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Active particles that self-propel by transforming energy into mechanical motion represent a growing area of
research in mathematics, physics, and chemistry. Here we investigate the dynamics of nonspherical inertial active
particles moving in a harmonic potential, introducing geometric parameters which take into account the role of
eccentricity for nonspherical particles. A comparison between the overdamped and underdamped models for
elliptical particles is performed. The model of overdamped active Brownian motion has been used to describe
most of the basic aspects of micrometer-sized particles moving in a liquid (“microswimmers”). We consider
active particles by extending the active Brownian motion model to incorporate translation and rotation inertia
and account for the role of eccentricity. We show how the overdamped and the underdamped models behave in the
same way for small values of activity (Brownian case) if eccentricity is equal to zero, but increasing eccentricity
leads the two dynamics to substantially depart from each other—in particular, the action of a torque induced
by external forces, induced a marked difference close to the walls of the domain if eccentricity is high. Effects
induced by inertia include an inertial delay time of the self-propulsion direction from the particle velocity, and the
differences between the overdamped and underdamped systems are particularly evident in the first and second
moments of the particle velocities. Comparison with the experimental results of vibrated granular particles shows
good agreement and corroborates the notion that self-propelling massive particles moving in gaseous media are
dominated by inertial effects.

DOI: 10.1103/PhysRevE.107.054607

I. INTRODUCTION

Active fluids consist of environments populated by self-
propelled “particles” [1], such as bacteria, microtubule
networks, or artificial swimmers. These differ substantially
from standard fluids, made of inert particles as they are able
to absorb energy from the environment and convert it into di-
rected motion [2]. Active fluids have been experimentally and
theoretically analyzed for a variety of systems, with a focus
on biological or artificial microswimmers [3–6], cell colonies
[6–8], or protein filaments [9]. Comprehensive reviews are
reported in [2,10–12]. In all these systems, the inertial effect
can be neglected as these micrometer-sized particles typically
self-propel in a liquid at a very low Reynolds number. There-
fore, the dynamics of these colloidal particles in a solvent
are overdamped and well described by the so-called active
Brownian motion [13,14].

The active Brownian particle model has been tested
on experimental data on self-moving colloids [13,15,16]
and has also been used to describe and predict collective

phenomena in colloids and bacteria [2]. However, recent
works studied larger self-propelled particles, or motion in
low-density environments, where the Reynolds numbers are
not small, and the consequences of inertial effects cannot be
neglected [12,17,18]. Examples include the so-called “com-
plex plasma,” i.e., mesoscopic dust particles in plasmas [19],
or granules brought to self-propulsion on a vibrating plate
[17,20–28] or with an internal vibration motor [29]. Other
examples of self-propelled particles with inertia range from
minirobots [30,31] and macroscopic swimmers [32] to bi-
ological particles like beetles that can fly [33] or swim at
water interfaces [34]. Many interesting applications in various
domains can be developed by realizing artificial microswim-
mers. They can be used as autonomous agents to localize,
pick up, and deliver nanoscopic objects in many applications,
including drug delivery via tissues, performance in lab-on-a-
chip systems, and gene therapy [35–37]. There are numerous
examples of macroscopic self-propelling devices where iner-
tia is dominant [38–43]. Most of the active particles in nature,
such as bacteria, generally deviate from the ideal spherical
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shape, assuming rather elliptical or more complex shapes.
This, of course, modifies the swimming properties of the
particles. However, the model cited so far did not fully take
into account the geometry of the particles.

In the present work, the theory of Brownian motion will
be the starting point to derive the underdamped Langevin
formalism for the case of active Brownian particles confined
by harmonic walls, such as the ones described by Solon et al.
[44]. In order to take into account the elliptical shape of the
particles, the friction and diffusion coefficients are generalized
with a matrix formalism, which takes into account the correct
shape and orientation of the particles. The effect of particle
eccentricity is highlighted, as well as the differences between
the overdamped and underdamped models.

This paper is organized as follows. In Sec. II the over-
damped and underdamped models are presented: we mainly
consider the case of an elliptical active Brownian particle
confined by two harmonic walls. In Sec. II C the concepts
of friction and diffusion coefficient are generalized to ob-
tain friction and diffusion matrix [cf. Eqs. (17) and (18)],
which take into account the elliptical shape and orientation
of the particle. After scaling the variables to get dimension-
less equations, stochastic simulations have been carried out
and the results are presented in Sec. III. The results high-
light the differences and similarities between the overdamped
and the underdamped models in their particle density profiles,
mean velocity and second momentum of velocity, and the role
played by eccentricity. Finally, in Sec. III B the importance
of inertia on macroscopic self-propelled particles is demon-
strated by reproducing the experimental results of [45] and the
mean-square displacement varying the value of activity and
eccentricity (Fig. 8 below). We conclude with some general
remarks and a few open questions in Sec. IV.

II. STOCHASTIC MODELING

A. The overdamped model

One of the most popular models of active particles is the
Langevin overdamped stochastic dynamics, which has the ad-
vantage of being particularly simple, and it is also considered
appropriate in the case of bacteria when their self-propulsion
is not particularly strong. In this work we first consider a
fluid with viscosity η and density ρ, containing noninteract-
ing, three-dimensional ellipsoidal active Brownian particles
(ABPs), which move in a two-dimensional plane of coordi-
nates (x, y). The principal semiaxis a of the ellipsoid makes
an angle θ (t ) with respect to the direction of the x axis. The
activity of the particles is given by a contribution to the motion
of the particles that is constant, with activity coefficient νs, and
is oriented like the direction of the principal axis. Moreover,
an external generalized force K = [F, T ] acts on the system,
where F = [F (x), F (y)] refers to the Cartesian components
of the velocity, and T = T (θ ) represents the effect of a torque
on the angle θ . In the overdamped case, this amounts to the
following set of equations of motion:

ξ ẋ = Fx + ξνs cos θ + ξ
√

2Dt�x, (1)

ξ ẏ = Fy + ξνs sin θ + ξ
√

2Dt�y, (2)

ξr θ̇ = T (θ ) + ξr

√
2Dr�θ, (3)

FIG. 1. Sketch of the system: elliptical particles confined along
the x direction by two harmonic walls.

where (Fx, Fy) is derived from a potential U , T (θ ) is the effect
of the torque, Dt and Dr are diffusivities in space and angle,
respectively, and ξ and ξr are the coefficients for translational
and rotational friction, respectively. This model is considered
in Ref. [44], mainly with Fy = 0 and Fx given by a harmonic
confining potential,

U (x) = λ

2
	[x − xw](x − xw )2, (4)

where 	 is the Heaviside function and xw is the wall position.
In this way, we will consider a system of particles moving
within a channel of given width, which was also the subject
of numerous works (Fig. 1); see, e.g., Refs. [18,46,47]. If
particles are elongated, as in the ellipsoidal case, the torque
produced by the confining potential is expressed by

T (θ ) = λκ	[x − xw] sin 2θ, (5)

with κ = (a2−b2)/8, ξ = 6πaη, ξr = 8πa3η, and
Dt = kBTb/ξ , Dr = kBTb/ξr . The equations of this
overdamped model are recast here in the following vector
form:

