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Abstract We present non- and ultra-relativistic Jackiw–
Teitelboim (JT) supergravity as metric BF theories based
on the extended Newton–Hooke and extended AdS Car-
roll superalgebras in two spacetime dimensions, respectively.
The extended Newton–Hooke structure, and, in particular,
the invariant metric necessary for the BF construction of
non-relativistic JT supergravity, is obtained by performing
an expansion of the N = 2 AdS2 superalgebra. Subse-
quently, we introduce the extended AdS2 Carroll superalge-
bra, and the associated invariant metric, as a suitable redefini-
tion of the extended Newton–Hooke superalgebra. The map-
ping involved can be seen as the supersymmetric extension
of the duality existing at the purely bosonic level between
the extended Newton–Hooke algebra with (positive) nega-
tive cosmological constant and the extended (A)dS Carroll
algebra in two dimensions. Finally, we provide the Carrollian
JT supergravity action in the BF formalism. Moreover, we
show that both the non-relativistic and the ultra-relativistic
theories presented can also be obtained by direct expansion
of N = 2 JT supergravity.
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1 Introduction

Progresses in the understanding of the quantum nature of
black holes have been enabled by Jackiw–Teitelboim (JT)
gravity [1,2] (which is a model of 2D dilaton gravity, cf.,
e.g., [3,4]) and its holographic dual, especially concerning
quantum chaos and scrambling, which are indeed believed
to be related to the black hole information paradox (for
a comprehensive review see, e.g., [5–7]). Besides, from
the gauge/gravity duality perspective, JT gravity, as a two-
dimensional toy model of quantum gravity describing uni-
versality in nearly extremal black holes [8,9], is dual to the
Sachdev–Ye–Kitaev (SYK) model [10,11] at large N and low
energies. The SYK model is an exactly solvable quantum the-
ory of N � 1 interacting Majorana fermions (cf. [7,12] and
references therein) that has received a growing attention since
its formulation from both the high energy and the condensed
matter physics communities, and it is nowadays considered
one of the most notable models for quantum chaos and holog-
raphy. This is due to the fact that it exhibits some remark-
able properties. For instance, it is exactly solvable in the
large N and IR limit, where, moreover, it acquires conformal
symmetry and the effective action can be approximated by
the Schwarzian one. Furthermore, it exhibits a holographic
relation with JT gravity, with the latter describing excita-
tions above the near-horizon extremal black hole and, once
considered on the clipped Poincaré disk, effectively reduc-
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ing to the one-dimensional theory with Schwarzian action.
In particular, the SYK model resulted to be an excellent
toy model for many physical phenomena, including quan-
tum chaos [13], information scrambling [14–16], traversable
wormholes [17,18], and strange metals [19].

On the other hand, another remarkable feature of JT grav-
ity is that it can be regarded as a topological theory in two
spacetime dimensions within the BF formalism, which is
reminiscent of the three-dimensional formulation of Chern–
Simons theory.1 The BF formulation of JT gravity [37–
39] is particularly well-suited to consider other types of
theories by extending the underlying symmetries. These
symmetries can be either relativistic or ultra/non-relativistic
(super)symmetries. Recently, the non-relativistic (c → ∞,
where c is the speed of light) and ultra-relativistic (c → 0,
also called Carrollian, see, e.g., [40–45]) limits of JT grav-
ity have been obtained in both the second-order and the BF
formalism in [46,47]. Moreover, the BF setup allows one to
consider the boundary theory of JT supergravity [48], the
latter resulting to be the gravity dual of the supersymmetric
extension of SYK model in the low energy limit [48,49].

Despite all the aforementioned rather recent developments
and the promising applications of JT (super)gravity in vari-
ous research fields, its non- and ultra-relativistic counterparts
still remain little explored. Conversely, non-relativistic the-
ories have received a growing interest in the last years due
to their relation to condensed matter systems [50–57] and
non-relativistic effective field theories [58–61], while Car-
roll symmetries appear, for instance, in high energy physics
in the study of tachyon condensation [62], warped conformal
field theories [63], and tensionless (super)strings [64–68].

In the above discussed context, at least to our knowl-
edge, consistent non- and ultra-relativistic JT supergravity
theories have not been developed yet, especially within the
BF formulation. In this work, we present non- and ultra-
relativistic JT supergravities as metric BF theories based,
respectively, on the extended Newton–Hooke and extended
AdS Carroll superalgebras in two spacetime dimensions. The
former superalgebra, together with the associated invariant
metric necessary to implement the metric BF construction, is
obtained by performing a Lie algebra expansion of theN = 2
AdS2 superalgebra. Consequently, we introduce the extended
AdS2 Carroll superalgebra and its invariant metric through a
suitable redefinition of the extended Newton–Hooke super-
algebra. Hence, we construct the Carrollian JT supergravity
action in the BF formalism. Moreover, we show that both the
non- and ultra-relativistic JT supergravity actions presented
in this work can also be obtained by directly expanding JT

1 For recent developments and reviews of the three-dimensional Chern–
Simons formulation of (super)gravity theories, in particular both non-
and ultra-relativistic, see, e.g., [20–36] and references therein.

supergravity formulated as a BF theory based on the N = 2
AdS2 superalgebra.

