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Abstract

This Thesis work analyzes different protocols in the context of photonic quantum
sensing. Quantum sensing in the optical and photonic domain is a developed field
of quantum technologies that aims at improving the measurements beyond the
performance of conventional techniques by exploiting quantum states of light. Our
work finds its theoretical basis in Quantum Hypothesis Testing (QHT), a field that
studies the discrimination among a finite set of hypotheses codified on a quantum
state, by performing a measurement on it. While a rich field from a theoretical point
of view, QHT counts few experimental realizations, with some notable exceptions,
such as the ones related to Quantum Illumination. With the aim to partially fill this
gap we present, as original results, a more applicative approach and experimental
proof-of-principles to some QHT protocols, that could open interesting perspectives
for real applications. The first result is the experimental realization of the Quantum
reading (QR) protocol. The original QR proposal showed how quantum-correlated
optical states of light can enhance the readout of classical digital data, stored in
optical memories (an example are DVDs), when compared to classical sensing
benchmarks. We have also demonstrated for the first time a quantum advantage
in a QHT protocol applied to the monitoring of production processes, namely the
identification of a deviation of the distribution of the end-products from a reference,
a protocol that we labeled as Quantum Conformance Test (QCT). We finally discuss
the more complex problem of pattern recognition. Pattern recognition is the task
aimed at sorting images in predetermined classes, an example being the recognition
of handwritten digits. The classification is done by classical processing, ranging
from simple algorithms to sophisticated machine learning techniques. Regardless of
the classification method, the pattern recognition performance is heavily influenced
by the reliability of the images to be classified. In our analysis we demonstrate
how, using the quantum sensing techniques discussed in the thesis, one can achieve
a notable advantage in the recognition task, sometimes with a great amplification
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of the pure sensing advantage. We validate our results experimentally showing the
scalability of the quantum enhancement with the complexity of the application, not
only in theory, but in practical conditions. We show how these results can be achieved
using photonic correlated states, that can be routinely produced in laboratories and
photon counting (PC) measurements, performed by commercial detectors. All of the
protocols discussed show good resistance to experimental imperfections, notably
to optical losses, a limiting factor for most of the quantum schemes. This, in
conjunction with the relative simplicity of the experimental approach adopted in
the realizations, strongly suggests that the protocols discussed are very promising
avenues for near-term technological applications.
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Chapter 1

Introduction

Recent years have seen substantial interest in research aimed at using quantum
systems to overcome classical limitations. This interest has been mainly motivated
by the great potential for revolutionary technological applications. It is, in fact,
widely accepted that we are in the middle of a second quantum revolution. The first
quantum revolution dates back to the middle of the last century. The understanding
and deep analysis of the early stages of quantum theory led to ground-breaking
technological innovations, such as the transistor, atomic clocks, GPS and lasers. The
premises of the second quantum revolution are slightly different. Rather than using
quantum theory to better understand the rules governing technological devices, the
aim in this new research topic is to control and engineer quantum systems, down
to the single particles, and pure quantum features, in order to develop innovative
solutions to technological challenges. This newfound interest has led to a race to
investments in order to secure the leadership in this promising field. In Europe
this resulted in the "Quantum Flagship" with investments ranging in the order of
several billions of euros. In its manifesto the flagship identifies four pillars for
quantum technologies, namely: quantum computation, communication, simulations
and sensing. The biggest private high-tech companies are now also investing a
significant amount of resources in quantum technologies, and small quantum themed
start-ups are flourishing all over the world.

Quantum computation is arguably one of the most suggestive and the most
known field to the general audience. The first seminal theoretical ideas on quantum
computation date back to the early 70s. The power of quantum computation resides
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in the fact that classical bits are replaced by quantum bits (qubits), that unlike their
classical counterpart can access superposition states and be entangled with each
other, opening up a great amount of computational power. These unique properties
allow quantum computers to, in theory, solve problems in minutes that would require,
even for classical super computers an excessive amount of time, in some instances
in the range of thousands of years or more. In the last decades moderately sized
quantum computer have been realized on different physical platforms, the most
developed of which are arguably superconducting qubits, used among others by IBM
and Google. A big motivation in the push to achieve reliable quantum computing
is that Moore’s law [4] is approaching its end as the components get smaller and
the scales that are being approached are more and more affected by quantum effect
inducing noise in classical designs.

Quantum simulations can be seen as the analog counterpart of quantum com-
putation. In practice, quantum simulators use quantum systems whose parameters
are experimentally tunable and controllable to simulate the behaviour of another
quantum system of interest on which one does not have enough control. They are
convenient in many scenarios since they are generally easier to build and require
much less control over the single components of the quantum systems when com-
pared with quantum computers. The realization of good quantum simulations can
be of huge importance for the development, both theoretical and applicative, of
computational chemistry and material sciences, with consequently a big potential for
technological innovations in a variety of fields.

Quantum communication [5–7] is very closely connected to the advances achieved
in quantum computing. Security in communication is a very important requirement
in the modern world both for private and public use. Most classical cryptographic
schemes, in use today, are based on computationally hard problems that act as a
"lock", relying on the fact that solving those problem without additional information,
or a "key", would require classical computers a computational time larger than the
expected duration of the data sensitivity. In fact, the main threat to the existing
encryption algorithms comes from quantum computing. It has been shown by Peter
Shor in 1994 [8] that a specific algorithm running on a quantum computer can easily
break all the present cryptographic algorithms based on the factorization in prime
numbers of large integers, suggesting that also other computational encryptions may
be at risk. A possible solution is performing the encryption on quantum states, in a
way that the security is guaranteed directly by pure quantum theory principles, as
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opposed to computational complexity, meaning that these quantum protocols are
secure from any kind of computational attack, quantum or not, by construction. The
research in this latter field has now reached a high Technology Readiness Level
(TRL) with devices for secure quantum communication already in commerce. The
main challenge in this field is now to find ways to overcome the technical limitation
arising when communication is performed over large distances, with the goal to
create a global communication network. Quantum cryptography [9] is a sub-field of
quantum communication, for which the more general aim is to find the amount of
information that can be reliably transmitted over quantum channels.

Finally, the last pillar of quantum technologies is quantum sensing. Quantum
sensing encompasses a wide variety of research topics and it is probably one of
the most mature fields as well as one of the most promising to deliver near term
technology. It is generally considered Quantum sensing [10, 11] any instance in
which a quantum object, having quantized energy levels, or quantum coherence is
used to measure a physical quantity, with notable examples given by atomic clocks
and Nitrogen-Vacancy (NV) centers. Another instance of Quantum sensing is given
by the use of quantum entanglement and correlations to improve the precision of
measurements beyond classical limits [12]. In particular photonic quantum sens-
ing encompasses all the mentioned tasks using quantum states of light. Quantum
metrology and quantum hypothesis testing are notable sub-fields of Quantum sensing.
Their main goal is to show an advantage over all possible classical strategies. Quan-
tum metrology [13–15] is concerned with the the estimation of continuous physical
parameters encoded in quantum states, for example as a result of the probing of a
sample. In this field a practical quantum advantage has been shown in a variety
of tasks including sub-shot noise microscopy [16, 17], quantum imaging [18–22],
super-resolution [23–25], spectroscopy [26, 27], phase measurements and interfer-
ometry [28–35], and quantum states have also been used to enhance the performance
of one of the most sophisticated instrument for fundamental physics testing, the large
scale interferometer used to detect gravitational waves [36]. Quantum hypothesis
testing (QHT) [37], on the other hand, is focused on the discrimination among a
finite set of hypotheses and will be the main topic of this thesis work. The most basic
formulation of QHT is given by the discrimination of two quantum states [38–40],
pioneered by Carl Helstrom in his seminal works [37]. Most modern protocols
are however formulated in the context of quantum channel discrimination [41, 42],
where some object, containing information on the hypothesis is tested by quantum
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states and modeled as a quantum channel, i.e. a linear map on the input states. A
very well-known protocol in QHT is quantum illumination [43], in which the use
of quantum light is shown to enhance the detection of target in a strongly noisy
background. This protocol has received significant interest over the years because
it may lead to the realization of quantum enhanced radar and lidar. Substantial
progress has been made over the original proposal [44–47]. Another notable pro-
tocol is Quantum Reading [48], which has been shown to dramatically improve
the readout of classical digital memories using entangled bipartite states. While
many other theoretical protocols have been proposed in this field, compared to the
achievement of quantum metrology, experimental realizations are scarce in QHT,
with the remarkable exception of quantum illumination [45, 49, 50]. In this thesis
work, in an attempt to partially address this void, we present some progress in this
sense. An experimental realization of the quantum reading protocol, in Ref. [1], is
exposed in Chapter 3 as an original contribution. We will also present, in chapter 4,
the Quantum conformace test, introduced in Ref. [2], a generalization of quantum
reading, that can find various applications [2, 3], for example to enhance production
process monitoring. Finally, we will present an experimental demonstration of a
quantum enhanced sensing protocol for the task of pattern recognition [51].