ẋ = ξ−1K + νsn +
√

2D�, (6)

where n := {cos θ, sin θ, 0}, ξ = diag{ξ, ξ , ξr} and

K = [−∂xU (x), 0, T (θ )]. (7)

B. The underdamped model

In the case that inertial effects cannot be neglected, be-
cause of nonnegligible mass and/or propulsion mechanisms
(see, e.g., Refs. [9,12,29,45,48–57]), a suitable underdamped
model can be considered. Accordingly, with m the mass of the
particles and J the moment of inertia per unit mass, the under-
damped version of the model described above is expressed by
the following set of equations:

ẋ = vx , ẏ = vy , θ̇ = vθ , (8)

v̇x = − 1

m
F (x) + γ νs cos (θ ) − γ vx +

√
2Dx�x , (9)

v̇y = γ νs sin (θ ) − γ vy + √
2Dy�y , (10)

v̇θ = T (θ )

m
√

J
− γθvθ +

√
2Dθ�θ , (11)

where J = (a2+b2)/5 for an elliptical particle, τν =
(6πaη/m)−1 = γ −1 gives the viscous timescale, γθ = ξr/mJ
[45], and the angular variables have been scaled replacing θ
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with θJ1/2. This latter scaling allows the set of equations to
be dimensionally homogenous. The result is that the
two-dimensional motion of the rotating objects is formally
equivalent to a three-dimensional random walk of a point
particle, with periodic boundary conditions along one
direction. The vector form of Eqs. (9)–(11) reads

ẍ = K
m

+ γ (νsn − Gẋ) +
√

2D�, (12)

where x := (x, y, θ ),

K = (−∂xU (x), 0, T (θ/
√

J )), (13)

and

G =
⎛
⎝γ 0 0

0 γ 0
0 0 γθ

⎞
⎠ ; D = Dx

⎛
⎝1 0 0

0 1 0
0 0 α

⎞
⎠ (14)

with

Dx = kTbγ

m
, Dθ = Drγ

2
θ J, α = Dθ

Dx
.

The “temperature” Tb is to be properly understood. It repre-
sents a reservoir of energy contributing to the random motion
of the particles. As in granular fluids and other dissipative
systems made of particles much larger than the atomic scales,
Tb is an effective temperature, in the sense that it plays a
role analogous to that of the bath temperature in equilibrium
systems. Even if in thermal equilibrium with their fluid, parti-
cles such as bacteria would not be influenced by the thermal
fluctuations of the fluid. In general, their “kinetic temperature”
(obtained applying the energy equipartition principle to their
kinetic energy) would differ from the thermodynamic one.

Note also that the system (8)–(11) reduces to the over-
damped case [(1)–(3)] in the m → 0 limit, as detailed in
Appendix A. However, this does not immediately imply that
the solutions of the first set of equations converge to the solu-
tions of the second one, since such kinds of limits are typically
singular. In fact, it is known that in certain cases the small
inertia limit of underdamped Langevin equations does not
reproduce the corresponding overdamped dynamics [58]. A
comparison of the overdamped with the underdamped model
is interesting also from this point of view.

C. Physical remarks on the matrices G and D

A more realistic form of the tensors G and D can be
deduced on physical grounds. First, it is clear that G has
nonvanishing off-diagonal elements if the geometry is not
spherical. This aspect is usually neglected in the literature
[44,45], although the drag on nonspherical bodies is a well-
established fluid dynamic topic. In our case, a viscous fluid
interacting with an axially symmetric body in roto-translation
motion is considered [59]. Accordingly, we consider a local
reference frame (x̂, ŷ) corresponding to the semiaxes of our
active particles, and we decompose the drag on the body
into components (Fig. 2). At low Reynolds numbers and in
the particle frame, the drag can be written in a Stokes-like
form, corrected with two coefficients, σ‖, σ⊥ in the direction
parallel and orthogonal to the main axis, respectively [60].
Likewise, rotational friction is proportional to a coefficient

FIG. 2. Sketch of the frame of the particle. Figure is taken from
Solon et al. [44].

γ σr . According to [61], the functions σ‖ and σ⊥ for a prolate
shape read

σ‖ = (8/3)e3

(1 + e2) log
[

1+e
1−e

] − 2e
,

σ⊥ = (16/3)e3

(3e2 − 1) log
[

1+e
1−e

] + 2e
, (15)

where e = [1 − (b/a)2]
1
2 is the eccentricity of the body.

Basically, σ‖ and σ⊥ are complex functions of the body ec-
centricity, while σr is well known for the spherical case:
σr = 10/3 [[62], p. 436]. To the best of our knowledge, no
closed forms are known for σr in the case of rotation of a
prolate spheroid around the axis orthogonal to the plane (x, y).

Let θ be the angle that the major axis of our ellipsoid makes
with the direction x, at a given instant of time, while it moves
with velocity vo = (vx, vy), with respect to the (absolute) labo-
ratory reference frame, with axes (x, y). The form of the tensor
G is obtained by projecting the vector vo on the local frame,
computing the drag, and then returning to the absolute frame.
In the laboratory frame, one then obtains the grand resistance
friction matrix as G = R�RT, where

R =
⎛
⎝cos θ sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠, � =

⎛
⎝σ‖ 0 0

0 σ⊥ 0
0 0 σr

⎞
⎠. (16)

Furthermore, by introducing the rotational drag we
eventually get

G = γ

⎛
⎜⎜⎝

σ‖ cos2 θ + σ⊥ sin2 θ
σ‖ − σ⊥

2 sin 2θ 0
σ‖ − σ⊥

2 sin 2θ σ⊥ cos2 θ + σ‖ sin2 θ 0

0 0 σr

⎞
⎟⎟⎠,

(17)

with γ = 6πaη/m. Therefore, the tensor has off-diagonal
terms and depends on θ . Notice that, in the spherical case
(e → 0) σ‖ = σ⊥ = 1, and (17) reduces to (14), with γθ =
(10/3)γ , and Stokes’ law is retrieved. In the present work,
the underdamped model of active particles will refer to the
vector equation (12), with the nondiagonal friction matrix (17)
in place of the diagonal one, (14), commonly found in the lit-
erature. This allows us to investigate the effect of eccentricity.

Concerning the third component of the tensor D, which
determines the noise acting on the angle θ in Eq. (11), a
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direct application of the fluctuation-dissipation theorem
(FDT) [63,64] allows one to set Dx = Dy = D0 and Dθ =
αD0, where D0 = γ kTbσ/m, σ = (σ‖+σ⊥)/2, k is the Boltz-
man constant, and Tb = m

√
2Dt/kB is the effective bath

temperature. The quantity α is computed according to

α = Dθ

Dx
= Dr (γ σθ )2J

Dt (γ σ )2
= Dr

Dt

(
σθ

σ

)2

J. (18)

In Appendix B, it is shown that, for thermal reasons, α has a
lower bound roughly equal to 5/4, for any eccentricity. Nev-
ertheless, active particles may increase their rotational noise,
and most often α is very larger than that bound.