The paper is organized as follows: We start by briefly
reviewing, in Sects. 2 and 3 respectively, the first-order for-
mulation of JT gravity as a BF theory based on the AdS2

algebra and the extension to the case of N = 2 JT super-
gravity as a BF theory based on the N = 2 AdS2 superal-
gebra. In Sect. 4 we introduce the extended Newton–Hooke
superalgebra as a Lie algebra expansion of the N = 2 AdS2

one, deriving the associated invariant metric which allows us
to consequently develop the non-relativistic JT supergravity
action as a BF model. Subsequently, in Sect. 5 we move on
to the construction of the ultra-relativistic counterpart of JT
supergravity. Hence, we derive the supersymmetric extended
AdS2 Carroll algebra, which can be obtained both as a redef-
inition of the extended Newton–Hooke superalgebra and as
an expansion of the N = 2 AdS2 one. The same applies at
the level of the invariant metric, which permits us to construct
the Carrollian JT supergravity theory in the BF setup. Sec-
tion 6 is devoted to concluding remarks and possible future
developments of our analysis. In Appendix A we collect our
notation and conventions.

2 Review of Jackiw–Teitelboim gravity as a metric BF
theory

In this section we will consider the first-order formulation of
JT gravity as a BF theory based on the AdS2 algebra [37–
39]. We will follow [46] and briefly review the structure of
(metric) BF theories for later purposes.

The BF theory action is given by

SBF[X ∗, A] = k

2π

∫
M2

LBF[X ∗, A], (2.1)

with

LBF[X ∗, A]
= X ∗F = XK

(
d AK + 1

2
CI J

K AI ∧ AJ
)

, (2.2)

where k is a dimensionless constant, X ∗ = XIEI is a scalar
transforming in the coadjoint representation of the Lie alge-
bra g on which the theory is based, and the Lie algebra valued
1-form AI

μeI dxμ is a gauge field with curvature two-form

F ≡ d A + 1
2 [A, A]. The structure constants CI J

K of g are
defined by

[eI , eJ ] = CI J
K eK , (2.3)

where eI are the generators of g. The dual g∗ has basis EI

obeying EI (eJ ) = δ IJ .
The action (2.1) is invariant under gauge transformations

δλA
I =dλI +CJK

IλK AJ , δλXI =−CI J
KλJ XK . (2.4)

123
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The equations of motions of the theory read

F I = d AI + 1

2
CJK

I AJ ∧ AK = 0,

dX I + CI J
K AJ XK = 0. (2.5)

If g admits an invariant metric 〈·, ·〉 : g× g → R that is a
non-degenerate, symmetric, ad-invariant bilinear form,2 then
one can use this metric to identify elements of the dualg∗ with
elements of the Lie algebra g by means of 〈X , ·〉 = X ∗(·),
that is X I = gI J X J (where gI J = 〈eI , eJ 〉 and gI J gJ K =
δ IK ).

In BF theories having an invariant metric is not a require-
ment, but in this paper we are interested in a particular sub-
class of BF theories (see [46]), called metric BF theories,
whose construction is in fact based on Lie algebras exhibit-
ing an invariant metric. The action for a metric BF theory is
given by

SmBF[X , A] = k

2π

∫
M2

LmBF[X , A] = k

2π

∫
M2

〈X , F〉

= k

2π

∫
M2

gLK XL
(
d AK + 1

2
CI J

K AI ∧AJ
)

,

(2.6)

and its equations of motion read

F = 0, dX + [A,X ] = 0. (2.7)

A standard example of metric BF theories can be obtained
by considering as a starting point simple Lie algebras where
one can use the matrix trace to write LmBF = tr(X F).

The first-order formulation of (AdS) JT gravity as a metric
BF theory was developed by considering the AdS2 algebra,
which is spanned by the Lorentz and spacetime translations
generators {J, PA}, with A, B, . . . = 0, 1, and read

[J, PA] = εAB P
B, [PA, PB] = −�εAB J, (2.8)

where � = − 1
�2 is the cosmological constant written in terms

of the AdS2 radius �, and ε01 = −ε10 = 1. This algebra
admits an invariant metric given by

〈PA, PB〉 = ηAB

�2 , 〈J, J 〉 = 1. (2.9)

In this setup, the gauge field and the coadjoint scalar take the
following form (cf. [46]):

A = E APA + 	J, X = X APA + X J, (2.10)

and the corresponding covariant curvatures are given by

R(E)A = dE A − εAB	 ∧ EB,

R(	) = d	 + 1

2�2 εAB E
A ∧ EB . (2.11)

2 By ad-invariance we intend 〈[z, x], y〉 = 〈x, [z, y]〉 = 0 for all Lie
algebra elements x, y, z ∈ g.

Using (2.10), (2.11), and the invariant metric (2.9), one
obtains the BF theory formulation of JT gravity, that is

SJT = k

2π

∫ (
−�X AR(E)A + XR(	)

)
. (2.12)

The equations of motion of the theory are given by

dE A − εAB	 ∧ EB = 0,

d	 + 1

2�2 εAB E
A ∧ EB = 0,

dX A − εAB	XB + εAB XEB = 0,

dX − 1

�2 εAB XAEB = 0. (2.13)

In particular, the equations of motion of the fields X A enforce
the two-dimensional torsion constraint for the zweibein E A.
Upon solving the latter for the spin connection 	 and plug-
ging it back into the action, one is left with the second-order
action for JT gravity, where X turns out to be the dilaton field.
In this way, one can derive the JT equations of motion in the
second-order formalism (see [47]),

R − 2� = 0,

∇μ∇νX − �gμνX = 0, (2.14)

R being the curvature scalar. The first of these equations
yields locally AdS2 spacetime, and the second can be con-
sidered as a back-reaction of the field X in response to the
metric gμν .

