibbs phenomena

In what follows, we show via the algorithms described in Section 3 that we are
able to reduce the oscillating effects known as Runge and Gibbs phenomena. Our
approach is compared to resampling with Chebyshev nodes, which is known to
offer stable computations. Unfortunately, in many applications we often dispose

10



of equispaced samples, for which the Lebesgue constant grows exponentially. In
this sense our fake nodes approach becomes essential.

We consider the domain Ω = [−5, 5] and both equispaced and randomly
distributed nodes Xn+1. Moreover, we evaluate the interpolants on a set of eq-
uispaced points Ξ = {x̄i, i = 0, . . . , 330} and we compute the Relative Maximum
Absolute Error (RMAE)

RMAE = max
i=0,...,m

|Rsn,f (x̄i)− f(x̄i)|
|f(x̄i)|

.

The experiment are carried out in Python 3.6 using Numpy 1.15; see [20].

4.1. Applications to Runge phenomenon
Let us consider the Runge function

f1(x) = 1
x2 + 1 .

First, as samples, we consider equispaced interpolation nodes En+1 on Ω and we
compute and compare the following interpolation schemes:

i. the polynomial interpolating the equispaced points and associated function
values En+1 and f1(En+1), i.e the original data set and function values;

ii. the polynomial interpolating the CL nodes in Ω and resampled function
values Cn+1 and f1(Cn+1), i.e. we resample the function;

iii. the approximant built upon a polynomial interpolant on the fake CL nodes
S(En+1) = Cn+1 and function values related to the equispaced points
f1(En+1). In this setting, we use the map defined in (10).

In Fig. 1, we show different reconstructions of f1 for a fixed number of
nodes. We observe that the polynomial interpolation on equispaced nodes is
affected by the Runge phenomenon, while the use of fake CL nodes performs
even better than the one obtained via resampling on CL nodes. We investigate
the asymptotic behaviors in Fig. 2: if resampling is feasible, then CL nodes
asymptotically outperform all methods. Else, we observe that the reconstruction
via fake nodes offers good approximations for small degrees and then stabilises.
However, the main advantage is that it does not require resampling. Finally,
in Fig. 3 we plot the Lebesgue functions related to the proposed methods. As
pointed out in the theoretical analysis, the behavior of the fake nodes in terms
of Lebesgue constant is analogous to classical polynomial interpolation on CL
points.

11
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Figure 1: Interpolation with 13 points of the Runge function on [−5, 5] using equispaced
(left), CL (center) and fake nodes (right). The nodes are represented by stars, the original
and reconstructed functions are plotted with continuous red and dotted blue lines, respectively.
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Figure 2: The RMAE for the Runge function varying the number of nodes. The results
with equispaced, CL and fake nodes are represented by black circles, blue stars and red dots,
respectively.
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Figure 3: Lebesgue functions of equispaced (left), CL (center) and fake CL (right) nodes.

Finally, for a more general test, we consider a set of interpolation nodes
Rn+1 = {ri}i=0,...,n obtained by perturbing the internal nodes of En+1 =
{ei}i=0,...,n by adding a Gaussian noise, that is ri = ei + εi for i = 1, . . . , n− 1
with εi ∼ N (µ = 0, σ2 = 0.04). We compute and compare:
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i. the polynomial interpolating the random points and associated function
values Rn+1 and f1(Rn+1), i.e the original data set and function values;

ii. the approximant built upon a polynomial interpolant on the fake CL
nodes S(Rn+1) = Cn+1 and function values related to the random points
f1(Rn+1). In this setting, we use the map defined by Algorithm 1.

After generating the set Rn+1 for n = 20, in Fig. 4 we show the reconstruc-
tions of f1 obtained via standard polynomial interpolation on Rn+1 and via
the fake nodes approach. In the first case, the reconstruction is affected by the
Runge phenomenon (RMAE= 8.36E + 01), while the second method provides
a stable interpolation process (RMAE= 3.97E − 02). In Fig. 5 we plot the
Lebesgue functions related to both methods.

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Interpolation with 21 random points with random seed 10 of the Runge function on
[−5, 5] using equispaced (left), and fake nodes (right). The nodes are represented by stars, the
original and reconstructed functions are plotted with continuous red and dotted blue lines,
respectively.
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Figure 5: Lebesgue functions of random (left) and fake CL (right) nodes.
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4.2. Applications to Gibbs phenomenon
In this subsection, we consider the problem of interpolating functions that

present jump discontinuities. We define

f2(x) :=



x2

10 , −5 ≤ x < − 3
2 ,

1
4x+ 19

8 , − 3
2 ≤ x <

5
2 ,

−x
3

30 + 4, 5
2 ≤ x ≤ 5.

As done in the previous subsection, we can compare:

i. the polynomial interpolating the equispaced points and associated function
values En+1 and f2(En+1), i.e the original data set and function values;

ii. the polynomial interpolating the CL nodes in Ω and resampled function
values Cn+1 and f2(Cn+1), i.e. we resample the function;

iii. the approximant built upon a polynomial interpolant on the fake nodes
S(En+1) and function values related to the equispaced points f2(En+1). In
this setting, we fix k = 50 and we use the map defined via Algorithm 2.

In Fig. 6 we display the results obtained using 20 interpolation points. We
observe that the Gibbs phenomenon affects the reconstruction obtained via re-
sampling on CL nodes, while it is mitigated using the proposed fake nodes
approach. In Fig. 7 we show the related Lebesgue functions. Finally, in Fig. 8,
we observe the asymptotic behavior of the discussed methods. The results are
quite impressive, meaning that we are able to effectively deal with the Gibbs
phenomenon by computing S via the simple idea of translating points (see Al-
gorithm 2).
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Figure 6: Interpolation with 20 points of the function f2 on [−5, 5], using equispaced (left),
CL nodes (center) and the discontinuous map (right). The nodes are represented by stars, the
original and reconstructed functions are plotted with continuous red and dotted blue lines,
respectively.
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Figure 7: Lebesgue functions of equispaced (left), CL (center) and fake nodes (right).
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Figure 8: The RMAE for the function f2 varying the number of nodes. The results with
equispaced, CL and fake nodes are represented by black circles, blue stars and red dots,
respectively.

5. Conclusions and future work

In this paper, we presented a very flexible tool that can be used as an effective
alternative to classical polynomial interpolation. Its implementation turns out
to be immediate and we also provided the Python codes. The main advantage
is that the approximation via mapped bases is carried out without resampling
the function at the sought nodes. We also investigated two automated ways for
defining the maps that lead to substantial improvements in the interpolation
process.

Work in progress consists in extending the proposed procedure to other
bases, such as trigonometric bases, with immediate applications to the recon-
struction of (discontinuous) periodic signals, Floater-Hormann barycentric in-
terpolation and splines; refer e.g. to [13, 14, 16]. Moreover, the extension to
higher dimensions will be investigated in the context of radial basis functions.
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