D. Scaling

Dimensionless versions of overdamped and underdamped
models can be obtained scaling time with τ = D−1

r , while
lengths are scaled with the size of the simulated box L, and
velocities with the quantity LDr . Therefore, after introducing
the following dimensionless numbers:

N1 = λ

ξDr
, N2 = λκ

ξrDr
, N3 = νs

LDr
,

(19)

N4 =
√

2σrJ

L
, σr = Dt

DrJ
, Rτ = mDr

ξ
,

the dimensionless overdamped equations read

ẋ = −N1(x − 1) + N3 cos θ + N4�x,

ẏ = N3 sin θ + N4�y,

θ̇ = N2 sin 2θ +
√

2�θ . (20)

The corresponding dimensionless underdamped equations are
instead given by

Rτ v̇x = −N1(x − 1) + σ‖N3 cos θ − G11vx + G22vy + N4�x,

Rτ v̇y = σ‖N3 sin θ − G21vx + G22vy + N4�y,

Rτ v̇θ = σrN2 sin 2θ − σrG33vθ + σr

√
2�θ . (21)

We remark that the parameter N3 is a sort of Péclet
number, since it is the ratio between the particle velocity and a
characteristic diffusive velocity LDr . Instead Rτ is equivalent
to the ratio between the characteristic timescale of the un-
derdamped model m/ξ and the timescale of the overdamped
model D−1

r . It follows that Rτ is identically zero in the over-
damped approach. Finally, it is straightforward to show that
N3Rτ = 1

9
a
L Re(1 − e2)2/3 where Re = ρνsdeq/η is the parti-

cle Reynolds number, built with the equivalent diameter deq =
(6V/π )1/3, V being the particle volume, approximated with an
ellipsoidal shape [65,66].

III. SIMULATIONS AND RESULTS

We simulated 5 × 105 active particles, initially randomly
distributed in the interval x ∈ [−2, 2], with initial vanishing
speed and random orientation (Fig. 3). The positions x = −1
and x = 1 were the centers of (half) harmonic potentials (4)
that act only on particles with x < −1 and x > 1, respec-
tively [44]. The particles were allowed to wander in a larger
domain x ∈ [−3, 3]. Periodic boundary conditions have been

FIG. 3. The simulation box of the ABP with periodic boundary
conditions in the y direction. The particles are injected in the range
x ∈ [−2, 2] and the harmonic potential (i.e., a recovering force) in
blue is set for x > 1 and x < −1, thus simulating the presence of
two “harmonic walls” which repel, pushing particles toward the bulk
of the domain.

adopted in the y direction with a period �y = 1. The bath
effective temperature was set to 300 K, and the behavior of
some “mesoscopic” quantities, such as the density distribu-
tion, and the first and the second moments of velocity were
then analyzed. Following de Groot and Mazur [67], given
j = {x, y, θ} and n = {1, 2}, the mesoscopic quantities are
defined according to

ρ(x, t ) =
∫

dy dθ d ẋ p(x, ẋ, t ), (22)

〈
vn

j

〉
(x, t ) =

∫
dy dθ d ẋ vn

j p(x, ẋ, t ), (23)

where p = p(x, ẋ, t ) is the probability distribution function
for the stochastic differential equations (21). Numerically, the
density and the moments of the velocity were computed by
dividing the domain of interest (x ∈ [−2, 2]) in bins and then
counting, for a sufficiently long time, the number of particles
in every bin at each time step, normalized by the total counts.

The computation of the stationary density needs first a
finite time allowing the initial uniform distribution of parti-
cles to relax to the stationary one. In our simulations, this
relaxation time has been estimated as the time at which the
time-dependent particle density varies in time no more than
±1% in the L2 norm, which is the square root of the integral of
the squared difference of two functions. As commented in the
following, the duration of the runs then depends on the param-
eters, and it differs between overdamped and underdamped
dynamics.

A. Results

As expected, the overdamped dynamics reaches the
stationary state much faster than the underdamped one.
Moreover, for N3 = 0, which corresponds to the Brownian
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FIG. 4. Contour map of �ρ, the difference between the overdamped and underdamped steady-state particle density profiles, as a function
of the dimensionless parameter N3 = νs/LDr and of the ratio between the two characteristic scales Rτ = mDr/ξ . (a) e = 0, (b) e = 0.45,
(c) e = 0.67, (d) e = 0.9. Axes are reported in log-log scale to emphasize small values of Rτ and N3.

motion of passive ellipsoids, the simulation time to reach the
equilibrium state can be three orders of magnitude longer than
the time needed to reach a nonequilibrium stationary state
with N3 > 0, for both over- and underdamped dynamics. This
is the case because the energy dissipation characterizing the
active particles promotes convergence to a stationary state, as
commonly expected [68,69].

1. Density profiles

The first observable to consider, and to check whether
it differs between overdamped and underdamped cases, is
the particle density profile. Here we evaluate the asymptotic
L1 norm of the difference between the respective densities

ρo and ρu that arise in time starting from the same initial
conditions:

�ρ =
∫ 2

−2
dx|ρu(x) − ρo(x)|, (24)

where we have normalized the densities, so that∫ 2

−2
ρi(x) dx = 1 with i = o, u.

The results are reported in Fig. 4 for different values
of the parameters Rτ and N3, namely, different values
of the inertial effects, respectively, due to the mass and to
self-propulsion, and for different values of the eccentricity:
e = 0, 0.45, 0.67, 0.9. In particular, Fig. 4(a) shows for
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FIG. 5. Comparison between the steady-state particle density profiles of overdamped and underdamped models for different values of
eccentricity. N3 = 0.15 and Rτ = 0.15. Eccentricity is equal to (a) 0, (b) 0.45, (c) 0.67, (d) 0.9.

spherical particles that the overdamped and the underdamped
cases provide similar results for any value of N3, when
Rτ (mass effect) is negligible. Analogously, the density
profiles are indistinguishable at any values of Rτ when N3

(the propulsion, or νs) is negligible. Hyperbolic-like contour
curves—corresponding by definition to constant values of
Re(1 − e2)2/3—mark the cumulative difference �ρ, showing
that the increase of either parameter or both N3 and Rτ

makes the two profiles depart from each other. As desired,
the underdamped dynamics for N3 = 0 and very small
m reproduce the passive Brownian motion, described by
overdamped equations.

The scenario changes when the eccentricity is increased. In
Figs. 4(b) for e = 0.45, Fig. 4(c) for e = 0.67, and Fig. 4(d)
for e = 0.9, the two models behave differently also at small
values of N3 and Rτ . Furthermore, one observes a qualitative
change in the structure of the contour map. The hyperbolas
split into two kinds, one growing and the other decreasing
with Rτ . Consequently, unlike the e = 0 case, �ρ is not mono-
tonic with Rτ and N3. Given N3, it first decreases and then
increases with Rτ . The line of the minima of �ρ moves toward
higher Rτ as e grows. The contour maps show that small
values of N3 allow the overdamped and underdamped models
to behave in quite a similar way (�ρ < 0.05), as evidenced
also by Fig. 5. On the other hand, making the mass very small
(Rτ small) important differences between the two models arise
as the eccentricity grows.

Given the eccentricity of one active particle, there are two
parameters, Rτ and N3, that are independently varied in the

contour map. The first gets smaller when the mass does,
and the second when the activity does. We found that small
mass and large activity may compensate and produce relevant
inertial effects.

This suggests that, in the case of active systems, the
underdamped approach is always required for highly non-
spherical particles, regardless of their mass. Indeed, rota-
tional inertia—that is influenced by eccentricity—sensibly
affects the timescale of tumbling, influencing the propulsion
direction.