The thesis is structured as follows:

• In Chapter 2 we will introduce some important theoretical tools in quantum
hypothesis testing, namely the Helstrom bound, the quantum Chernoff bound
and the Holevo bound. These tools will be used then in the following chapters
to derive some of the main results.

• In Chapter 3 we will mainly discuss the quantum reading (QR) protocol. We
will start by discussing the original formulation of the QR protocol as given in
Ref. [48] also discussing the results. We will than present our experimental
realization following Ref.[1].

• In Chapter 4 the Quantum Conformance Test protocol will be reviewed, fol-
lowing our original proposal in Ref. [2]. We will then discuss its experimental
implementation. We will conclude this chapter by showing how the formalism
introduced by the QCT protocol can be also used to describe the readout of an
imperfect digital memory.
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• In Chapter 5 we will show how the sensing techniques introduced in the pre-
vious chapter can be used to improve the overall performance of a complicated
and practical task, namely pattern recognition.

• In Chapter 6 we will summarize and discuss the results presented in the
previous chapters and give some final remarks.



Chapter 2

Theoretical tools in Quantum
Hypothesis Testing

In the field of quantum information, recovering information encoded in a state is a
central task. The information can be encoded in a continuous parameter as it is the
case in quantum metrology. Another important scenario arises when information is
encoded in a discrete collection of quantum states. The most basic formulation of
this problem, and the one that finds more practical applications, is the binary case,
in which one bit of information is encoded in two possible quantum states. The
problem of discriminating two quantum states is very interesting from a theoretical
standpoint due to the non-trivial geometry of the Hilbert spaces in which the states are
defined. Two general non-orthogonal quantum states cannot be distinguished without
ambiguity even if no noise is present, a purely quantum feature. In the classical
domain a non-trivial counterpart to quantum state discrimination can be found in
the discrimination of probability distributions arising in the setting of stochastic
signals. Within classical information, classical hypothesis testing is a very well
developed field, from which quantum information has drawn plenty of inspiration.
The discrimination of two quantum states with the minimum probability of error is
the most basic instance of what is generally known as quantum hypothesis testing.
Another possible approach, apart from the minimum error one, is unambiguous
quantum state discrimination in which inconclusive results are allowed in exchange
for the certainty of correctly guessing the state when a given outcome occurs. We
won’t discuss this latter approach in this thesis, but in the next section, we will
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briefly mention the result stating that the failure probability in unambiguous state
discrimination is at least twice as big as the optimal probability of error.

One of the main contributors to the field of quantum state discrimination/ quantum
hypothesis testing is Carl W. Helstrom. Among his broad contribution to the field
of quantum information, between the most notable there is the derivation of the
Helstrom Bound an ubiquitous quantity in quantum information describing the best
achievable performance in the discrimination of two arbitrary quantum states, ρ0 and
ρ1. The next section will be dedicated to the derivation of the Helstrom bound. After
this we will discuss another useful tool in quantum hypothesis testing, the Quantum
Chernoff bound, concerned with the asymptotic behaviour of the probability of error
in the discrimination of multi-copy quantum states. Finally, we will discuss another
limit, central in quantum communication, the Holevo bound, a bound in the amount
of classical information that can be reliably transmitted using quantum states, in the
limit of a large number of repeated communications.

2.1 Optimal discrimination of two quantum states:
The Helstrom bound

A quantum hypothesis testing problem is formally described as the discrimination of
two hypothesis after the measurement on an unknown state, described by the density
operator ρ , with the minimum probability of error. Binary state discrimination is
the most basic quantum hypothesis testing problem and is given by the hypothesis
H0 : ρ = ρ0 and H1 : ρ = ρ1. The states ρ0 and ρ1 are in general mixed and non-
orthogonal. Each of the states is prepared with a known prior probability p(Hi) := πi,
with the condition ∑i πi = 1. After performing a general Positive Operator Valued
Measurement (POVM) on the incoming state ρ the goal is to minimize the probability
of incorrectly guessing the hypothesis. Let us start by briefly reviewing POVMs.

A POVM is defined by a set of N measurement operators {Πk} each one referring
to a different measurement outcome labelled k. These operators are defined such
that the probability of having the outcome k when measuring a state ρ is Tr(ρΠk).
The fact that the probability must be real and non-negative implies that the operators
Πk must be Hermitian positive semi-definite. POVMs are generally required to be
complete, i.e. ∑

N
k Πk = 1. Note how any incomplete set of measurement operators
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{Πk}, can be completed to form a POVM by adding to the set the operator ΠN+1 =

1−∑
N
k Πk.

Back to the problem of hypothesis testing, if we consider the discrimination of N
states, {ρk} using the POVM {Πk} with N elements, where the outcome k is taken
as corresponding to the selection of the state ρk, we have the probability of error:

perr = 1− psuc = 1−
N

∑
k

πkTr(ρkΠk) =
N

∑
k

πk ∑
l ̸=k

Tr(ρkΠl) (2.1)

Where psuc = 1− perr is the probability of correctly guessing the hypothesis and we
used the completness of the POVM that, in terms of probability, gives the condition

∑
N
k (ρΠk) = 1 for any normalized state ρ . The term Tr(ρkΠk) gives the probability of

correctly guessing that the state was prepared in ρk, so the total probability of success
of the test, psuc is provided by the average of the probability of a correct guess for all
the states ρk weighted by their prior probability πk. Equivalently the probability of
error is given by the weighted average of the probability of an incorrectly guessing
given the state is prepared in ρk, given by the term ∑l ̸=k Tr(ρkΠl). For the particular
case of binary state discrimination Eq.(2.1) reduces to:

perr = 1−
1

∑
k=0

πiTr(ρiΠi) = π0Tr(ρ0Π1)+π1Tr(ρ1Π0) (2.2)

In the following we will give a non-variational derivation [40] of the Helstrom
formula based on the introduction of the Hermitian operator Λ, sometimes called the
Helstrom operator (or Helstrom matrix):

Λ = π1ρ1 −π0ρ0 (2.3)

The probability of error in binary discrimination, given in Eq.(2.2), can be rewritten,
in terms of Λ, as:

perr = π0 +Tr(ΛΠ0) = π1 −Tr(ΛΠ1) (2.4)

Introducing the eigenvalues and eigenvectors of the Helstrom operator, defined by
Λ = ∑k λk|φk⟩⟨φk|, we can rewrite Eq.(2.4) as:

perr = π0 +∑
k

λk⟨φk|Π0|φk⟩= π1 −∑
k

λk⟨φk|Π1|φk⟩ (2.5)



