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Abstract

Crack growth simulations by way of the traditional Finite Element Method claim progressive remeshing to fit the geometry of
the fracture, severely increasing the computational effort. Methods such as the eXtended Finite Element Method (XFEM) allow
to overcome this limitation by means of nodal shape functions multiplied by Heaviside step function to enrich finite element
nodes. Through the medium of a discontinuous field, the entire geometry of the discontinuity can be modelled regardless of
the mesh, avoiding remeshing. In this paper two shell-type XFEM elements (a three-node triangular element and a four-node
quadrangular element) to evaluate crack propagation in brittle materials are presented. These elements have been implemented
into the widespread opensource framework OpenSees to evaluate crack propagation into a plane shell subjected to monotonically
increasing loads. Moreover, in the perspective of fracture propagation simulations, the problem of managing multiple cracks without
remeshing or operating subdivisions on the integration domain has been investigated and a four-node quadrangular finite element
for the computational analysis of double crossed discontinuities by the means of equivalent polynomials is presented in this paper.
Equivalent polynomials allow to overcome inaccuracies on the results when performing standard numerical integration (e.g. Gauss-
Legendre quadrature rule) over the entire domain of XFEM elements, without the need of defining integration subdomains. The
presented work and the computational strategy behind it may be extremely useful not only in the field of fracture mechanics, but
also to solve complex geometry problems or material discontinuities.
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1. Introduction

The eXtended Finite Element Method (XFEM) is a versatile approach for the analysis of problems characterised by
discontinuities and singularities such as localised deformations, material discontinuities or cracks. It was first proposed
by Belytschko et al. (1999), and later improved by Moés et al. (1999).

In XFEM formulation the discontinuous displacement field is modelled along the crack surface through additional
nodal degrees of freedom and enrichment shape functions.

XFEM allows to define the finite elements mesh independently to the discontinuity position and does not require
any mesh refinement close to the discontinuities: that is a major advantage with respect to the standard Finite Element
Method. Moreover, when using XFEM in crack propagation problems, remeshing during the analysis to track the
evolution of the crack is not needed, dramatically decreasing the computational effort.

Since enrichment shape functions are discontinuous and non-differentiable, numerical problems arise if a quadra-
ture rule (e.g. Gauss-Legendre) is used to evaluate the stiffness matrix of elements containing discontinuities. This
problem can be over-come by partitioning these elements into sub-elements, so that the integrands are continuous and
differentiable into each subdomain. Alternatively, a solution by means of equivalent polynomials that does not require
partitioning of the integration domain has been proposed by Ventura (2006) and by Ventura et al. (2015).

In this paper, the implementation into OpenSees of a three-node triangular and a four-node quadrangular shell
XFEM elements is presented. These elements are an enhancement of the finite elements with drilling degrees of
freedom recently presented by the authors (Fichera et al. (2019)). The proposed elements are able to model crack
propagation in brittle materials and have been used to perform static incremental analysis on plane shells.

2. XFEM formulation overview

The Extended Finite Element Method (XFEM) is a numerical method, based on the Finite Element Method (FEM),
that is especially designed for handling discontinuities (Belytschko et al. (1999), Mogs et al. (1999)).
In standard FEM, the displacement field of a single element of a domain 2 can be expressed as:

ux) = > Nixu; = N (xpu (1)
i=1

where n is the number of nodes of the element, N;(x) are the element shape functions and u; are the nodal displacement
components.

Eq. (1) cannot describe the behaviour of the displacement field when discontinuities or singularities exist within
the element. To overcome this limit, one can enrich the interpolation on Eq. (1) by means of an enrichment function
Y(x) and a certain number of additional degrees of freedom a;:

ux) = > N u; + Y Ni(x)¥(xa; @)
i=1 i=1

The nature of the enrichment function ¥(x) depends on the nature of the discontinuity that has to be described. In the
case of a strong discontinuity in the displacement field (discontinuities in the solution variable of a problem, e.g. a
crack), the most appropriate enrichment function is the Heaviside step function:

Y(x) = H(p(x)) )
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1 ¢x)<0

H(p(x)) = {‘1 (%) > 0 )

where ¢(x) is the signed distance of the discontinuity from the evaluation point.

XFEM formulation allows to adequately represent discontinuities or singularities in a suitable way and with strong
performance in case of a pronounced non-polynomial behaviour of the solution.