As an example of the above arguments, Fig. 5 shows the
density distributions corresponding to the case N3 = 0.15 and
Rτ = 0.15, for different eccentricities. For e = 0, Fig. 5(a)
shows that underdamped and overdamped models lead to ap-
proximately the same density profile. For e = 0.45, Fig. 5(b)
reveals a small difference in the wall region, the one affected
by the harmonic potential (see inset), which becomes larger
and larger as the eccentricity grows. The reason is that ec-
centric particles accumulate near the walls of the container
more than spherical particles do. The particles reaching the
walls slow down, revert their velocity and gradually accelerate
to return to the bulk. However, eccentric particles tend to
turn parallel to the walls because the torque is applied to
them, and this torque is more intense for higher eccentricity.
Due to the effect of torque close to the wall, even light—
but eccentric—particles oppose the motion in the direction
perpendicular to their major axis, enhancing the inertial ef-
fect. Such behavior at the walls has been observed by others
[46,47].
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FIG. 6. (a) 〈vx〉 is the mean velocity in the x direction, (b) 〈v2
x 〉

is the second moment of velocity in the x direction, (c) 〈v2
y 〉 is the

second moment of velocity in the y direction, and (d) 〈v2
θ 〉 is the

second moment of velocity in the θ direction. The density profile
is reported in (e). N3 = 0.15, Rτ = 0.15, and e = 0.

2. Ensemble-averaged particle velocities

The differences between the overdamped and under-
damped systems are particularly evident in the first and second
moments of the particle velocities. Since the mean veloc-
ity in the y direction is null by construction, we will focus
on 〈vx〉, 〈v2

x 〉, 〈v2
y 〉, and 〈v2

θ 〉. It is remarkable that although
overdamped and underdamped models perform similarly with
respect to the density, when e = 0, the moments of the ve-
locities are different (Fig, 6). This suggests again that the
overdamped approximation is not sufficiently accurate in gen-
eral, and the underdamped model is to be preferred. This
is further evidenced by Fig. 7, which shows the effect of
eccentricity on the second moment of velocity in both the
overdamped model (left column), and underdamped model
(right column). One observes that the overdamped model
is not sensitive to variations of e [Figs. 7(a)–7(c)]. On the

FIG. 7. Comparison between the second moment of velocity and
the variance of the overdamped (a)–(c) and underdamped model
(d)–(f) for different values of eccentricity e = 0, 0.45, 0.67, 0.9.
N3 = 0.15 and Rτ = 0.15.

FIG. 8. Mean-square displacement as a function of time for the
overdamped (a) and the underdamped case (b) for gradual increase of
self-velocity and different values of eccentricity e = 0 (dashed lines)
and e = 0.9 (straight lines).

contrary, the underdamped model sensibly changes with e
varying from 0 to 0.9 [Figs. 7(b)–7(f)].

3. Diffusion processes

Mean-square displacement (MSD = 〈x2 + y2〉), is essen-
tial to understand the diffusive character of the dispersion of
active nonspherical particles and how they differ from Brown-
ian behavior. We simulated 30 000 particles, all injected in the
origin of the axes, in an open axially symmetric domain, with
no torque or external forces. We considered four different val-
ues of self-velocity, corresponding to N3 = 0, 0.09, 0.44, and
two different values of eccentricity (dashed line for e = 0 and
a straight line for e = 0.9). Figure 8 shows the results of both
the overdamped [Fig. 8(a)] and the underdamped [Fig. 8(b)]
case. It is evident that the mean-square displacement of active
particles, at a short time, has an initial diffusive behavior in
the overdamped regime and a ballistic behavior in the under-
damped case, in agreement with the literature [2,45,70,71].
This initial regime is independent of self-velocity.

At a longer time, the mean-square displacement may either
display a diffusive regime, as happens for the passive case
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FIG. 9. Density clouds ρ as functions of the distance r from the origin of the axes, at different times t = 0.025, 0.11, 1.3, 13, in a log-linear
plot. (a), (b) Overdamped model; (c), (d) underdamped model. Eccentricity: e = 0 (a), (c); e = 9 (b), (d).

(blue lines) or superdiffusive case, nearly parallel and very
close to ballistic, for very large values of the activity [72,73].
The appearance of a superdiffusive regime in the MSD also
suggests the nonequilibrium nature of the motion [70,71,74].

Figure 8 confirms the significance of the underdamped
model in taking into account the role of eccentricity
[Fig. 8(b)]. In fact, dashed (e = 0) and solid (e = 0.9) lines
separate as the eccentricity changes. On the contrary, the over-
damped system is not sensitive to variations of the geometry
of the particle considered, as also shown in Fig. 7.

Finally, in order to assess the dispersion process, the space-
time evolution of the density distribution has been assessed
(Fig. 9). As expected, when time increases, the density clouds
cover a region of space farther and farther away from the
origin, where they were initially injected at t = 0. This is
expected, but, unlike the overdamped case, the underdamped
model reveals that the eccentricity has a strong impact on this
behavior. To the best of our knowledge, this is a novel finding.

B. Comparison with previous experiments

In this section we adapt the stochastic simulations to re-
produce the experimental results of Ref. [45]. In that work,
the authors analyzed self-propelling vibrobots, and reported
distinct inertial delay between particle orientation and veloc-
ity. Test particles are three-dimensionally printed vibrobots
propelled by sinusoidal vibrations generated by an electro-
magnetic shaker. The excitation frequency and amplitude
were fixed to f = 80 Hz and A = 66 µm, respectively, which

ensures a stable motion of the particles. The original device
by Scholz et al. [45] is shown in Fig. 10.

Vibrobots are driven by the repeated impacts between their
tilted elastic legs and a vibrating surface (so-called ratcheting
mechanism). The microscopic surface inhomogeneities and
a bouncing ball instability cause the particle’s legs to jump
asynchronously and a very irregular precession. This results in
random tumbling. The leg inclination, mass, and moment of
inertia of the particles were changed to explore a wide range
of parameter combinations (see Table I). It has been seen from
experiments that massive particles do not move instantly, but

FIG. 10. 3D printed particles: (a) generic particle; (b) carrier par-
ticle with an additional outer mass; (c) tug particle with an additional
central mass; (d) ring particle without a central core; (e) illustration
of the mechanism of a generic particle moving on a vibrating plate.
Modified from [45].
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TABLE I. Mass, moment of inertia, and model parameters used in [45].

Particle M [kg] J [kg m2] Vp [m s−1] τ−1 [s−1] D [m2 s−1] Dr [rad2 s−1] τ−1
r [s−1] ωp [rad s−1]

Generic 0.76 × 10−3 1.64 × 10−8 0.071 9.3 3.56 × 10−5 0.91 14.9 0.354
Carrier 4.07 × 10−3 1.46 × 10−7 0.0929 6.85 7.7 × 10−5 2.7 5.1 0.714
Tug 1.57 × 10−3 2.54 × 10−8 0.087 3.0 2.2 × 10−4 0.59 17.6 −0.614
Ring 0.33 × 10−3 1.26 × 10−8 0.057 5.0 8.4 × 10−5 2.4 5.0 −0.19

rather accelerate from rest when the vibration begins. Further
details are reported in Scholz et al. [45].