3 N = 2 Jackiw–Teitelboim supergravity

In this section, we will review the first-order formulation of
N = 2 JT supergravity as a BF theory presented in [48],
adopting, however, the slightly different notation and con-
ventions of [69] (see also Appendix A). In order to proceed
with the construction of the theory, it is convenient to intro-
duce the N = 2 AdS2 superalgebra as a starting point.3

The N = 2 AdS2 superalgebra is given by the commutation
relations

[J, PA] = εAB P
B, [PA, PB] = 1

�2 εAB J,

[J, Qi ] = 1

2
γ∗Qi , [PA, Qi ] = 1

2�
γAQ

i ,

[U, Qi ] = − 1

2�
εi j Q j , (3.1)

3 We will be interested in studying the non-relativistic counterpart of JT
supergravity, which results to be achievable and well-defined in partic-
ular once we start from the N = 2 relativistic theory. This is analogous
to what was done, for instance, in [21] for the three-dimensional Chern–
Simons formulation of extended Bargmann gravity.
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and the anticommutator

{Qi
α, Q j

β} = δi j (γAC
−1)αβ P

A + δi j

�
(γ∗C−1)αβ J

−εi j (C−1)αβU, (3.2)

where C is the charge conjugate matrix, defined as C = iσ2,
� = − 1

�2 is the cosmological, i, j = 1, 2 label the number
of supercharges, and εi j is the two-dimensional Levi Civita
symbol (ε12 = −ε21 = 1). The superalgebra (3.1)–(3.2) is
endowed with an invariant metric

〈PA, PB〉 = ηAB

�2 , 〈J, J 〉 = 1, 〈U,U 〉 = 1

�2 ,

〈Qi
α, Q j

β〉 = 2

�
δi j (C−1)αβ. (3.3)

The gauge connection 1-form, the coadjoint scalar, and the
curvature 2-form associated with the N = 2 AdS2 superal-
gebra are, respectively,4

A = E APA + 	J + TU + �̄ i Qi ,

X = X APA + X J + YU + λ̄i Qi ,

R = R(E)APA + R(	)J + R(T )U + R(�)i Qi , (3.4)

where now

R(E)A = dE A − εAB	 ∧ EB + 1

2
δi j �̄

iγ A ∧ � j ,

R(	) = d	 + 1

2�2 εAB E
A ∧ EB + 1

2�
δi j �̄

iγ∗ ∧ � j ,

R(T ) = dT − 1

2
εi j �̄

i ∧ � j ,

R(�)i = d� i + 1

2
	 ∧ γ∗� i + 1

2�
E A ∧ γA� i

+ 1

2�
εi j T ∧ � j . (3.5)

Notice that the λi in (3.4) are fermionic, while X A, X,Y
are bosonic. Our convention for the gamma matrices in two
dimensions is given in Appendix A.

We can then construct the BF theory of JT supergravity
by using (3.4) and (3.5) along with the invariant metric (3.3).
The resulting action takes the following form:

SsJT = k

2π

∫ (
1

�2 X
AR(E)A + XR(	)

+ 1

�2 Y R(T ) + 2

�
λ̄i R(�)i

)
. (3.6)

One can show that the action (3.6) is invariant under the
following supersymmetry transformations:

δE A = −δi j ε̄
iγ A� j ,

δ	 = −1

�
δi j ε̄

iγ∗� j ,

4 In the following, we will frequently omit the spinor index α to lighten
the notation.

δT = εi j ε̄
i� j ,

δ� i = dεi + 1

2
γ∗εi	 + 1

2�
γAεi E A + 1

2�
εi jε j T,

δX A = −δi j ε̄
iγ Aλ j ,

δX = −1

�
δi j ε̄

iγ∗λ j ,

δY = εi j ε̄
iλ j ,

δλi = 1

2�
γAX

Aεi + 1

2
γ∗Xεi + 1

2�
εi j Y ε j , (3.7)

where εiα are the supersymmetry parameters. The equations
of motion of the theory are

dE A − εAB	 ∧ EB + 1

2
δi j �̄

iγ A ∧ � j = 0,

d	 + 1

2�2 εAB E
A ∧ EB + 1

2�
δi j �̄

iγ∗ ∧ � j = 0,

dT − 1

2
εi j �̄

i ∧ � j = 0,

d� i + 1

2
	 ∧ γ∗� i + 1

2�
E A ∧ γA� i

+ 1

2�
εi j T ∧ � j = 0, (3.8)

that is R(E)A = R(	) = R(T ) = R(�)i = 0, coming
from variation of the action with respect to X A, X, Y, λi ,
respectively, together with

dX A−εAB	XB+εAB XEB+δi j �̄
iγ Aλ j =0,

dX − 1

�2 εAB XAEB + 1

�
δi j �̄

iγ�λ
j = 0,

dY − εi j �̄ iλ j = 0,

dλi + 1

2�
γAE

Aλi + 1

2
γ�	λi + 1

2�
εi j Tλ j − 1

2�
γAX

A� i

−1

2
γ�X� i − 1

2�
εi j Y� j = 0. (3.9)

The construction above is the first-order formulation of N =
2 JT supergravity. Let us move on to the study of its non- and
ultra-relativistic counterparts.

4 Supersymmetric extended Newton–Hooke algebra
sNH2 and non-relativistic Jackiw–Teitelboim
supergravity

We will now develop the non-relativistic counterpart of the
JT supergravity theory reviewed in the previous section. The
theory will be based on the extended Newton–Hooke super-
algebra with negative cosmological constant (which we name
sNH2) we are going to present in the following.
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4.1 Extended Newton–Hooke superalgebra sNH2

The extended Newton–Hooke superalgebra in two dimen-
sions can be obtained by performing a Lie algebra expan-
sion on the N = 2 AdS2 superalgebra. For a comprehensive
treatment of the Lie algebra expansion procedure see, e.g.,
[70–72] and references therein. The supersymmetric exten-
sion of the (purely bosonic) extended Newton–Hooke (NH)
algebra of [47] requires three fermionic generators, Q±

α and
Rα . Besides, it requires two extra bosonic generators U1 and
U2, both of them acting non-trivially on the fermionic gen-
erators in the presence of a cosmological constant � (while
they become central charges in the limit � → 0, that is
� → ∞). In particular, the extra bosonic generators allows
us to end up with a well-defined invariant metric.