2.1 Optimal discrimination of two quantum states: The Helstrom bound 9

Eq.(2.5) has to be minimized under the conditions 0 ≤ ⟨φk|Πi|φk⟩ ≤ 1, that follows
from the fact that ⟨φk|Πi|φk⟩ = Tr(|φk⟩⟨φk|Πi) is a probability. The minimization
is achieved by imposing ⟨φk|Π0|φk⟩ = 0 and ⟨φk|Π1|φk⟩ = 1 for all the positive
eigenvalues λk and ⟨φk|Π0|φk⟩= 1, ⟨φk|Π1|φk⟩= 0 for the negative eigenvalues. The
operators Π0 and Π1 that fulfill these requirements are:

Π1 = ∑
k∈K+

|φk⟩⟨φk|

Π0 = ∑
k∈K−

|φk⟩⟨φk|

where K+ = {k|λk > 0} and K− = {k|λk ≤ 0} are the sets of indexes k such that the
eigenvalues of Λ are positive or non-positive respectively. In other words Π1 and Π0

are the projectors onto the positive, Λ+, and non-positive, Λ−, parts of the operator
Λ respectively. Clearly the indexes with eigenvalues λk = 0 can be assigned to either
of the sets without changing the probability of error and the choice of assigning them
to the set K− in this instance was arbitrary and without influence on the final results.
Using these definitions we can rewrite the probability of error in Eq.(2.5) as:

perr = π0 − ∑
k∈K−

|λk|= π1 − ∑
k∈K+

|λk| (2.6)

Adding the two expressions for the probability of error in the equation above, and
using the fact that π0 +π1 = 1, we get:

perr =
1
2
(1−∑

k
|λk|) (2.7)

that using the definition of Λ in Eq.(2.3)yelds the Helstrom formula for the optimal
probability of error in binary state discrimination:

perr =
1
2
(1−||π1ρ1 −π0ρ0||) (2.8)

where we introduced the norm ||A||= Tr(
√

A†A). In the special case of initially pure
states, ρi = |ψi⟩⟨ψi|, the Helstrom formula simplifies greatly, since the trace distance
||π1ρ1 −π0ρ0|| can be computed in terms of the overlap ⟨ψ0|ψ1⟩. For pure states we
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have:

perr =
1
2

(
1−
√

1−4π0π1|⟨ψ0|ψ1⟩|2
)

(2.9)

Eq.(2.9) will be used, for instance, in the next chapter to compute an analytical
expression for the classical limit in the protocol of quantum reading.

We conclude this section with a brief overview of unambiguous state discrimina-
tion and a comparison of its performance with the minimum error discrimination one.
In unambiguous state discrimination the goal is to create a scheme in which given
outcomes identify quantum states, in a generally non-orthogonal set, with certainty.
Since non-orthogonal states cannot be discriminated with certainty, unambiguous
discrimination can only be done at the price of allowing some outcome to be in-
conclusive. The concept is easily visualized in terms of binary discrimination of
pure states. Consider the two generally non-orthogonal states |ψ0⟩ and |ψ1⟩. Let us
consider the projective measurement with elements {P0,P1}, where P0 = |ψ0⟩⟨ψ0|
is the projector onto |ψ0⟩ and P1 = 1−P0 is the projector onto its orthogonal sub-
space. If this measurement is performed and the outcome is P1 it is clear that the
initial state was prepared with certainty in |ψ1⟩, since |ψ0⟩ would give always the
outcome P0. On the other hand, if the outcome of the measurement is P0, the initial
state could have been prepared in either |ψ0⟩ or |ψ1⟩ and no definitive answer can
be given. Similarly, |ψ0⟩ can be identified with certainty by switching the role of
the states in the previous description. The scheme outlined, based on projective
measurements is not optimal in general, in terms of minimizing the probability of
having an inconclusive result. A better strategy is given by a POVM, of which we
skip the details (see e.g. Ref. [40]), mixed with projective measurement in case of
very unbalanced priors, whose probability of success (certain result), pcer, in case of
equal priors, π0 = π1 = 1/2 is given in terms of the overlap of the states as:

pcer = 1− p f = 1−|⟨ψ0|ψ1⟩| (2.10)

Where p f is the probability of the procedure failing. Unambiguous discrimination
in the case of mixed state is rarely effective. If two mixed states ρ0 and ρ1 have
the same support it is not possible to discriminate them with certainty. A necessary
condition to be able to unambiguously discriminate two mixed state is that their
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supports have a non-zero overlap with the kernel of each other1. In other words two
mixed states can be distinguished with certainty only if it exist at least a vector, in
the Hilbert space in which the states are defined, that can occur in only one of the
two states. For mixed states such that unambiguous discrimination can be performed,
the following inequality relating the probability of error in minimum discrimination,
perr, and the probability of failure in unambiguous discrimination, p f , holds [40]:

perr ≤
1
2

p f (2.11)

meaning that even when unambiguous discrimination is possible the probability of
failure of the discrimination is at least twice the probability of error in the optimal
discrimination.

2.2 Asymptotic efficient discrimination: The Quan-
tum Chernoff Bound

The Helstrom bound, discussed in the previous section, gives the optimal probability
of error, pH

err when discriminating two states ρ0 and ρ1. Consider now the asymptotic
situation in which the states to be discriminated are composed of n copies, i.e.
ρT

i = ρ
⊗n
i = ρi ⊗ ...⊗ρi. According to the results of the previous section the best

probability of error in the discrimination is pH
err = (1−||π1ρ

⊗n
1 −π0ρ

⊗n
0 ||)/2. For

large values of n the trace distance in the probability of error, in a lot of cases,
becomes tricky to evaluate, even numerically. For this reason, some bounds in this
asymptotic scenario are desirable. An upper bound on pH

err is given by the Quantum
Chernoff Bound. In this section we will start by discussing the classical Chernoff
bound[52] and then we will show the derivation of its quantum counterpart.

2.2.1 Classical Chernoff bound

A central task in classical information theory is the discrimination of two proba-
bility distributions after a given number n of observations. In Ref. [53] Chernoff
derived a series of limits on the asymptotic tail probabilities of observed distributions.

1The support of a state is the subspace in which the state is defined, while its kernel it’s the
subspace orthogonal to the support
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From these limits one can derive an informational quantity, commonly known as
Chernoff information ξCB. Notably, given two classical distributions, the proba-
bility of error in discriminating them after n observation, p(n)err in the asymptotic
regime decreases exponentially at a rate given by the Chernoff information, namely
p(n)err ∼ exp(−nξCB).

Formally, let us consider the classical hypothesis testing problem of discriminat-
ing between hypotheses H0 and H1 according to an observation x of the classical
random variable X . This could represent, for example, the situation in which one tries
to distinguish a given signal from noise fluctuations. Define the prior probabilities
as p(Hi) := πi and the conditional probabilities pi(x) := p(x|Hi). In terms of these
quantities the total probability of having observation x is p(x) = π0 p0(x)+π1 p1(x).
The best possible decision rule is the Bayes rule. With this rule the hypothesis i is
selected as i = argmaxi p(Hi|x). We can use Bayes theorem to express the posteriori
probabilities p(Hi|x) in terms of the priors and conditional probabilities:

p(Hi|x) =
πi pi(x)

p(x)
(2.12)

Bayes rules minimizes the probability of error in the decision, perr, by construction.
If the Bayes decision rule is used the probability of error is:

perr =
∫

min
(

p(H0|x), p(H1|x)
)

p(x)dx =

=
∫

min
(

π0 p0(x),π1 p1(x)
)

dx (2.13)

The expression in Eq. (2.13) can be upper bounded using the following inequality,
true for any a,b > 0 [52]:

min(a,b)≤ aαb1−α ∀α ∈ [0,1] (2.14)

That for Eq. (2.13) gives:

perr ≤ π
α
0 π

1−α

1

∫
p0(x)α p1(x)1−αdx (2.15)