Despite the complex nonlinear dynamics of vibrobots,
Scholz’s observations can be fully described by a gener-
alized active Langevin motion model, with explicit inertial
forces. Since typical particles are not perfectly symmetri-
cal, they tend to perform circular motions on intermediate
timescales. To this aim, Scholz considered an external torque
τ0, in order to drive a circular motion with average angu-
lar velocity ω = τ0/ξr . This corresponds to replacing the
torque introduced in (5) with τ0. The harmonic confining
potential vanishes in this case. The underdamped Langevin
equations (9)–(11) therefore take the following form:

v̇x = γ νs cos (θ ) − γ vx +
√

2Dx�x, (25)

v̇y = γ νs sin (θ ) − γ vy + √
2Dy�y, (26)

v̇θ = τ0

mJ
− γθvθ +

√
2Dθ�θ . (27)

Figure 11 displays the ensemble average of the initial velocity
for four different types of particles with respect to time. Our
simulations were performed using N = 5000 particles and
are referred to a very short initial time (2 sec), with a step
of dt = 0.0001 sec. The comparison with the experimental
results reported in Fig. 2 of [45] is fairly good, which is
further proof that self-propelling massive particles moving in
the gaseous medium are dominated by inertial effects.

FIG. 11. Inertial delay in particle trajectories. Time dependence
of the average particle velocity starting from rest at t0 for three types
of particles: generic, carrier, and ring. To compare our simulations
with the experiments by Scholz, we adopted the values provided in
Ref. [45] (see also the values reported in Table I), where τr = ξr/J is
the rotational diffusion rate.

IV. CONCLUSIONS

We have developed a stochastic theory that highlights the
role of activity, inertia, and eccentricity of nonspherical active
particles. First, we have added translation and rotation inertia
to common models of active Brownian motion. Then we have
introduced geometric parameters which take into account the
role of eccentricity for nonspherical particles, and we discuss
the appropriate form and relation of the inertia tensor and
diffusion matrix; cf. Sec. II C. In this regard, we evidenced the
differences between overdamped and underdamped models,
at different eccentricities, which turn out to be important for
relatively massive particles or for large Reynolds numbers. In
particular, we observed that the overdamped and the under-
damped models behave in the same way for small values of
activity (Brownian case) if eccentricity is equal to zero, but
increasing eccentricity leads the two dynamics to substantially
depart from each other. The action of a torque induced by
external forces induced a marked difference close to the walls
of the domain if eccentricity is high. We illustrated some
effects induced by inertia, including an inertial delay time of
the self-propulsion direction from the particle velocity.

This allowed us to correctly describe the experiment of
Ref. [45]; a comparison of the underdamped model with
data on vibrated granulars showed a good agreement between
the two.

Future work will extend the present models by considering
the tumbling of active particles, mathematically modelled by a
Poisson shot noise term, or adding interactions between pairs
of active particles. In this case, the velocity fluctuates as in
an Ornstein-Uhlenbeck process, changing the direction and
amplitude as particles collide with each other, at least as long
as the concentration is not so high that collective phenomena
emerge. Further extensions will include the role of inertia on
the formation of distinct phases in the underdamped case,
particularly in terms of local ordering of active particles and
cluster formation.

APPENDIX A: FROM UNDERDAMPED
TO OVERDAMPED MODEL

We show here how to derive the overdamped model from
the underdamped Langevin equations, in the limit m → 0. Let
us consider the underdamped equations:

v̇x = − 1

m
∂xU (x) + γ ν cos θ − γ vx +

√
2Dx�x, (A1)

v̇y = γ ν sin θ − γ vy + √
2Dy�y, (A2)

v̇θ = −T (θ )

m
√

J
− γθvθ +

√
2Dθ�θ , (A3)
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FIG. 12. Sketch of the random force acting on the elliptic particle.

with γ = ξ/m and Dx = ξ 2Dt/m2 as in [44,45]. We get

mv̇x = −∂xU (x) + ξ ν cos θ − ξvx + ξ
√

2Dt�x, (A4)

mv̇y = ξ ν sin θ − ξvy + ξ
√

2Dt�y. (A5)

Replacing θ
√

J with θ , and letting m → 0, we get

ξvx = −∂xU (x) + ξ ν cos (θ ) + ξ
√

2Dt�x, (A6)

ξvy = ξ ν sin (θ ) + ξ
√

2Dt�y, (A7)

which are the overdamped equations (1) and (2).
Equation (A3) can be treated analogously, taking
Dθ = ξ 2

r Dr/m2J , γθ = ξr/mJ , θ in place of θ
√

J , and√
Jvθ in place of vθ , we obtain

√
J v̇θ = T (θ )

m
√

J
− ξr

mJ

√
Jvθ + ξr

m
√

J

√
2Dr�θ . (A8)

Multiplying for m
√

J it follows that

mJ v̇θ = T (θ ) − ξrvθ + ξr

√
2Dr�θ . (A9)

In the overdamped limit m → 0 we finally obtain

ξrvθ = T (θ ) + ξr

√
2Dr�θ, (A10)

which is the overdamped equation (3).

APPENDIX B: FURTHER CONSIDERATIONS
ABOUT THE COEFFICIENT α

A mechanistic approach allows deriving the rotational
noise from the translational one [75]. In fact, physically speak-
ing, the noise that induces a rotation of the object is equal to
the torque generated by the sum of all the random collisions on
the surface occurring at the same instant. Since all the noises
here considered are white and reciprocally uncorrelated, we
can take, without loss of generality, θ = 0. The same ensem-
ble of collisions also generates the random force having the
components

√
2Dt (�x, �y). It follows that the random torque

per unit mass I reads

I = a
√

2Dt (�yξx − �xξy), (B1)

where (ξx, ξy) are the coordinates of the point of applica-
tion of the random force (made here dimensionless through
a for convenience). It is worth stressing that ξy and ξy are
non-Gaussian random quantities which are independent of the
values (�x, �y) since the point of application is uniformly
distributed within the area of the ellipse (Fig. 12). Therefore, I
is uncorrelated from (�x, �y); that is, incidentally, the reason
why we can focus on the case θ = 0 only. By considering the
equation of the ellipse in the plane (x, y), the pdfs of these two
new random variables read, respectively:

px(ξx ) = 2

π

√
1 − x2, py(ξy) = 2

(1 − e2)π

√
1 − e2 − y2.