It has to be noted that if the element is crossed by a discontinuity, the standard Gauss quadrature rule cannot be
used, due to the non-polynomial nature of the enrichment function. This problem can be overcome by splitting the
integration domain Q in two parts Q™ and Q* along the discontinuity, so that the enrichment function is continuous
and differentiable into each integration subdomain:

f‘P(x)@n(x)dQ:f ‘P(x)@n(x)dQ+f Y(x)P,(x)dQ (5)
Q o Qr

(9,(x) is a generic n-degree polynomial function, e.g. a term of the element stiffness matrix). Partitioning into sub-
domains introduces a sort of ‘mesh’ condition in the elegance of the XFEM formulation. A technique to eliminate the
requirement of sub-cells generation without introducing any approximation in the quadrature by means of equivalent
polynomials has been proposed by Ventura (2006) and Ventura et al. (2015). It has been demonstrated that an equiv-
alent polynomial function exists such that its integral gives the exact values of the discontinuous/non-differentiable
function integrated on sub-cells. The polynomial is defined in the entire element domain, so that it can be easily
integrated by Gauss quadrature, and no quadrature sub-domains have to be defined. Eq. (5) thus becomes:

f Y(x)%,(x)dQ = f Y(x)P,(x)dQ + f Y(x)P,(x)dQ = f P(x)P,(x) dQ 6)
Q Q- o Q

where ¥(x) is the equivalent polynomial function.
In the case of strong discontinuities, Heaviside function is usually used as enrichment function. Eq. (6) thus be-
comes:

f H(X)g’n(x)dﬂ+f H(x)g"’”(x)dﬁzfﬁ(x)@n(x)dﬁ @)
Q- Qr Q

where H(x) is the equivalent polynomial function for this particular case.
Equivalent polynomials avoid the quadrature domain splitting at the cost of doubling the polynomial degree of the
integrand function.

3. Handling multiple discontinuities using equivalent polynomials

Analysing a body containing multiple fractures is not an uncommon problem in fracture mechanics. Such problems
can be still addressed by means of XFEM formulation, but quadrature domain splitting becomes more burdensome.
Moreover, the equivalent polynomials law defined in Eq. (7) is able to take into account a single discontinuity for
each integration domain Q. To overcome this problem, a new equivalent polynomials formulation to manage double
discontinuities has been recently proposed by the authors.

Let us examine a body Q and let us assume it is split in four parts by the discontinuity lines g and r, as shown in
Fig. 1. Let us define Q4 the partition obtained when the normal of both discontinuities have a positive value of their b
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component, therefore both normal vectors point inwards Q4. Starting from Q4, the remaining partitions (Qg, Q¢ and
Qp) are defined counterclockwise by convention.

Fig. 1: 2D domain Q crossed by two discontinuity lines: g and r.

Let us assume a n-degree polynomial &,(x) to be integrated over the subdomains Q4, Qp, Q¢ or Qp obtained
partitioning a parallelogram with two lines ¢ and r, so that:

I = f o) A, ®)
Q;

where i = {A, B, C, D}

To solve the integral in Eq. (8) for each value of i it is required to define each domain of integration €);. This is
not always an easy task because integration domains may result in rather not trivial polygonal shapes. Said problem
has been solved by the authors finding an equivalent polynomial H; that allows, for each partition €;, to perform
the integration over the entire domain Q of the element with a traditional quadrature rule without partitioning € into
subdomains. So, Eq. (8) becomes:

Ii:f gn(x)dgi:fﬁi(x)gn(x)dg )
Q Q

The equivalent polynomial H;(x) depends on the equations of the two discontinuity lines g and r and has the same
degree of &, (x).

4. XFEM shell-type elements implementation into OpenSees

In this paper, two XFEM shell-type elements to solve fracture mechanics problems using OpenSees have been
presented. The versatility of OpenSees framework made the implementation process fairly straightforward. First of
all, anew ‘node’ Class (alternative to the original one in the code) had to be defined to dynamically change the number
of degrees of freedom of each node during the analysis. This is a crucial part in order to comply the solution for the
displacement field in Eq. (2).

The introduction of a new Class of nodes made possible the subsequent implementation of two new XFEM plane
shell-type elements: a three-node triangular element and a four-node quadrangular element. In this first implemen-
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tation, the in-plane behaviour of the proposed elements is indefinite linear elastic in the case of compression and
elastic-fragile in the case of tensile stress. The out-of-plane behaviour is always linear elastic.

A pre-existing fracture can be assigned to the elements. It can be defined by means of a crossing point and the
normal to the discontinuity itself. The elements can be also defined as initially undamaged; in this case they may
crack during the incremental loading process.

When the principal tensile stress overcomes the material tensile resistance, a fracture will arise in the element. The
fracture position is defined by means of the coordinates of the element point where this limit is exceeded.

The proposed elements can also be used to study the formation and the consequent propagation of fractures in
brittle materials. Elements are modelled so that the displacement field is described by the interpolation law in Eq. (1)
if they are undamaged and by the one in Eq. (2) if cracking arises. Thus, the number of degrees of freedom of the
nodes will increase as the analysis progresses, since the enriched degrees of freedom a; will be added to the standard
degrees of freedom u,.