If we consider a series of n i.i.d. observations x= x1, ...,xn we have pi(x)=∏k pi(xk).
The probability of error in the decision after n observations, p(n)err, can be upper
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bounded as:

p(n)err ≤ π
α
0 π

1−α

1

∫
∏

k
p0(xk)

α p1(xk)
1−αdx =

= π
α
0 π

1−α

1 ∏
k

∫
p0(xk)

α p1(xk)
1−αdxk =

= π
α
0 π

1−α

1

(∫
p0(x)α p1(x)1−αdx

)n
(2.16)

Taking the logarithm on both sides:

1
n

log(p(n)err)≤
1
n

log(πα
0 π

1−α

1 )+ log
(∫

p0(x)α p1(x)1−αdx
)

n→∞∼

∼ log
(∫

p0(x)α p1(x)1−αdx
)

(2.17)

The first term on the right-hand side can be neglected as it tends to zero in the
asymptotic limit of large n, as long as the priors are not 0. The remaining quantity
on the right hand side of Eq. (2.17) depends on the parameter α and the inequality
holds true for any α ∈ [0,1]. Taking the minimum of this quantity in this range gives
the definition of the Chernoff information ξCB:

ξCB :=− min
α∈[0,1]

log
(∫

p0(x)α p1(x)1−αdx
)

(2.18)

The Chernoff information is a measure of similarity of the probability distributions
p0 and p1. Rewriting Eq. (2.17) in terms of the Chernoff information gives the
classical Chernoff bound:

p(n)err ≤ π
α∗
0 π

1−α∗

1 e−nξCB n→∞∼ e−nξCB (2.19)

where α∗ is the value of α that minimizes Eq.(2.18).

2.2.2 Quantum Chernoff bound

The classical problem of discriminating two distributions given a large number of
observations has a natural generalization in the quantum domain when considering
the discrimination of two states in the limit of measurements performed over a
large number of copies. A quantum generalization of the Chernoff bound was first
presented in Ref. [54]. Similarly to the classical case, an informational quantity, the



14 Theoretical tools in Quantum Hypothesis Testing

quantum Chernoff information, ξQCB, related to the distance of the states considered,
can be defined such that the probability of error in the discrimination, p(n)err, decreases
exponentially as the number n of copies increases, at a rate given by the Quantum
Chernoff information, p(n)err ∼ exp(−nξQCB). The quantum Chernoff bound has
since found use in the characterization of a variety of quantum hypothesis testing
protocols, for example, the quantum reading one, discussed in the next chapter,
and it’s particularly useful, as already mentioned, in situations in which a direct
calculation of the trace distance in computationally heavy and the Helstrom bound is
not easily accessible.

Consider the problem of the optimal discrimination of two many-copy quantum
states ρ

⊗n
0 and ρ

⊗n
1 , prepared with prior probabilities π0 and π1 respectively. Ac-

cording to the discussion of the previous section, the best probability of error in the
discrimination, p(n)err is given by the Helstrom formula, namely in this case:

p(n)err =
1−||π1ρ

⊗n
1 −π0ρ

⊗n
0 ||

2
(2.20)

The Quantum Chernoff bound is concerned with the asymptotic behaviour of p(n)err.
The probability of error can be upper bounded using the following inequality, on
positive operators A,B (for the proof of this inequality see Ref. [54]):

Tr[A+B−|A−B|]/2 ≤ Tr[AαB1−α ] ∀α ∈ [0,1] (2.21)

Eq.(2.21) plays in the quantum case the same role that Eq.(2.14) played in the
classical derivation. The direct substitution A = π0ρ

⊗n
0 and B = π1ρ

⊗n
1 in Eq.(2.21)

yields:
1−||π1ρ

⊗n
1 −π0ρ

⊗n
0 ||

2
= p(n)err ≤ Tr[(π0ρ

⊗n
0 )α(π1ρ

⊗n
1 )1−α ] (2.22)

Taking the logarithm of both sides leads to:

1
n

log
(

p(n)err

)
≤ 1

n
log
(

π
α
0 π

1−α

1

)
+ log

(
Tr[ρα

0 ρ
1−α

1 ]

)
n→∞∼

∼ log
(

Tr[ρα
0 ρ

1−α

1 ]

)
(2.23)

where once again after taking the limit n → ∞ the quantity depending on the priors
vanishes. Similarly to the classical case, the Quantum Chernoff information can be
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defined taking the minimum of the right-hand side of Eq.(2.23):

ξQCB =− min
α∈[0,1]

log
(

Tr[ρα
0 ρ

1−α

1 ]

)
(2.24)

It is worth noticing how, if ρ0 and ρ1 commute, the definition of ξQCB coincides with
the classical Chernoff information ξCB = −minα∈[0,1] log

(
∑k p0(k)α p1(k)1−α

)
,

where p0 and p1 are the elements of ρ0 and ρ1 in their diagonal form, a desirable
property for a quantum generalization. In terms of the Quantum Chernoff information
we have then the following bound of the probability of error:

p(n)err ≤ π
α∗
0 π

1−α∗

1 e−nξQCB n→∞∼ e−nξQCB (2.25)

where α∗ is the argument minimizing Eq.(2.24). Eq.(2.25) defines the Quantum
Chernoff Bound. As already mentioned the quantum Chernoff bound is particular
interest in the asymptotic limit of n → ∞. In this limit, the upper bound in Eq.
(2.25) can be saturated as proven in Ref. [55], where it was shown that the quantum
Chernoff information gives also a lower bound for the logarithm of the probability
of error.

2.3 Distinguishability and information transfer: The
Holevo bound and the classical capacity

The Holevo bound [56] is a very useful tool in quantum communication. Its main role
is to upper bound the classical information that can be transmitted using quantum
states. The Holevo quantity χ appearing in the Holevo bound, is also the basis
of another central result in quantum information theory, the Holevo-Schumacher-
Westmoreland (HSW) theorem [57, 58], that gives an expression for the classical
product capacity of a quantum channel. Apart from the already broad application in
quantum communication these tools find applications in other fields such as quantum
hypothesis testing. For instance, in the next chapter the limit of information that can
be extracted by a large digital memory will be derived using the HSW theorem. In
the following we will give a derivation of the Holevo bound and the HSW theorem.

Consider a situation in which a party, that we call Alice, wants to send a classical
message to a receiving party, that we denote as Bob. Alice encodes the message in
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an alphabet composed of a given number of n symbols. Formally Alice encodes
each letter of the message in a classical random variable X , having n possible values,
in the collection of quantum states {ρ1, ...,ρn} each prepared with probability pi.
Bob then receives the unknown state ρi and measures it with a generic POVM to
assign a symbol y, associated to the random variable Y , to the signal received. A
measure of how well Bob can infer Alice message is given by the mutual information
I(X : Y ) [59]. In particular taking the maximum of the mutual information over all
possible POVM defines Bob accessible information. In other terms the accessible
information gives the number of bits that Bob receives for each bit Alice sent. The
Holevo bound provides an upper bound on Bob accessible information:

I(X : Y )≤ χ := S(ρ)−∑
i

piS(ρi) (2.26)

ρ = ∑
i

piρi

where S(ρ) =−Tr(ρ logρ) is the von Neumann entropy. χ appearing on the right-
hand side of the Holevo bound is called the Holevo χ quantity. To prove Eq. (2.26) let
us call the quantum system Alice sends to Bob Q. Let us also introduce two auxiliary
systems, a preparation one P having basis {|x⟩}, x = 1, ..,n, and a measurement one
M having basis {|y⟩}, y = 1, ..,n. Consider the total system initially prepared in the
state ρPQM:

ρ
PQM = ∑

x
px|x⟩⟨x|⊗ρx ⊗|0⟩⟨0| (2.27)

The measurement system represents the information Bob receives and before the
measurement is performed it is set to a "resting" state |0⟩⟨0|. The role of the system
M is to act as a register so that after a measurement is performed with outcome y its
state is changed to |y⟩. In this configuration the action of a POVM, having elements
{Πy} performed by Bob on the system Q can be described in the joint system QM
by the quantum operation EM defined as follows:

EM(ρ ⊗|0⟩⟨0|) = ∑
y

√
Πyρ

√
Πy ⊗|y⟩⟨y| (2.28)

To prove the Holevo bound we use some properties of the quantum mutual informa-
tion. The quantum mutual information I (A : B), of two quantum systems A and B,
is defined as:

I (A : B) = S(A)+S(B)−S(A,B) (2.29)
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where S(A,B) is the entropy of the state of joint system AB. The quantum mutual
information cannot be increased by quantum operations and the following inequality
holds:

I (A : B)≤ I (A : (B,C)) (2.30)

stating the intuitive fact that discarding a system cannot increase mutual information.