(B2)

From the above considerations, one would expect to re-
place the last term of (11) with the quantity I/

√
J . This

would imply adding a quadratic combination of Gaussian and
non-Gaussian noises into the equation. However, it is more
immediate to characterize directly the random term z(t ) =
�yξx − �xξy as a whole. To this aim, we first need the pdf
of the first addend, z1(t ) = �y(t )ξx(t ). By recalling that �y is

FIG. 13. Characterization of the random term z(t ). Comparison between Monte Carlo simulation (exact distribution), Laplace distribution,
and two Gaussian distributions corresponding to α = 5/4 and α = 1, respectively. The latter refers to the modified case.
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normally distributed with pdf N (0, 1; �y), using Eq. (B2), and
following [76], we obtain a solution in terms of the Meijer
G function,

p(z1) =
∫ 1

−1

px(ξx )

|x| N
(

0, 1;
z1

x

)
dx

= 1

2π2
√

2i

∫ i∞

−i∞

G[r]

G
[
r + 3

2

]
(

z2
1

2

)r

dr, (B3)

where G[r] is the standard Gamma function. With the use of
(B3) we obtain a very simple result for the variance:

σ 2
z1

=
∫ ∞

−∞
z2

1 p(z1) dz1 = 1

4
. (B4)

After repeating the same computation for the second addend,
z2(t ) = �x(t )ξy(t ), we get

p(z2) =
∫ s

−s

py(ξy)

|y| N
(

z2

y

)
dy

= 1

2π2
√

2(1 − e2)i

∫ i∞

−i∞

G[r]

G
[
r + 3

2

]
[

z2
2

2(1 − e2)

]r

dr

(B5)

and

σ 2
z2

= 1 − e2

4
. (B6)

Unfortunately, a formula for the pdf of the whole signal
z = z1 − z2 cannot be obtained in a closed form, since the
convolution between the two pdfs does not allow an analyt-
ical solution. However, through a Monte Carlo simulation, it
can be shown that z(t ) is almost distributed as a zero-mean
Laplace distribution (see Fig. 13):

pz(z) = 1

2m
e− |z|

m , (B7)

where m = 〈|z|〉 is the mean deviation. For our purposes, the
above distribution can be approximated by a Gaussian one,
having the variance of the real process z, that is provided by
the sum of the variances of the two (independent) processes z1

and z2, namely,

σ 2
z = σ 2

z1
+ σ 2

z2
= 1

2
− e2

4
. (B8)

FIG. 14. Relative error between the Gaussian distribution and the
exact one, according to the norm defined in Eq. (B10).

Figure 13 shows that even this latter approximation is quite
reasonable. As

√
2Dθ = aσz

√
2Dx/J , we conclude that the

correct value of the parameter α appearing in the tensor D of
Eq. (11) follows the remarkable relationship

α = a2σ 2
z

J
= 5

2

1 − e2

2

(2 − e2)
= 5

4
. (B9)

Surprisingly, the above procedure justifies that tensor D is
a constant diagonal matrix (with the last entry one-fourth
exceeding the other two).

We have also verified that a Gaussian noise correspond-
ing to α = 1 (i.e., σ 2

z = J/a2) provides a better fit than the
Gaussian one with the same variance as the actual one. This
can be shown by computing the L1 norm of the difference
between the normal distributions Ni and the exact one p(z),
defined as

δi = ||p(z) − Ni||1
||p(z)||1 =

∫
dz[p(z) − Ni]∫

dzp(z)
, (B10)

where N1 = N (0, 1/2 − e2/4) and N2 = N (0, J/a2).
The computation of δi is reported in Fig. 14. We see

that for moderate values of eccentricity (e < 0.8) the relative
error is quite small (δi < 0.2), and the adoption of a Gaus-
sian distribution which ensures α = 1 provides lower errors
than a Gaussian distribution having the same variance of the
exact one.

All in all, for thermal reasons, α has a lower bound roughly
equal to 5/4, for any eccentricity. Yet active particles may
undergo biochemical processes that increase the rotational
noise and more often lead to α
1.

[1] A. Morozov, From chaos to order in active fluids, Science 355,
1262 (2017).

[2] C. Bechinger, R. Di Leonardo, H. Lowen, C. J. O. Reichhardt,
G. Volpe, and G. Volpe, Active particles in complex
and crowded environments, Rev. Mod. Phys. 88, 045006
(2016).

[3] S. Heidenreich, J. Dunkel, S. H. L. Klapp, and M. Bär, Hydro-
dynamic length-scale selection in microswimmer suspensions,
Phys. Rev. E 94, 020601(R) (2016).

[4] A. M. Menzel, A. Saha, C. Hoell, and H. Löwen, Dynamical
density functional theory for microswimmers, J. Chem. Phys.
144, 024115 (2016).

[5] H. Reinken, S. H. L. Klapp, M. Bär, and S. Heidenreich,
Derivation of a hydrodynamic theory for mesoscale dynamics
in microswimmer suspensions, Phys. Rev. E 97, 022613 (2018).

[6] C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, and
J. O. Kessler, Self-Concentration and Large-Scale Coherence in
Bacterial Dynamics, Phys. Rev. Lett. 93, 098103 (2004).

[7] I. Riedel, K. Kruse, and J. Howard, A self-organized vortex
array of hydrodynamically entrained sperm cells, Science 309,
300 (2005).

[8] N. S. Rossen, J. M. Tarp, J. Mathiesen, M. H. Jensen, and L. B.
Oddershede, Long-range ordered vorticity patterns in living
tissue induced by cell division, Nat. Commun. 5, 5720 (2014).

054607-11

https://doi.org/10.1126/science.aam8998
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1103/PhysRevE.94.020601
https://doi.org/10.1063/1.4939630
https://doi.org/10.1103/PhysRevE.97.022613
https://doi.org/10.1103/PhysRevLett.93.098103
https://doi.org/10.1126/science.1110329
https://doi.org/10.1038/ncomms6720


FEDERICA MONTANA et al. PHYSICAL REVIEW E 107, 054607 (2023)

[9] Y. Sumino, K. H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa,
H. Chaté, and K. Oiwa, Large-scale vortex lattice emerging
from collectively moving microtubules, Nature (London) 483,
448 (2012).

[10] A. Doostmohammadi, J. Ignés-Mullol, J. M. Yeomans, and F.
Sagués, Active nematics, Nat. Commun. 9, 3246 (2018).

[11] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool,
J. Prost, M. Rao, and R. A. Simha, Hydrodynamics of soft active
matter, Rev. Mod. Phys. 85, 1143 (2013).

[12] H. Löwen, Inertial effects of self-propelled particles: From ac-
tive Brownian to active Langevin motion, J. Chem. Phys. 152,
040901 (2020).

[13] J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R.
Vafabakhsh, and R. Golestanian, Self-Motile Colloidal Parti-
cles: From Directed Propulsion to Random Walk, Phys. Rev.
Lett. 99, 048102 (2007).

[14] B. Hagen, S. van Teeffelen, and H. Löwen, Brownian motion of
a self-propelled particle, J. Phys.: Condens. Matter 23, 194119
(2011).

[15] F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R.
Eichhorn, G. Volpe, H. Löwen, and C. Bechinger, Circular Mo-
tion of Asymmetric Self-Propelling Particles, Phys. Rev. Lett.
110, 198302 (2013).

[16] C. Kurzthaler, C. Devailly, J. Arlt, T. Franosch, W. C. K. Poon,
V. A. Martinez, and A. T. Brown, Probing the Spatiotempo-
ral Dynamics of Catalytic Janus Particles with Single-Particle
Tracking and Differential Dynamic Microscopy, Phys. Rev.
Lett. 121, 078001 (2018).

[17] C. Scholz, M. Engel, and T. Pöschel, Rotating robots move
collectively and self-organize, Nat. Commun. 9, 931 (2018).

[18] L. Caprini, C. Maggi, and U. Marini Bettolo Marconi, Col-
lective effects in confined active Brownian particles, J. Chem.
Phys. 154, 244901 (2021).

[19] G. E. Morfill and A. V. Ivlev, Complex plasmas: An interdisci-
plinary research field, Rev. Mod. Phys. 81, 1353 (2009).