At the current state of the implementation, each element of the mesh can handle just one discontinuity. Elements
able to handle multiple discontinuity has been analysed and will be introduced in the upcoming developments. Also,
a non-linear compressive behaviour for the elements will be included.

5. Numerical applications

The proposed XFEM elements have been used for the analysis of plane shells containing discontinuities.

5.1. Damaged cantilever beam

In the first example the cantilever beam shown in Fig. (2) is analysed. The beam contains a pre-existing fracture
and it is subject to two constant forces applied to its free end: axial force F, and cross-sectional force F,y. Geometrical

Fy

Fx

Fig. 2: Damaged cantilever beam subject to constant forces F; and Fy. Fracture in the structural element is highlighted in red.

and mechanical properties of the beam are shown in Tab. (1, 2).

Table 1: Geometrical properties of the cantilever beam.

Geometrical properties

L =50 [cm] b =2.5[cm] h =20 [cm]

The beam has been modelled both using standard FEM shell-type elements and the proposed XFEM shell-type
quadrangular elements. The discretisation mesh for the structural element is shown in Fig. (3). In the case of standard
FEM (Fig. (3b)), the mesh had to be refined near the fracture to follow the geometry of the discontinuity, so triangular
finite elements and distorted quadrangular finite elements had to be used.
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Table 2: Mechanical properties of the cantilever beam.

Mechanical properties

F, =20 [kN]

Fy =20 [kN]

E = 2796 [kN/cm?] v=02

(a) XFEM discretisation (b) Standard FEM discretisation.

Fig. 3: Mesh discretisation for the cantilever beam.

The deformed configurations obtained from the analysis are shown in Fig. (4). It is clear that both the standard

FEM model and the XFEM one yield the exact same results in terms of displacement. In particular, the deflection of

point A is the same in both models, as shown in Tab. (3).

a) S b) -_
| un

(a) XFEM discretisation (b) Standard FEM discretisation.

Fig. 4: Results of the analysis in terms of deformed configurations.

Table 3: Deflection of point A.

Standard FEM Model Proposed XFEM Model

uy = 0.00037 [cm]

uy; = 0.00037 [cm]
uy = 0.00177 [cm]

uy = 0.00177 [cm]

These results validate the proposed elements.

5.2. Undamaged cantilever beam — progressive cracking

In the second example an undamaged cantilever beam has been analysed. The behaviour of the beam is assumed to
be linear elastic in case of tensile stress and elastic-fragile in the case of compression. The material tensile resistance
is defined as f; = 1.5 [kN/cm?].

In this case, an analysis with a monotonically increasing cross-sectional load F, has been performed. The results
of this analysis, until the collapse is reached, are shown in Fig. (5). It has to be noted that the XFEM model does not
have the aim of following the exact crack propagation path, but to determine the displacement field of a structural
element that is subject to progressive cracking. Thus, the fracture scheme in Fig. (5) is just indicative.
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Fig. 5: Cantilever beam subject to a monotonically increasing cross-sectional load. Progressive cracking arises as the load increases with the
time-step until failure is reached.

5.3. Undamaged hinged beam — progressive cracking
Finally, the undamaged hinged beam shown in Fig. (6) has been studied. As in the previous example, the beam is

1" v

Fig. 6: Undamaged hinged beam subject to a monotonically increasing cross-sectional load Fy.

subject to a monotonically increasing force applied in the centreline. The results of the analysis are shown in Fig. (7),
with the evolution of the XFEM elements under progressive cracking.

ti) ts)

tz) t4)

|| L]
I i

Fig. 7: Progressive cracking arises as the load increases with the time-step until failure is reached.
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6. Conclusions

In this paper a method to integrate over an entire integration domain containing two discontinuities without splitting
it into multiple subdomains has been presented. This method is an enhancement of the solution by means of equivalent
polynomials proposed by Ventura (2006) and Ventura et al. (2015) and it can be a powerful tool in the context of
XFEM, when addressing multiple fracture problems.

Also two shell-type XFEM elements have been presented: a three-node triangular element and a four-node quad-
rangular element. These elements have been implemented into OpenSees in order to evaluate crack propagation in
brittle materials. The proposed XFEM elements are an enhancement of the finite elements with drilling degrees of
freedom recently presented by the authors Fichera et al. (2019). The proposed XFEM elements have been used to
evaluate crack propagation into a plane shell subject to monotonically increasing loads. The results presented in the
numerical applications validate the proposed formulation and enable the use of OpenSees framework to address frac-
ture mechanics problems.

Future developments for the proposed elements will include the handling of multiple discontinuities by a single
XFEM element, as well as a non-linear compressive behaviour.
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