Before implementing Lie algebra expansion on (3.1)-
(3.2), we split the Lorentz indices as A = (0, 1), such that

PA = (P0, P1) , γ A =
(
γ 0, γ 1

)
. (4.1)

In this way, one obtains the following decomposition of the
AdS2 superalgebra:

[P0, J ] = −P1, [J, P1] = P0,

[P0, P1] = 1

�2 J,

[J, Qi ] = 1

2
γ∗Qi , [P0, Q

i ] = 1

2�
γ0Q

i ,

[P1, Q
i ] = 1

2�
γ1Q

i ,

[U, Qi ] = − 1

2�
εi j Q j , (4.2)

together with

{Q1
α, Q1

β} = −(γ0C
−1)αβ P0+(γ1C

−1)αβ P1+ 1

�
(γ∗C−1)αβ J,

{Q2
α, Q2

β} = −(γ0C
−1)αβ P0+(γ1C

−1)αβ P1+ 1

�
(γ∗C−1)αβ J,

{Q1
α, Q2

β} = −(C−1)αβU. (4.3)

In addition, we introduce the following combination of the
fermionic generators Q1

α and Q2
α:

Q̃± = 1√
2

(
Q1 ± γ0Q

2
)

. (4.4)

Hence, the decomposed algebra takes the form

[P0, J ] = −P1, [J, P1] = P0,

[P0, P1] = 1

�2 J,

[J, Q̃±] = 1

2
γ∗ Q̃∓,

[P0, Q̃
±] = 1

2�
γ0 Q̃

±,

[P1, Q̃
±] = 1

2�
γ1 Q̃

∓,

[U, Q̃±] = ± 1

2�
γ0 Q̃

±, (4.5)

along with

{Q̃+
α , Q̃+

β } = −(γ0C
−1)αβ P0 + (γ0C

−1)αβU,

{Q̃+
α , Q̃−

β } = (γ1C
−1)αβ P1 + 1

�
(γ∗C−1)αβ J,

{Q̃−
α , Q̃−

β } = −(γ0C
−1)αβ P0 − (γ0C

−1)αβU. (4.6)

Then, we consider the following expansion of the generators:

P0 =H+η2M, P1 =ηP, J =ηG, U =U1 + η2U2

Q̃+ = Q+ + η2R, Q̃− = ηQ−, (4.7)

where η is the expansion parameter. In this way, we end up
with the extended Newton–Hooke superalgebra sNH2, which
has the non-vanishing commutators5

[H,G] = −P, [G, P] = M,

[H, P] = 1

�2 G,

[G, Q+] = 1

2
γ∗Q−, [G, Q−] = 1

2
γ∗R,

[P, Q+] = 1

2�
γ1Q

−,

[P, Q−] = 1

2�
γ1R, [H, Q±] = 1

2�
γ0Q

±,

[H, R] = 1

2�
γ0R,

[M, Q+] = 1

2�
γ0R, [U1, Q

±] = ± 1

2�
γ0Q

±,

[U1, R] = 1

2�
γ0R,

[U2, Q
+] = 1

2�
γ0R. (4.8)

and anticommutators

{Q+
α , Q+

β } = −(γ0C
−1)αβH + (γ0C

−1)αβU1,

{Q+
α , Q−

β } = (γ1C
−1)αβ P + 1

�
(γ∗C−1)αβG,

{Q+
α , Rβ} = −(γ0C

−1)αβM + (γ0C
−1)αβU2,

{Q−
α , Q−

β } = −(γ0C
−1)αβM − (γ0C

−1)αβU2. (4.9)

The supersymmetric extended Newton–Hooke algebra above
admits the invariant metric

5 Closure of the algebras we introduce in the present paper has been
verified also by means of the computer algebra program Cadabra [73,
74].
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〈P, P〉 = 1

�2 , 〈G,G〉 = 1,

〈H, M〉 = − 1

�2 ,

〈U1,U2〉 = 1

�2 ,

〈Q+
α , Rβ〉 = 2

�

(
C−1

)
αβ

,

〈Q−
α , Q−

β 〉 = 2

�

(
C−1

)
αβ

. (4.10)

We can now move on to the construction of the non-
relativistic JT supergravity action as a BF theory based on
the sNH2 structure obtained above.

4.2 Non-relativistic Jackiw–Teitelboim supergravity action

Now that we have unveiled the sNH2 structure, we can assign
gauge fields for each Lie algebra generator, and the 1-form
A in the case at hand can be written as

A = τH + eP + ωG + mM + r1U1 + r2U2

+ψ̄+Q+ + ψ̄−Q− + ρ̄R. (4.11)

The transformation rules for these gauge fields can be found
by exploiting δε AI = dε I +CJK

I εK AJ , where εA is the rel-
evant gauge parameter and CJK

I are the structure constants,
in this case, of sNH2. In particular, the (non-trivial) transfor-
mations along the parameters ε+α, ε−α, εα (associated with
ψ+, ψ−, ρ) are, respectively,

δτ = ε̄+γ0ψ
+,

δe = −ε̄+γ1ψ
−,

δω = −1

�
ε̄+γ∗ψ−,

δm = ε̄+γ0ρ,

δr1 = −ε̄+γ0ψ
+,

δr2 = −ε̄+γ0ρ,

δψ+ = dε+ + 1

2�
γ0ε

+τ + 1

2�
γ0ε

+r1,

δψ− = dε− + 1

2
γ∗ε+ω + 1

2�
γ1ε

+e,

δρ = 1

2�
γ0ε

+m + 1

2�
γ0ε

+r2, (4.12)