For the system PQM defined above we denote with primes the system after the
measurement EM is performed, i.e. PQM

EM→ P′Q′M′. It is easy to verify that the
following inequality holds:

I (P′ : M′)≤ I (P : Q) (2.31)

This inequality can be derived using the fact that M is initially in a product state
with the other systems and consequently I (P : Q) = I (P : (Q,M)). Moreover the
POVM measurement, EM, a quantum operation on QM, cannot increase the mutual
information according to the property stated above, that gives the inequality I (P′ :
(Q′,M′)) ≤ I (P : (Q,M)). Finally using Eq. (2.30) we have I (P′ : (Q′,M′)) ≥
I (P′ : M′).

For the right hand side of Eq. (2.31) we have, using Eq. (2.29) and Eq. (2.27):

I (P : Q) = S(P)+S(Q)−S(P,Q) = H(px)+S(ρ)− [H(px)+∑
x

pxS(ρx)] =

= S(ρ)−∑
x

pxS(ρx) = χ (2.32)

Where H(px) =−∑x px log px is the classical Shannon entropy. The right-hand side
of Eq. (2.31) is in fact the Holevo quantity χ . To conclude the derivation of the
Holevo bound, the left hand side must be shown to be I(X : Y ). This can be done
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with simple algebra. We have in fact:

ρ
P′M′

= TrQ′(ρP′Q′M′
) = ∑

x
px|x⟩⟨x|⊗∑

y
Tr(
√

Πyρx
√

Πy)|y⟩⟨y|=

= ∑
x

∑
y

px|x⟩⟨x|⊗Tr(Πyρx)|y⟩⟨y|

= ∑
x

∑
y

px p(y|x)|x⟩⟨x|⊗ |y⟩⟨y|=

= ∑
x

∑
y

p(x,y)|x⟩⟨x|⊗ |y⟩⟨y| (2.33)

Using the expression in Eq. (2.33) we have that I (P′ : M′) = I(X : Y ) thus proving
the Holevo bound.

Holevo χ quantity appears in another very important result in quantum informa-
tion, the HWS theorem that we are going to discuss in the following.

In information theory a very important quantity is the capacity of a channel.
Consider a communication channel that over n uses can reliably transmit nR bits of
information, where R is called the rate of information transfer. The capacity of the
channel is defined as the maximum rate R at which bits of information can be reliably
transmitted. In classical information theory, the capacity is a very important quantity
when considering noisy communication. A central result for classical communication
is the Shannon coding theorem, giving the capacity for discrete memoryless channels,
based on the use of codewords to better encode information over a large number of
uses, n → ∞, of the channel.

In quantum information theory an important problem is to determine the classical
capacity of a quantum channel. In other words, one wants to determine how much
classical information can be sent using quantum states transmitted through a possibly
noisy quantum channel E . As in the classical case, the classical capacity of a quantum
channel is usually defined in the limit of many repeated uses of the channel, n → ∞.
A notable difference between the classical and quantum case is that in principle when
considering quantum states over a large number of uses of the channel E the states
sent across different uses can be entangled. A general expression for the classical
capacity of a quantum channel, C(E ), allowing also entangled signals is not known.
The HSW theorem gives, however, an expression for the product state capacity,
usually denoted as C(1)(E ), the capacity that can be achieved only using product
states (across different uses of the channel), i.e. states of the form ρ1 ⊗ ...⊗ρn. It
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has been conjectured [59], but not still proven, that the product state capacity is the
same as the capacity, C(E ) =C(1)(E ).

Formally define χ(E ) as:

χ(E ) := max
{pi,ρi}

[
S

(
E

(
∑

i
piρi

))
−∑

i
piS
(
E (ρi)

)]
(2.34)

The HSW theorem states that χ(E ) is the product capacity of the channel E :

χ(E ) =C(1)(E ) (2.35)

The proof of the HSW theorem is based on a construction showing that in the limit
of a large number of uses there exist an encoding of messages such that the capacity
is saturated, however an encoding procedure that can be followed in all cases is not
given. A formal proof is long and sometimes technical so we won’t report it here (it
can be found e.g. in Ref. [59]). As it was the case for the Holevo bound, χ(E ) is a
measure of distinguishabilility of the outputs of the channel. The capacity is defined
as the maximization over all possible input, being a property only of the channel and
not on the states one may use to perform communication. It is interesting to to point
out that while one may be tempted to think that the capacity is saturated by states
having orthogonal support, this is not always the case [59], as the linear map E acts
not trivially on the geometry of the states and in some cases the capacity is saturated
by non orthogonal sets.



Chapter 3

Quantum Reading and its
experimental realization

A quantum channel E (ρ) is a positive linear map acting on a quantum state ρ .
Quantum channels are the most general way to describe the evolution of an open
quantum system in a given state ρ . In most practical cases quantum channels are
also trace-preserving and completely positive, but in general those conditions are not
necessary for evolution [59, 60]. Quantum channels play a central role in quantum
information, especially in quantum communication. In recent years the problem of
quantum channel discrimination has received a lot of attention mainly due to the
many practical protocols proposed, having potential for technological applications.
The most notable of those protocols is arguably Quantum Illumination, proposed by
Seth Lloyd in Ref. [43], in which quantum light is used to enhance target detection
in high noise setting.

From a theoretical point of view the problem of quantum channel discrimination
is particularly interesting because it is a double optimization problem, both over the
input state and output measurement. Due to this complexity most of the results in
quantum channel discrimination are obtained in the form of upper and lower bounds
using the tools described in the previous chapter for state discrimination, such as the
Helstrom, Chernoff or Holevo bound.

In this chapter, we will discuss a notable protocol in quantum channel discrimi-
nation, Quantum Reading, with particular attention on its practical feasibility and
experimental implementation. The Quantum Reading protocol is concerned with
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the readout of classical information enhanced by the use of quantum resources and
its experimental realization. The study and the realization of Quantum reading
with feasible photon counting measurement is one of the main result of this thesis.
Moreover, in the following chapters we will also discuss a generalization of the
Quantum reading protocol, the Quantum Conformance Test, with applications to
production process monitoring, as well as the application of quantum the quantum
enhanced readout protocols to the practical task of pattern recognition.

3.1 Quantum Reading

The Quantum reading protocol was originally proposed in 2011 in Ref. [48]. Con-
sider a classical optical digital memory composed of a large array of cells. A single
memory cell can be seen as a beam splitter encoding a bit of information in one
of two, equiprobable, possible values of transmittance (or equivalently reflectance)
τ0 or τ1. The information is retrieved using a transmitter irradiating a collection of
M bosonic signal modes in a state ρ over the memory cell. After the interaction
with the cell the M modes are collected by a receiver that performs a generic POVM
measurement. The outcome of this measurement is then classically processed to
recover the bit of information stored in the cell. The state ρ can be, in general,
bipartite. In other words, the procedure can be in general assisted by L idler modes,
i.e. modes that do not interact with the cell, but are correlated with the signal ones.
A schematic of the procedure is given in Fig. (3.1).