[20] V. Narayan, S. Ramaswamy, and N. Menon, Long-lived giant
number fluctuations in a swarming granular nematic, Science
317, 105 (2007).

[21] C. A. Weber, T. Hanke, J. Deseigne, S. Léonard, O. Dauchot,
E. Frey, and H. Chaté, Long-Range Ordering of Vibrated Polar
Disks, Phys. Rev. Lett. 110, 208001 (2013).

[22] A. Deblais, T. Barois, T. Guerin, P. H. Delville, R. Vaudaine,
J. S. Lintuvuori, J. F. Boudet, J. C. Baret, and H. Kellay, Bound-
aries Control Collective Dynamics of Inertial Self-Propelled
Robots, Phys. Rev. Lett. 120, 188002 (2018).

[23] A. Kudrolli, G. Lumay, D. Volfson, and L. S. Tsimring, Swarm-
ing and Swirling in Self-Propelled Polar Granular Rods, Phys.
Rev. Lett. 100, 058001 (2008).

[24] J. Deseigne, O. Dauchot, and H. Chaté, Collective Motion of
Vibrated Polar Disks, Phys. Rev. Lett. 105, 098001 (2010).

[25] G. A. Patterson, P. I. Fierens, F. Sangiuliano Jimka, P. G.
König, A. Garcimartín, I. Zuriguel, L. A. Pugnaloni, and D. R.
Parisi, Clogging Transition of Vibration-Driven Vehicles Pass-
ing through Constrictions, Phys. Rev. Lett. 119, 248301 (2017).

[26] G. Junot, G. Briand, R. Ledesma-Alonso, and O. Dauchot,
Active versus Passive Hard Disks against a Membrane: Me-
chanical Pressure and Instability, Phys. Rev. Lett. 119, 028002
(2017).

[27] G. Notomista, S. Mayya, A. Mazumdar, S. Hutchinson, and
M. Egerstedt, A study of a class of vibration-driven robots:

Modeling, analysis, control and design of the brushbot, in 2019
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE, 2019), pp. 5101–5106.

[28] S. Mayya, G. Notomista, D. Shell, S. Hutchinson, and M.
Egerstedt, Achieving non-uniform densities in vibration driven
robot swarms using phase separation theory, arXiv:1902.10662.

[29] O. Dauchot and V. Démery, Dynamics of a Self-Propelled
Particle in a Harmonic Trap, Phys. Rev. Lett. 122, 068002
(2019).

[30] M. Mijalkov and G. Volpe, Sorting of chiral microswimmers,
Soft Matter 9, 6376 (2013).

[31] M. Leyman, F. Ogemark, J. Wehr, and G. Volpe, Tuning pho-
totactic robots with sensorial delays, Phys. Rev. E 98, 052606
(2018).

[32] D. Klotsa, As above, so below, and also in between: Mesoscale
active matter in fluids, Soft Matter 15, 8946 (2019).

[33] H. Mukundarajan, T. C. Bardon, D. H. Kim, and M. Prakash,
Surface tension dominates insect flight on fluid interfaces,
J. Exp. Biol. 219, 752 (2016).

[34] J. Rabault, R. A. Fauli, and A. Carlson, Curving to Fly:
Synthetic Adaptation Unveils Optimal Flight Performance of
Whirling Fruits, Phys. Rev. Lett. 122, 024501 (2019).

[35] H.-W. Huang, F. E. Uslu, P. Katsamba, E. Lauga, M. S. Sakar,
and B. J. Nelson, Adaptive locomotion of artificial microswim-
mers, Sci. Adv. 5, eaau1532 (2019).

[36] P. Degen, Self-propelling capsules as artificial microswimmers,
Curr. Opin. Colloid Interface Sci. 19, 611 (2014).

[37] A. S. Rzhevskiy, T. R. R. Singh, R. F. Donnelly, and Y. G.
Anissimov, Microneedles as the technique of drug delivery
enhancement in diverse organs and tissues, J. Control. Release
270, 184 (2018).

[38] Y. Couder and E. Fort, Single-Particle Diffraction and Inter-
ference at a Macroscopic Scale, Phys. Rev. Lett. 97, 154101
(2006).

[39] R. N. Valani, A. C. Slim, and T. Simula, Superwalking Droplets,
Phys. Rev. Lett. 123, 024503 (2019).

[40] D. Helbing, Traffic and related self-driven many-particle sys-
tems, Rev. Mod. Phys. 73, 1067 (2001).

[41] J. Zhang, W. Mehner, E. Andresen, S. Holl, M. Boltes, A.
Schadschneider, and A. Seyfried, Comparative analysis of
pedestrian, bicycle and car traffic moving in circuits, Procedia:
Social Behav. Sci. 104, 1130 (2013).

[42] D. Chowdhury, L. Santen, and A. Schadschneider, Statistical
physics of vehicular traffic and some related systems, Phys.
Rep. 329, 199 (2000).

[43] A. Nakayama, M. Kikuchi, A. Shibata, Y. Sugiyama, S. ichi
Tadaki, and S. Yukawa, Quantitative explanation of circuit ex-
periments and real traffic using the optimal velocity model,
New J. Phys. 18, 043040 (2016).

[44] A. P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri, M.
Kardar, and J. Tailleur, Pressure is not a state function for
generic active fluids, Nat. Phys. 11, 673 (2015).

[45] C. Scholz, S. Jahanshahi, A. Ldov, and H. Löwen, Inertial delay
of self-propelled particles, Nat. Commun. 9, 5156 (2018).

[46] H. H. Wensink and H. Löwen, Aggregation of self-propelled
colloidal rods near confining walls, Phys. Rev. E 78, 031409
(2008).

[47] U. Marini Bettolo Marconi, A. Sarracino, C. Maggi, and A.
Puglisi, Self-propulsion against a moving membrane: Enhanced
accumulation and drag force, Phys. Rev. E 96, 032601 (2017).

054607-12

https://doi.org/10.1038/nature10874
https://doi.org/10.1038/s41467-018-05666-8
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1063/1.5134455
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1088/0953-8984/23/19/194119
https://doi.org/10.1103/PhysRevLett.110.198302
https://doi.org/10.1103/PhysRevLett.121.078001
https://doi.org/10.1038/s41467-018-03154-7
https://doi.org/10.1063/5.0051315
https://doi.org/10.1103/RevModPhys.81.1353
https://doi.org/10.1126/science.1140414
https://doi.org/10.1103/PhysRevLett.110.208001
https://doi.org/10.1103/PhysRevLett.120.188002
https://doi.org/10.1103/PhysRevLett.100.058001
https://doi.org/10.1103/PhysRevLett.105.098001
https://doi.org/10.1103/PhysRevLett.119.248301
https://doi.org/10.1103/PhysRevLett.119.028002
http://arxiv.org/abs/arXiv:1902.10662
https://doi.org/10.1103/PhysRevLett.122.068002
https://doi.org/10.1039/c3sm27923e
https://doi.org/10.1103/PhysRevE.98.052606
https://doi.org/10.1039/C9SM01019J
https://doi.org/10.1242/jeb.127829
https://doi.org/10.1103/PhysRevLett.122.024501
https://doi.org/10.1126/sciadv.aau1532
https://doi.org/10.1016/j.cocis.2014.09.006
https://doi.org/10.1016/j.jconrel.2017.11.048
https://doi.org/10.1103/PhysRevLett.97.154101
https://doi.org/10.1103/PhysRevLett.123.024503
https://doi.org/10.1103/RevModPhys.73.1067
https://doi.org/10.1016/j.sbspro.2013.11.209
https://doi.org/10.1016/S0370-1573(99)00117-9
https://doi.org/10.1088/1367-2630/18/4/043040
https://doi.org/10.1038/nphys3377
https://doi.org/10.1038/s41467-018-07596-x
https://doi.org/10.1103/PhysRevE.78.031409
https://doi.org/10.1103/PhysRevE.96.032601


INERTIAL AND GEOMETRICAL EFFECTS OF … PHYSICAL REVIEW E 107, 054607 (2023)

[48] A. Baskaran and M. C. Marchetti, Enhanced Diffusion and
Ordering of Self-Propelled Rods, Phys. Rev. Lett. 101, 268101
(2008).