δe = −ε̄−γ1ψ
+,

δω = −1

�
ε̄−γ∗ψ+,

δm = ε̄−γ0ψ
−,

δr2 = ε̄−γ0ψ
−,

δψ− = dε− + 1

2�
γ0ε

−τ − 1

2�
γ0ε

−r1,

δρ = 1

2
γ∗ε−ω + 1

2�
γ1ε

−e, (4.13)

δm = ε̄γ0ψ
+,

δr2 = −ε̄γ0ψ
+,

δρ = dε + 1

2�
γ0ετ + 1

2�
γ0εr1. (4.14)

Besides, we have

X = �H + �P + �G + �M + T1U1 + T2U2

+λ̄+Q+ + λ̄−Q− + λ̄R,

R = R(τ )H + R(e)P + R(ω)G

+R(m)M + R(r1)U1 + R(r2)U2

+R(ψ+)Q+ + R(ψ−)Q− + R(ρ)R, (4.15)

where the sNH2-covariant curvatures are given by

R(τ ) = dτ − 1

2
ψ̄+γ0 ∧ ψ+,

R(e) = de − τ ∧ ω + ψ̄+γ1 ∧ ψ−,

R(ω) = dω + 1

�2 τ ∧ e + 1

�
ψ̄+γ∗ ∧ ψ−,

R(m) = dm + ω ∧ e − ψ̄+γ0 ∧ ρ − 1

2
ψ̄−γ0 ∧ ψ−,

R(r1) = dr1 + 1

2
ψ̄+γ0 ∧ ψ+,

R(r2) = dr2 + ψ̄+γ0 ∧ ρ − 1

2
ψ̄−γ0 ∧ ψ−,

R(ψ+) = dψ+ + 1

2�
τ ∧ γ0ψ

+ + 1

2�
r1 ∧ γ0ψ

+,

R(ψ−) = dψ− + 1

2
ω ∧ γ∗ψ+ + 1

2�
τ ∧ γ0ψ

−

+ 1

2�
e ∧ γ1ψ

+ − 1

2�
r1 ∧ γ0ψ

−,

R(ρ) = dρ + 1

2
ω ∧ γ∗ψ− + 1

2�
τ ∧ γ0ρ

+ 1

2�
m ∧ γ0ψ

+ + 1

2�
e ∧ γ1ψ

−

+ 1

2�
r1 ∧ γ0ρ + 1

2�
r2 ∧ γ0ψ

+. (4.16)

As we have the invariant metric (4.10) and the curvatures
(4.16), we are now able to write down the BF action for
the non-relativistic JT supergravity theory, based on sNH2,
which reads

SNR
sJT = k

2π

∫ [
�R(ω) + 1

�2

(
�R(e)−�R(m)−�R(τ )

+ T1R(r2) + T2R(r1)
)

+ 2

�

(
λ̄+R(ψ+)

+ λ̄−R(ψ−) + λ̄R(ρ)
)]

. (4.17)

The action (4.17) is a supersymmetric generalization of the
bosonic one presented in [46,47]. This non-relativistic JT
supergravity action is invariant under the transformations
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(4.12)-(4.14) together with the following (non-trivial) trans-
formations of �,�,�,�, T1, T2, λ

+, λ−, λ, with parame-
ters, in order of appearance, ε+α, ε−α, ε:

δ� = −1

�
ε̄+γ∗λ−,

δ� = −ε̄+γ1λ
−,

δ� = ε̄+γ0λ,

δ� = ε̄+γ0λ
+,

δT1 = −ε̄+γ0λ,

δT2 = −ε̄+γ0λ
+,

δλ+ = 1

2�
γ0�ε+ + 1

2�
γ0T2ε

+,

δλ− = 1

2
γ∗�ε+ + 1

2�
γ1�ε+,

δλ = 1

2�
γ0�ε+ + 1

2�
γ0T1ε

+, (4.18)

δ� = −1

�
ε̄−γ∗λ,

δ� = −ε̄−γ1λ,

δ� = ε̄−γ0λ
−,

δT2 = ε̄−γ0λ
−,

δλ+ = 1

2
γ��ε− + 1

2�
γ1�ε−,

δλ− = 1

2�
γ0�ε− − 1

2�
γ0T1ε

−, (4.19)

δ� = ε̄γ0λ,

δT2 = −ε̄γ0λ,

δλ+ = 1

2�
γ0�ε + 1

2�
γ0T1ε. (4.20)

Note that the latter can also be derived by exploiting the
Lie algebra expansion method on (3.7). The equations of
motion of the theory correspond to the vanishing of the sNH2-
covariant curvatures and coincide with the ones found in [46,
47] when we restrict ourselves to the purely bosonic case.
Notice that, in the supersymmetric theory, we end up with
a non-vanishing torsion that is given, on-shell, in terms of a
spinor bilinear.

Finally, let us highlight that the same action (4.17) can be
obtained by directly performing the expansion procedure on
the supersymmetric AdS2 theory. To do so, one shall start by
decomposing the AdS2 curvatures (3.5) as follows:

R(E)0 = dE0 + 	 ∧ E1 − 1

2
δi j �̄

iγ0 ∧ � j ,

R(E)1 = dE1 + 	 ∧ E0 + 1

2
δi j �̄

iγ1 ∧ � j ,

R(	) = d	 + 1

�2 E
0 ∧ E1 + 1

2�
δi j �̄

iγ∗ ∧ � j ,

R(T ) = dT − 1

2
εi j �̄

i ∧ � j ,

R(�)i = d� i + 1

2
	 ∧ γ∗� i + 1

2�
E0 ∧ γ0�

i

+ 1

2�
E1 ∧ γ1�

i + εi j T ∧ � j . (4.21)

Correspondingly, we can also implement the same decom-
position on the action (3.6), that is