Since a single output of a beam splitter can be modelled by a bosonic pure loss
channel, Eτ , in this formulation the retrieval of information from a memory cell is a
quantum channel discrimination problem. Formally, let us store a bit x = {0,1} in
a memory cell by means of two equiprobable pure loss channels, Eτ0 and Eτ1 , with
transmittances τ0 and τ1. A pure loss channel with transmittance τ corresponds to the
following input-output transformation of the field operator â →

√
τ â+ i

√
(1− τ)v̂,

where v̂ describes an environmental vacuum mode. To retrieve the bit, the transmitter
irradiates M signal modes over the cell, for a total of µ mean photons, and also sends
additional L idler modes directly to the output. The receiver measures the transmitted
signal and idler modes, giving as an output a guess y of the classical bit x with an
error probability perr. The information recovered is given by the mutual information
between the classical bit stored X and the bit recovered Y , I(X : Y ), that in terms of
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the probability of error perr can be expressed, for equiprobable channels, as [61]:

I(X : Y ) = 1−H(perr) (3.1)

where H(p) =−p log p−(1− p) log(1− p) denotes the binary Shannon entropy. As
can be seen from Eq. (3.1) the information recovered is maximized if the probability
of error is minimum.

Since we are considering a bosonic state in an infinite Hilbert space, the min-
imization without energy constrains is trivial, since perr would go to zero as µ

approaches infinity. On the other hand, the problem of minimizing perr over all
transmitters with fixed mean signal photons µ is difficult to solve. The problem can
be solved however if the analysis is restricted to a particular class of input states of
interest, namely classical states. According to the quantum optics definition, classical
states are all and only the states having a positive P-representation:

ρ
cla =

∫
d2M

ααα d2L
βββ P(ααα,βββ ) |ααα⟩⟨ααα|⊗ |βββ ⟩⟨βββ | (3.2)

where P(ααα,βββ )> 0 is a probability distribution and:

|ααα⟩= |α1⟩⊗ ...⊗|αM⟩
|βββ ⟩= |β1⟩⊗ ...⊗|βL⟩

are M and L modes coherent states in the signal and idler system respectively. In
other words classical states are defined as the class of convex superpositions of
coherent states.

For classical states with fixed signal mean photons µ a lower bound on the
probability of error that can be achieved in the discrimination, pcla

err is given by:

pcla
err ≥ C (µ,τ0,τ1) :=

1−
√

1− e−µ(
√

τ1−
√

τ0)2

2
. (3.3)

We won’t give here a derivation of C (µ,τ0,τ1) since a similar limit in a more general
configuration will be derived in Sec.(4.1.2) of the next chapter, and the limit in Eq.
(3.3) can be found following the same steps.

The limit in Eq. (3.3) can be saturated without the aid of idler modes, by using
a single mode signal coherent state ρcla = |α⟩⟨α|,with |α|2 = µ . This can be seen
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using the fact that a pure loss channel with transmittance τ , maps a coherent state
|α⟩ into another, amplitude damped, coherent state |

√
τα⟩. Once the input state ρin

is fixed, the quantum channel discrimination problem becomes a binary quantum
state discrimination one, between the two possible outputs, ρ0 and ρ1, for which
the lowest error probability is given, as discussed in the previous chapter, by the
celebrated Helstrom formula [37, 40]

pH
err =

1
2
(1−||π0ρ0 −π1ρ1||) (3.4)

where || · || is the trace distance and π0,π1 are the prior probabilities that in the case
we are considering are fixed to πi =

1
2 .

For coherent input the output of the channel are pure and the trace distance can
be expressed in terms of the overlap ζ = ⟨√τ0α|√τ1α⟩= e−

µ

2 (
√

τ0−
√

τ1)
2

as:

||π0|
√

τ0α⟩⟨
√

τ0α|−π1|
√

τ1α⟩⟨
√

τ1α|||=
√

1−4π0π1|ζ |2

and by substituting this and the condition πi =
1
2 in Eq. (3.4) we get:

pcoh
err =

1−
√

1−|ζ |2
2

(3.5)

that coincides with C (µ,τ0,τ1) proving that a single mode coherent state saturates
the bound.

As discussed in Sec(2.1), the optimal probability of error is achieved by projecting
into the eigenstates of the Hermitian operator Λ defined in this case as:

Λ =
1
2
(|
√

τ0α⟩⟨
√

τ0α|− |
√

τ1α⟩⟨
√

τ1α|) (3.6)

We can find an orthogonal basis to represent Λ by performing the Gram-Smith
orthogonalization on the pair of vectors (|√τ0α⟩, |√τ1α⟩) spanning its support. So
we define the basis:

|0⟩= |
√

τ0α⟩ |1⟩= |√τ1α⟩−ζ |√τ0α⟩√
1−|ζ |2

(3.7)
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The eigenvectors of Λ are:

|+⟩= 1√
2

√
1+
√

1−ζ 2|0⟩+ 1√
2

√
1−
√

1−ζ 2|1⟩ (3.8)

|−⟩= 1√
2

√
1−
√

1−ζ 2|0⟩− 1√
2

√
1+
√

1−ζ 2|1⟩ (3.9)

(3.10)

And substituting the definitions in Eq. (3.7) in Eq. (3.9) leads to:

|+⟩=

√
1−
√

1−ζ 2

2(1−ζ 2)
|
√

τ1α⟩−

√
1+
√

1−ζ 2

2(1−ζ 2)
|
√

τ0α⟩ (3.11)

|−⟩=

√
1+
√

1−ζ 2

2(1−ζ 2)
|
√

τ1α⟩−

√
1−
√

1−ζ 2

2(1−ζ 2)
|
√

τ0α⟩ (3.12)

That is in the form of a pseudo-cat state. The bit is then recovered, according
to the prescription of the previous chapter, by measuring over the projectors Π0 =

|+⟩⟨+| and Π1 = |−⟩⟨−| = 12 − |+⟩⟨+|, 12 being the identity in the subspace
spanned by {|0⟩, |1⟩}. Once the measurement is performed the value τ0 is selected if
the outcome is + and τ1 is selected otherwise. The result in Eqs.(3.11-3.12) is an
original contribution of this Thesis.

Consider now a multi-mode quantum input state in a tensor product of M replicas
of a two mode squeezed vacuum (TMSV) states, |TMSV⟩⊗M

S,I . Remember that a
TMSV state in the, Fock basis, takes the form |TMSV⟩S,I =(coshr)−1

∑n(tanhr)n|n⟩S|n⟩I .
Each TMSV state irradiates sinh|r|2 = µ/M mean photons per mode and describes
an entangled pair of signal (S) and idler (I) modes, so that we have a total of M
signals and corresponding L = M idlers. Globally, µ mean photons are irradiated
over the cell. For a sufficiently large number of copies M, it is possible to show that
the error probability, pTMSV

err , goes below the classical bound C . This can be done
using another tool in quantum state discrimination discussed in the previous chapter,
the Quantum Chernoff bound. For equal priors we have according to Eq. (2.25) the
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following upper bound:

pT MSV
err ≤ Q(µ,M,τ0,τ1) :=

1
2

e−MξQCB (3.13)

ξQCB =− min
α∈[0,1]

log
(

Tr[σα
0 σ

1−α

1 ]

)
where σi = Eτi(|TMSV⟩S,I⟨TMSV|). In the asymptotic limit of M → ∞ the upper
bound in Eq. (3.13) becomes tight as discussed in the previous chapter. For any
signal energy µ such that:

µ > µth :=
2ln2

2− τ0 − τ1 −2
√

(1− τ0)(1− τ1)
(3.14)

there is a number of modes M̄ such that Q(µ,M̄,τ0,τ1) ≤ C (µ,τ0,τ1). Thus, a
TMSV transmitter is able to surpass any classical strategy in this regime. In the case
of an ideal memory, namely a memory having τ0 ≤ τ1 = 1, the energy threshold
simplifies to µth = 1/2 and the quantum strategy outperforms the classical one for
every M ≥ M̄.