[49] M. Enculescu and H. Stark, Active Colloidal Suspensions Ex-
hibit Polar Order under Gravity, Phys. Rev. Lett. 107, 058301
(2011).

[50] S. C. Takatori and J. F. Brady, Inertial effects on the stress
generation of active fluids, Phys. Rev. Fluids 2, 094305 (2017).

[51] S. Shankar and M. C. Marchetti, Hidden entropy production
and work fluctuations in an ideal active gas, Phys. Rev. E 98,
020604(R) (2018).

[52] A. Manacorda and A. Puglisi, Lattice Model to Derive the
Fluctuating Hydrodynamics of Active Particles with Inertia,
Phys. Rev. Lett. 119, 208003 (2017).

[53] H. D. Vuijk, J. U. Sommer, H. Merlitz, J. M. Brader, and A.
Sharma, Lorentz forces induce inhomogeneity and flux in active
systems, Phys. Rev. Res. 2, 013320 (2020).

[54] I. Abdoli, H. D. Vuijk, J. U. Sommer, J. M. Brader, and A.
Sharma, Nondiffusive fluxes in a Brownian system with Lorentz
force, Phys. Rev. E 101, 012120 (2020).

[55] Z. Mokhtari, T. Aspelmeier, and A. Zippelius, Collective rota-
tions of active particles interacting with obstacles, Europhys.
Lett. 120, 14001 (2017).

[56] J. Um, T. Song, and J.-H. Jeon, Langevin dynamics driven by a
telegraphic active noise, Front. Phys. 7, 143 (2019).

[57] S. Das, G. Gompper, and R. G. Winkler, Local stress and pres-
sure in an inhomogeneous system of spherical active Brownian
particles, Sci. Rep. 9, 6608 (2019).

[58] A. Bodrova, A. Chechkin, A. Cherstvy, H. Safdari, M. Sokolov,
and R. Metzler, Underdamped scaled Brownian motion:
(Non-)existence of the overdamped limit in anomalous diffu-
sion, Sci. Rep. 6, 30520 (2016).

[59] G. J. Hancock and M. H. A. Newman, The self-propulsion of
microscopic organisms through liquids, Proc. R. Soc. A: Math.
Phys. Eng. Sci. 217, 96 (1953).

[60] J. Happel and H. Brenner, Low Reynolds Number Hydro-
dynamics: With Special Applications to Particulate Media,
Prentice-Hall International Series in the Physical and Chemical
Engineering Sciences (Prentice-Hall, New York, 1965).

[61] A. T. Chwang and T. Y.-T. Wu, Hydromechanics of low-
Reynolds-number flow. Part 2. Singularity method for Stokes
flows, J. Fluid Mech. 67, 787 (1975).

[62] C. Pozrikidis, Introduction to Theoretical and Computa-
tional Fluid Dynamics (Oxford University Press, New York,
2011).

[63] L. Caprini, A. Puglisi, and A. Sarracino, Fluctuation–
dissipation relations in active matter systems, Symmetry 13, 81
(2021).

[64] A. Sarracino and A. Vulpiani, On the fluctuation-dissipation re-
lation in non-equilibrium and non-Hamiltonian systems, Chaos
29, 083132 (2019).

[65] J.-P. Duroudier, Mechanics and thermics of gaseous fluidized
beds, Divided Solids Mechanics, Chap. 6 (Elsevier, 2016),
pp. 223–259.

[66] M. Mandø and L. Rosendahl, On the motion of non-spherical
particles at high Reynolds number, Powder Technol. 202, 1
(2010).

[67] S. R. De Groot and P. Mazur, Non-equilibrium Thermodynam-
ics, Dover Books on Physics (Dover Publications, Mineola, NY,
2003).

[68] G. Gallavotti, Nonequilibrium and Irreversibility, Theoretical
and Mathematical Physics (Springer, Cham, 2014).

[69] M. Friedlin and A. Wentzell, Random Perturbations of Dynam-
ical Systems, Grundlehren der mathematischen Wissenschaften
(Springer, Berlin, 2012).

[70] A. Suma, G. Gonnella, D. Marenduzzo, and E. Orlandini,
Motility-induced phase separation in an active dumbbell fluid,
Europhys. Lett. 108, 56004 (2014).

[71] L. F. Cugliandolo, P. Digregorio, G. Gonnella, and A.
Suma, Phase Coexistence in Two-Dimensional Passive and
Active Dumbbell Systems, Phys. Rev. Lett. 119, 268002
(2017).

[72] P. Cremer and H. Löwen, Scaling of cluster growth for coagu-
lating active particles, Phys. Rev. E 89, 022307 (2014).

[73] P. Singh and A. Kundu, Crossover behaviours exhibited by
fluctuations and correlations in a chain of active particles,
J. Phys. A: Math. Theor. 54, 305001 (2021).

[74] L. F. Cugliandolo, G. Gonnella, and A. Suma, Rotational and
translational diffusion in an interacting active dumbbell system,
Phys. Rev. E 91, 062124 (2015).

[75] C. Camporeale, Mesoscopic theory of active matter, Università
di Torino (2019).

[76] G. Grimmett and D. Stirzaker, Probability and Random
Processes (Oxford University Press, Oxford, 2020).

054607-13

https://doi.org/10.1103/PhysRevLett.101.268101
https://doi.org/10.1103/PhysRevLett.107.058301
https://doi.org/10.1103/PhysRevFluids.2.094305
https://doi.org/10.1103/PhysRevE.98.020604
https://doi.org/10.1103/PhysRevLett.119.208003
https://doi.org/10.1103/PhysRevResearch.2.013320
https://doi.org/10.1103/PhysRevE.101.012120
https://doi.org/10.1209/0295-5075/120/14001
https://doi.org/10.3389/fphy.2019.00143
https://doi.org/10.1038/s41598-019-43077-x
https://doi.org/10.1038/srep30520
https://doi.org/10.1098/rspa.1953.0048
https://doi.org/10.1017/S0022112075000614
https://doi.org/10.3390/sym13010081
https://doi.org/10.1063/1.5110262
https://doi.org/10.1016/j.powtec.2010.05.001
https://doi.org/10.1209/0295-5075/108/56004
https://doi.org/10.1103/PhysRevLett.119.268002
https://doi.org/10.1103/PhysRevE.89.022307
https://doi.org/10.1088/1751-8121/ac0a9f
https://doi.org/10.1103/PhysRevE.91.062124