SsJT dec. = k

2π

∫ [
1

�2

(
X0R(E)0 + X1R(E)1

)

+ XR(	) + 1

�2 Y R(T ) + 2

�
λ̄i R(�)i

]
. (4.22)

Subsequently, we introduce the spinors

�±
α = 1√

2

(
�1

α ± (γ0)α
β�2

β

)
. (4.23)

Thus, the curvatures (4.21) boil down to

R(E)0 = dE0 + 	 ∧ E1 − 1

2
�̄+γ0 ∧ �+ − 1

2
�̄−γ0 ∧ �−,

R(E)1 = dE1 + 	 ∧ E0 + �̄+γ1 ∧ �−,

R(	) = d	 + 1

�2 E
0 ∧ E1 + 1

�
�̄+γ∗ ∧ �−,

R(T ) = dT + 1

2
�̄+ ∧ �+ − 1

2
�̄− ∧ �−,

R(�±) = d�± + 1

2
	 ∧ γ∗�∓ + 1

2�
E0 ∧ γ0�

±

+ 1

2�
E1 ∧ γ1�

∓ ± 1

2�
T ∧ γ0�

±. (4.24)

We can then see that, performing the expansion

E0 = τ + η2m, E1 = ηe, 	 = ηω, T = r1 + η2r2,

�+ = ψ+ + η2ρ, �− = ηψ−, (4.25)

we precisely end up with the sNH2 curvatures (4.16). Finally,
the expansion of the action yields

(2)

S NR sJT = k

2π

∫ [
1

�2

(
(2)

X0R(τ ) + (0)

X0R(m) + (1)

X1R(e)

)

+(1)

X R(ω) + 1

�2

(
(2)

Y R(r1) + (0)

Y R(r2)

)

+2

�

(
(2)

λ̄+R(ψ+)+
(0)

λ̄ R(ρ) + +
(1)

λ̄−R(ψ−)

)]
,

(4.26)

that is, with the identifications

(2)

X0 = −�,
(0)

X0 = −�,
(1)

X1 = �,
(1)

X = �,

(2)

Y = T2,
(0)

Y = T1,

(2)

λ̄+ = λ̄+,

(0)

λ̄ = λ̄,

(1)

λ̄− = λ̄−, (4.27)

the non-relativistic JT supergravity action (4.17).
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5 Ultra-relativistic Jackiw–Teitelboim supergravity

In this section we will introduce a supersymmetric exten-
sion of the extended AdS2 Carroll algebra which will allow
us to develop the corresponding Carrollian, that is ultra-
relativistic, JT supergravity action as a metric BF theory.

5.1 Supersymmetric extended AdS2 Carroll algebra as a
redefinition of sNH2

The purely bosonic extended AdS2 Carroll structure first
appeared in [46,47]. We shall now present a supersymmet-
ric extension of the latter as a redefinition of sNH2. To this
aim, let us therefore perform the following redefinition on
the sNH2 structure previously obtained:

H ↔ P, � → −i�, γ0 → −iγ1,

γ1 → −iγ0, γ� → γ�, C → −iC. (5.1)

By doing so, we end up with the supersymmetric extended
AdS2 Carroll algebra, which reads

[H,G] = −M, [G, P] = H,

[H, P] = 1

�2 G,

[G, Q+] = 1

2
γ∗Q−, [G, Q−] = 1

2
γ∗R,

[H, Q+] = 1

2�
γ0Q

−,

[H, Q−] = 1

2�
γ0R, [P, Q±] = 1

2�
γ1Q

±,

[P, R] = 1

2�
γ1R,

[M, Q+] = 1

2�
γ1R, [U1, Q

±] = ± 1

2�
γ1Q

±,

[U1, R] = 1

2�
γ1R,

[U2, Q
+] = 1

2�
γ1R,

(5.2)

together with

{Q+
α , Q+

β } = (γ1C
−1)αβ P − (γ1C

−1)αβU1,

{Q+
α , Q−

β } = −(γ0C
−1)αβH + 1

�
(γ∗C−1)αβG,

{Q+
α , Rβ} = (γ1C

−1)αβM − (γ1C
−1)αβU2,

{Q−
α , Q−

β } = (γ1C
−1)αβM + (γ1C

−1)αβU2. (5.3)

Note that this construction is reminiscent of the duality exist-
ing at the purely bosonic level in two spacetime dimensions
between the extended NH± and the extended (A)dS2 Carroll
algebras.

Let us mention that the same extended AdS2 Carroll super-
algebra (5.2), (5.3) can also be obtained from the N = 2
AdS2 superalgebra (3.1), (3.2), once decomposed as in (4.2),
(4.3), by introducing the fermionic charges

F± = 1√
2

(
Q1 ± iγ1Q

2
)

(5.4)

and performing the redefinitionU → iU with the subsequent
expansion

P0 =ηH, P1 = P+η2M, J =ηG, U = U1 + η2U2

F+ = Q+ + η2R, F− = ηQ−. (5.5)

The extended AdS2 Carroll superalgebra (5.2), (5.3) is
endowed with the invariant metric

〈H, H〉 = − 1

�2 , 〈G,G〉 = 1, 〈P, M〉 = 1

�2 ,

〈U1,U2〉 = − 1

�2 , 〈Q+
α , Rβ〉 = 2

�

(
C−1

)
αβ

,

〈Q−
α , Q−

β 〉 = 2

�

(
C−1

)
αβ

,

(5.6)

which, in particular, can be obtained from (4.10) by means
of the mapping in (5.1).