The quantum performance Q(µ,M,τ0,τ1) can be evaluated more in detail nu-
merically and compared with the classical one. To this end, it is useful to define the
informational gain G:

G = 1−H(Q)− [1−H(C )], (3.15)

that is the difference between the bits recovered by the quantum strategy and the
classical one. Note that G defines a lower bound on the actual quantum gain, since
C is a lower bound on the optimal classical probability of error, while Q is an upper
bound on the quantum probability of error with TMSV states.

Ref. [48] with a numerical study analyses the gain as a function of the parameters,
in the low photons regime. A quantum advantage is shown in a wide region and it is
bigger for higher values of transmittances τ0 and τ1. In case of an ideal memory, i.e.
a memory having τ1 = 1, an advantage is already present for a single mode TMSV
transmitter, M = 1, a case in which there is no guarantee that the QCB is tight. The
quantum gain found is nonetheless significant in a wide region. When the number
of modes approaches infinity, M → ∞, the magnitude of the gain is sensibly larger
and approaches its maximum value, G → 1 in some regions. A gain G approaching
1 means that the quantum strategy retrieves all the information while no information
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whatsoever can be recovered by any classical one. The increase in the advantage
between the cases M = 1 and M → ∞ is due to two different effects. The first one is
related to the theoretical approach chosen. The Quantum Chernoff bound is in fact an
asymptotic tool and it becomes tighter as the limit M → ∞ is approached. The other
one is instead related to the nature of the problem. Spreading the signal energy into a
larger number of modes leads, in fact, to an improvement in the overall performance
of TMSV transmitters. This effect will find a clear physical interpretation in the
following section where explicit photon counting measurements will be considered.
For this kind of measurements, having a large number of modes means that the
measured photon statistics is more peaked leading to better distinguishability of
different states.

While the theoretical proposal for the protocol of quantum reading was presented
by Ref. [48] in 2011 and the idea has been further explored in a series of papers (e.g.,
see Refs. [62–65]) an experimental realization has been lacking until recently. A
preliminary experiment was performed in Ref. [66] for a perfect fully-unitary variant
of the protocol, where zero discrimination error was achieved by using both the
outputs of the beam-splitter, modelling the cell. For such an ideal unitary model no
entanglement is needed. However, in a realistic scenario, only one output of the cell
is available for detection, so the process is clearly non-unitary and must be described,
as in the original proposal, by a lossy quantum channel. The first experimental
realization of the quantum reading protocol as originally proposed in Ref. [48], is in
fact an original contribution of this Thesis work and has been reported in Ref. [1] in
2021. In the following we will present the details of this realization.

3.2 Experimental realization of quantum reading with
photon counting

The theoretical analysis of the previous section showed that it is possible to obtain
a quantum advantage in the protocol of quantum reading. An important question
was however left unanswered, i.e. how can this advantage be practically achieved.
The answer to this question, and its experimental implementation, are the central
results of Ref. [1] where we showed how in this protocol a quantum advantage is
obtained by photon-counting measurements combined with a maximum-likelihood



3.2 Experimental realization of quantum reading with photon counting 27
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Fig. 3.1 Scheme of the quantum reading of a memory cell. Image taken from Ref. [1]. A
memory cell encodes a bit u in a pure loss channel with transmissivity τu. The cell is read
by a transmitter (Tx) irradiating M signal modes and µ mean total photons over the cell,
plus L idler modes directly to the output. A generally joint measurement is performed at the
receiver (Rx) to decode the bit u up to some error probability perr.

decision,where the input state consists of a collection of TMSV states. The advantage
was proven notwithstanding the presence of more than 20% experimental loss,
showing a good robustness for the technique proposed, in view of possible real
applications.

Consider the single-cell quantum reading scheme described in the previous
section. A memory cell stores a classical bit x = {0,1} by means of two equiprobable
pure loss channels, Eτ0 and Eτ1 , with transmittances τ0 and τ1. The bit is recovered
using a transmitter irradiating M signal (S) modes over the cell, for a total of µ

mean photons, and also L additional idler (I) modes directly to the receiver, where
a measurement is performed. The outcome of the measurement leads to a guess
y of the classical bit x with an error probability perr (see Fig. 3.1). The minimum
probability of error achievable by classical states, pcla

err, has been given in Eq. (3.3).
This probability of error is saturated by highly theoretical measurements, such as
the projection on the state in Eq. (3.12), that are hardly feasible in an experimental
setting, and to our knowledge it has not even been devised. A much more practical
design to retrieve the bit is provided by the photon-counting (PC) receiver [1].
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3.2.1 The Photon-Counting Receiver

For photon counting measurement performed over the signal and idler modes of a
bipartite state ρ , the output is a classical random variable n = (nS,nI), distributed
as p(n) = Tr(ρ|nS,nI⟩⟨nS,nI|), where |nk⟩ is the eigenstate with eigenvalue nk of
the number operator n̂k = â†

k âk of the field, k = S, I denotes signal and idler system
respectively, and we used the notation |nS,nI⟩ := |nS⟩⊗ |nI⟩. The effect of a pure
loss channel Eτ on the signal mode of a bipartite state is to combine its initial photon
number distribution p0(n) with a binomial distribution B(n′S|nS,τ) with nS trials
and success probability τ , so that the outcome n will be distributed according to
[67, 68]:

p(n|τ) =
∞

∑
m=nS

p0(m,nI)B(nS|m,τ) (3.16)

In Appendix (A) we give a derivation of Eq. (3.16) in the univariate case.

Let us now suppose that n is the outcome of a photon-counting measurement after
a lossy channel with unknown transmissivity τx (for x = 0,1). Note how, once the
measurement is fixed to photon counting and the initial state (or equivalently in this
case its photon number distribution) is fixed as well, the originally quantum problem
is reduced to a classical binary hypothesis testing. As already mentioned in the
previous chapter, in such problems, the optimal decision is taken using Bayes rule,
by construction. Using Bayes’ theorem, the conditional probability of τu, p(τu|n), is
given by:

p(τx|n) =
p(n|τx)p(τx)

p(n)
=

p(n|τx)

p(n|τ0)+ p(n|τ1)
, (3.17)

where the last equality follows from the condition of equi-probable channels, p(τx) =

1/2. To assign a value y to the recovered bit, Bayes rule prescribes to choose the
value y = 0,1 such that y = argmaxx p(τx|n). For equal priors, this rule is equivalent
to the maximum likelihood decision, y = argmaxx p(n|τx). For any given outcome
n, the related error probability will be perr(τ0,τ1|n) = minx p(τx|n), and the mean
error probability of the discrimination is obtained by averaging this value over the
outcome distribution p(n):

perr(τ0,τ1) = ∑
n

min
u

p(τu|n)p(n)

=
1
2 ∑

n
min

u
p(n|τu). (3.18)



3.2 Experimental realization of quantum reading with photon counting 29

The error probability above describes the performance achievable by a photon-
counting receiver in the quantum reading protocol pictured in Fig. (3.1) where the
transmitter irradiates a generic bipartite state. In general, the formula can be applied
to a transmitter with arbitrary M and L by considering a M +L vectorial variable
n. Using this analysis we can now evaluate the performance of a given input state
with a PC receiver. In particular, we will analyse two cases, the first one is a generic
classical transmitter, for which we are able to present an analytical bound on the
performance. The second one is the case of quantum multimode TMSV state, that
achieves an absolute quantum advantage over any classical strategy.