5.2 Carrollian Jackiw–Teitelboim supergravity

We shall now proceed with the development of the ultra-
relativistic BF JT supergravity theory based on the Carrollian
superalgebra just unveiled. The 1-form A has the same form
of (4.11), and also the implicit form of X and R is formally
the same as in (4.15).6 On the other hand, now the (non-
trivial) transformations along the parameters ε+α, ε−α, εα

are respectively given by

δτ = ε̄+γ0ψ
−,

δe = −ε̄+γ1ψ
+,

δω = −1

�
ε̄+γ∗ψ−,

δm = −ε̄+γ1ρ,

δr1 = ε̄+γ1ψ
+,

δr2 = ε̄+γ1ρ,

δψ+ = dε+ + 1

2�
γ1ε

+e + 1

2�
γ1ε

+r1,

δψ− = 1

2
γ∗ε+ω + 1

2�
γ0ε

+τ,

δρ = 1

2�
γ1ε

+m + 1

2�
γ1ε

+r2, (5.7)

δτ = ε̄−γ0ψ
+,

6 This is just matter of our notation, in fact. We make a little abuse of
notation in order to avoid the introduction of new symbols here.
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δω = −1

�
ε̄−γ∗ψ+,

δm = −ε̄−γ1ψ
−,

δr2 = −ε̄−γ1ψ
−,

δψ− = dε− + 1

2�
γ1ε

−e − 1

2�
γ1ε

−r1,

δρ = 1

2
γ∗ε−ω + 1

2�
γ0ε

−τ, (5.8)

δm = −ε̄γ1ψ
+,

δr2 = ε̄γ1ψ
+,

δρ = dε
1

2�
γ1εe + 1

2�
γ1εr1. (5.9)

The extended super-AdS2 Carroll-covariant curvatures read

R(τ ) = dτ + ω ∧ ε − ψ̄+γ0 ∧ ψ−,

R(e) = de + 1

2
ψ̄+γ1 ∧ ψ+,

R(ω) = dω + 1

�2 τ ∧ e + 1

�
ψ̄+γ∗ ∧ ψ−,

R(m) = dm + ω ∧ τ + ψ̄+γ1 ∧ ρ + 1

2
ψ̄−γ1 ∧ ψ−,

R(r1) = dr1 − 1

2
ψ̄+γ1 ∧ ψ+,

R(r2) = dr2 − ψ̄+γ0 ∧ ρ + 1

2
ψ̄−γ1 ∧ ψ−,

R(ψ+) = dψ+ + 1

2�
e ∧ γ1ψ

+ + 1

2�
r1 ∧ γ1ψ

+,

R(ψ−) = dψ− + 1

2
ω ∧ γ∗ψ+ + 1

2�
τ ∧ γ0ψ

+

+ 1

2�
e ∧ γ1ψ

− − 1

2�
r1 ∧ γ1ψ

−,

R(ρ) = dρ + 1

2
ω ∧ γ∗ψ− + 1

2�
τ ∧ γ0ψ

−

+ 1

2�
m ∧ γ1ψ

+ + 1

2�
e ∧ γ1ρ

+ 1

2�
r1 ∧ γ1ρ + 1

2�
r2 ∧ γ1ψ

+. (5.10)

Therefore, using the invariant metric (5.6) together with
the curvatures (5.10), we end up with the following ultra-
relativistic JT supergravity action as a metric BF theory based
on the extended AdS2 Carroll superalgebra (5.2), (5.3):

SUR
sJT = k

2π

∫ [
�R(ω) + 1

�2 (�R(e)+�R(m)

−�R(τ )−T1R(r2)−T2R(r1))

+ 2

�

(
λ̄+R(ψ+) + λ̄−R(ψ−) + λ̄R(ρ)

) ]
. (5.11)

The ultra-relativistic action (5.11) is a supersymmetric gen-
eralization of the purely bosonic Carrollian one in [46,
47]. It is invariant under the transformations (5.7)-(5.9)
together with the following (non-trivial) transformations of

the fields �,�,�,�, T1, T2, λ
+, λ−, λ, along the parame-

ters ε+α, ε−α, ε, in order of appearance:

δ� = −1

�
ε̄+γ∗λ−,

δ� = −ε̄+γ1λ
+,

δ� = ε̄+γ0λ
−,

δ� = −ε̄+γ1λ,

δT1 = ε̄+γ1λ,

δT2 = ε̄+γ1λ
+,

δλ+ = 1

2�
γ1�ε+ + 1

2�
γ1T2ε

+,

δλ− = 1

2
γ∗�ε+ + 1

2�
γ0�ε+,

δλ = 1

2�
γ1�ε+ + 1

2�
γ1T1ε

+, (5.12)

δ� = −1

�
ε̄−γ∗λ,

δ� = −ε̄−γ1λ
−,

δ� = ε̄−γ0λ,

δT2 = −ε̄−γ1λ
−,

δλ+ = 1

2
γ��ε− + 1

2�
γ1�ε−,

δλ− = 1

2�
γ1�ε− − 1

2�
γ1T1ε

−, (5.13)

δ� = −ε̄γ1λ,

δT2 = ε̄γ1λ,

δλ+ = 1

2�
γ1�ε + 1

2�
γ1T1ε. (5.14)

The equations of motion of this Carrollian theory correspond
to the vanishing of the curvatures (5.10), and they boil down
to the ones obtained in [46,47] if we restrict ourselves to the
purely bosonic case. In the Carrollian supersymmetric theory
above we end up with an on-shell non-vanishing torsion given
in terms of a fermion bilinear.

Let us conclude by observing that the same ultra-
relativistic action (5.11) can be derived by expanding the
N = 2 super-AdS2 relativistic one. More precisely, start-
ing from the decomposed expressions (4.21) and (4.22) and
introducing the (new) spinors

�±
α = 1√

2

(
�1

α ± i(γ1)α
β�2

β

)
, (5.15)

we get the following “pre-expanded” curvatures:

R(E)0 = dE0 + 	 ∧ E1 − �̄+γ0 ∧ �−,

R(E)1 = dE1+	 ∧ E0 + 1

2
�̄+γ1 ∧ �+ + 1

2
�̄−γ1 ∧ �−,

R(	) = d	 + 1

�2 E
0 ∧ E1 + 1

�
�̄+γ∗ ∧ �−,

R(T ) = dT − 1

2
�̄+ ∧ �+ + 1

2
�̄− ∧ �−,
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R(�±) = d�± + 1

2
	 ∧ γ∗�∓ + 1

2�
E0 ∧ γ0�

∓

+ 1

2�
E1 ∧ γ1�

± ± 1

2�
T ∧ γ1�

±. (5.16)

Then, performing the expansion

E0 = ητ, E1 = e + η2m, 	 = ηω, T = r1 + η2r2,

�+ = ψ+ + η2ρ, �− = ηψ−, (5.17)

we recover the extended super-AdS2 Carroll-covariant cur-
vatures (5.10). Finally, on the same lines of what we have
done in the non-relativistic case, expanding the action (4.22)
we find

(2)

S UR sJT = k

2π

∫ [
1

�2

(
(1)

X0R(τ ) + (0)

X1R(m) + (2)

X1R(e)

)

+(1)

X R(ω) + 1

�2

(
(2)

Y R(r1) + (0)

Y R(r2)

)

+2

�

(
(2)

λ̄+R(ψ+) +
(0)

λ̄ R(ρ) + +
(1)

λ̄−R(ψ−)

) ]
.

(5.18)

Finally, with the identifications

(1)

X0 = −�,
(2)

X1 = �,
(0)

X1 = �,
(1)

X = �,

(2)

Y = −T2,
(0)

Y = −T1,

(2)

λ̄+ = λ̄+,
(0)

λ̄ = λ̄,
(1)

λ̄− = λ̄−, (5.19)

we recover exactly the Carrollian JT supergravity action
(5.11).

6 Conclusions

In this paper, we have presented supersymmetric extensions
of non- and ultra-relativistic JT gravity. In particular, starting
from the fact that N = 2 JT supergravity can be formulated
at first-order as a metric BF theory based on the N = 2 AdS2

superalgebra, we have exploited the Lie algebra expansion
method to develop its non-relativistic counterpart, which has
its roots in the superalgebra we named sNH2. After that,
by redefining some quantities appearing in sNH2, we have
obtained the extended AdS2 Carroll superalgebra, together
with the associated invariant metric. The latter has then be
used to write down the Carrollian JT supergravity action as a
metric BF theory. Remarkably, the mapping from sNH2 to the
supersymmetric extended AdS2 Carroll algebra can be seen
as a supersymmetric extension of the duality “extended NH±
↔ extended (A)dS Carroll” existing at the purely bosonic
level in two dimensions. Furthermore, we have explicitly
shown that the same non-relativistic and ultra-relativistic JT
supergravity theories presented here can also be obtained by

directly applying the expansion procedure on the N = 2 JT
supergravity action.

Observe that, in the non-relativistic case, the field equa-
tions (correspinding to the vanishing of the non-relativistic
supercurvatures) allow to completely solve the non-relativistic
spin connection as (see also [47])

ωNR
μ = 2τ [αeβ] (eμ∂αeβ − τμ∂αmβ

)
+fermion bilinears. (6.1)

Analogously, in the ultra-relativistic theory, the ultra-
relativistic spin connection can be entirely solved as (cf. also
[47])

ωUR
μ = 2e[ατβ] (τμ∂ατβ − eμ∂αmβ

)
+fermion bilinears. (6.2)

Let us also mention that, unlike the relativistic case, by
plugging the expressions (6.1) and (6.2) back into the first-
order non-relativistic and ultra-relativistic actions, respec-
tively, one obtains a theory that, in general, is not dynami-
cally equivalent to its first-order counterpart. However, the
equivalence is obtained by considering the non-relativistic
and ultra-relativistic sectors dτ = 1

2 ψ̄+γ0 ∧ ψ+ and de =
− 1

2 ψ̄+γ1 ∧ ψ+, respectively.
The expansions we have performed in this work also

enables us to consider BF theories beyond the supersym-
metric Newton–Hooke and AdS Carrollian ones, and this
would be particularly interesting from the Post-Newtonian
expansion and large c expansion point of view [47,75,76].
Furthermore, the procedure we have presented in this paper
could be useful to obtain the next order boundary Schwarzian
actions (which are dual boundary actions of next order grav-
ity actions) by expanding the related Maurer-Cartan forms.

Another possible future direction consists in consider-
ing supersymmetric extensions of the Carrollian and non-
relativistic boundary Schwarzian actions in [46,47] along
the lines of [77] (some work is currently in progress on this
point). Besides, the non-relativistic JT supergravity theory
may serve as a starting point to consider the supersymmet-
ric extension of the flat space boundary action that appeared
in [78]. It would also be interesting to consider ultra- and
non-relativistic limits (and associated supersymmetric exten-
sions) of the most general deformation of JT gravity studied
in [3,4].
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Appendix A: Notation and conventions

The two-dimensional spacetime metric is defined as ηAB =
diag(−,+). In our notation, � denotes the AdS2 radius and
the cosmological constant is � = − 1

�2 . Regarding gamma

matrices, we have γ A = (γ 0, γ 1), with

γ 0 = −γ0 =
(

0 1
−1 0

)
= iσ2, γ 1 =γ1 =

(
0 1
1 0

)
= σ1,

γ� = −γ0γ1 =
(

1 0
0 −1

)
= σ3. (A.1)

The charge conjugation matrix is defined as

C = iσ2 =
(

0 1
−1 0

)
. (A.2)
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