3.2.2 Classical States and PC receiver

To characterize the performance of classical states we use the results of the previous
section, showing that the probability of error is fully determined by the photon
number distribution of the input state. We remind that a generic multi-mode bipartite
classical state is defined as convex superpositions of coherent states, according to
Eq. (3.2). In the following, without loss of generality, we will restrict our analysis
to single mode classical states. Classical correlation cannot, in fact, improve the
discrimination accuracy [48] and spreading the signal energy in more than one mode
is not helpful either, as shown in Appendix B. A single mode classical state, ρcla can
be written as:

ρcla =
∫

d2
α p(α) |α⟩⟨α| (3.19)

where p(α)≥ 0. In the quantum reading protocol the mean number of signal photons
is fixed to a given value µ . For the state ρcla this condition can be written as:∫

d2
α p(α) |α|2 = µ (3.20)

A coherent state |α⟩, with mean photon number µ = |α|2, has a Poisson photon
number distribution, Pµ(n), as can be easily seen by direct computation:

pcoh(n) = |⟨n|α⟩|2 =

∣∣∣∣∣e− |α|2
2

∞

∑
m=0

αm
√

m!
⟨n|m⟩

∣∣∣∣∣
2

=

= e−µ µn

n!
= Pµ(n) (3.21)
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The photon number variance of a coherent state is then given by its mean number of
photons µ . A direct consequence of the definition of classical states on their photon
number distribution is that, once the mean number of photons is fixed to µ , their
variance is lower bounded by the one of a coherent state. Consider the distribution,
pcla(n) of a generic classical state in the form of Eq. (3.19):

pcla(n) = ⟨n|ρcla|n⟩=
∫

d2
α p(α) |⟨n|α⟩|2

=
∫

d2
α p(α) p(n|α) (3.22)

p(n|α) := P|α|2(n)

where we highlighted that α parameterizes the distribution on n. The variance ⟨∆2n⟩
of the compound distribution can be computed using the following equality:

⟨∆2n⟩=
〈〈

∆
2(n|α)

〉〉
α
+
〈

∆
2〈(n|α)

〉〉
α

(3.23)

Where
〈〈

∆2(n|α)
〉〉

α
is the expectation value over α of the conditioned variance〈

∆2(n|α)
〉

and
〈

∆2〈(n|α)
〉〉

α
is the variance over α of the expected value of n

conditioned to α ,
〈
(n|α)

〉
. Eq. (3.23) holds for every distribution parameterized in

the form of Eq. (3.22). We have then:

⟨∆2n⟩=
∫

d2
α p(α) |α|2 +

〈
∆

2〈(n|α)
〉〉

α
=

= µ +
〈

∆
2〈(n|α)

〉〉
α
≥ µ = ⟨∆2n⟩coh (3.24)

that shows how at fixed energy the variance of classical states is minimized by a
coherent state. The last inequality follows from the fact that

〈
∆2〈(n|α)

〉〉
α

is a
variance and hence non-negative.

This result can be used to find the optimal performance in the discrimination.
According to Eq. (A.5) after the interaction with the pure loss channel the original
photon number distribution is compounded with a binomial one so, using Eq. (3.23),
we have for the variance of the output distribution:

⟨∆2n⟩out = τ
2⟨∆2n⟩in +µτ(1− τ) (3.25)
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showing that the input distribution with minimum variance minimizes the variance
of output distribution as well. In the discrimination with PC measurements the
probability of error is proportional to the overlap of the two photon number output
distributions, for τ0 and τ1 respectivelly. So the minimum probability of error is
achieved by the input states minimizing the variance, i.e. states having Poisson
distribution.

By the argument made above the minimum probability of error in the quantum
reading protocol with a PC receiver and classical states can be computed considering
an input Poisson photon number distribution Pµ(n). This analysis is in agreement
with the fact that the Poisson distribution sets the Shot Noise Limit (SNL) [69, 18]
an important limit for classical states in estimation problems. A useful property of
Pµ(n) is that the interaction with a pure loss channel Eτ does not change the form of
the distribution, in fact:

Pµ(n)
Eτ−→ pout(n) =

∞

∑
m=0

Pµ(m)B(n|m,τ) =

=
∞

∑
m=n

e−µ µm

m!

(
m
n

)
τ

n(1− τ)m−n =

=
e−µ(τµ)n

n!

∞

∑
α=0

(µ(1− τ))α

α!
=

=
e−µτ(τµ)n

n!
= Pτµ(n) (3.26)

A Poisson distribution describes independent events (photon detections in this case)
so, the fact that spreading the energy over M independent modes doesn’t change the
result has a rather direct physical interpretation in terms of this independence.

Using the invariance property in Eq. (3.26) the possible output distributions
after the interaction with the memory cell are Pτ0µ(n) and Pτ1µ(n). To evaluate the
probability of error in Eq. (3.18) we can identify a threshold value nth :

nth :=
µ(τ1 − τ0)

log(τ1/τ0)
(3.27)
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Fig. 3.2 Comparison between Photon counting and best classical strategies. The classical
probability of error with photon counting pcla,PC

err and the absolute classical best performance
pcla

err are reported as a function of one of the transmittance values τ0, while τ1 = 1. The
comparison is reported for different mean number of photons, µ = 104 (dashed lines),
µ = 105 (dot-dashed lines) and µ = 5×105 (solid lines)

such that for any outcome n ≤ nth we have Pτ0µ(n)≥ Pτ1µ(n) and vice-versa. For
the probability of error we have then:

pcla,PC
err (τ0,τ1) =

1
2

nth

∑
n=0

Pτ1µ(n)+
1
2

∞

∑
n=nth

Pτ0µ(n)

=
1
2

[
1− γ(τ0)− γ(τ1)

⌊nth⌋!

]
(3.28)

γ(τ1) := Γ(⌊nth +1⌋,τ0µ)

Where ⌊x⌋ denotes the floor and Γ(x,y) is the incomplete gamma function. Eq. (3.28)
establishes a lower bound on the error probability that can be achieved by using
classical transmitters paired with a PC receiver. Fig. (3.2) shows the comparison
between pcla,PC

err and the absolute bound pcla
err defined in Eq. (3.4) of previous section.

As it can be seen the performance offered by the PC receiver is not far from optimality.



3.2 Experimental realization of quantum reading with photon counting 33

3.2.3 TMSV states and PC receiver

Let us now study the photon-counting performance that is achievable by a quantum
transmitter based on TMSV states. We consider the transmitter’s state |TMSV⟩⊗M

S,I ,
where each signal-idler TMSV state is:

|TMSV⟩S,I = ∑
n

cn|n⟩S|n⟩I (3.29)

|cn|2 = n̄n/(n̄+1)n+1

where signal and idler are maximally correlated in the number of photons and locally
characterized by a single-mode thermal distribution [70]. In the following we will
consider the product state |TMSV⟩⊗M

S,I , that still shows a perfect correlation between

the total number of photon in the signal and idler system defined as nS/I = ∑
M
m=1 n(m)

S/I .

The choice of a collection of M modes is both convenient from a theoretical
standpoint, since it gives a better performance, and more natural from an experimental
point of view, since typically the integration time of detectors are much larger than
the coherence time of the field and, as a result, a large number of temporal modes are
collected within each measurement. A more detailed discussion on this can be found
in the following sections. The effect of accumulating M modes is that the marginal
distributions, of both signal and idler mode separately, are multi-thermal Pµ,M(nS/I)

[71]:

Pµ,M(n) =
(

µ +M−1
µ

)
⟨n⟩µ

(1+ ⟨n⟩)µ+M (3.30)

where µ is the total mean number of photons and ⟨n⟩= µ/M is the mean occupation
of each separate mode. The variance of this distribution is given by ⟨∆2n⟩= µ(1+
µ/M). Keeping the total photon fixed to µ and increasing the number of modes M,
i.e. lowering the single mode occupation number ⟨n⟩, narrows the distribution and
in the limit of µ/M → 0 the variance goes to ⟨µ⟩ and the distribution tends to the
Poisson distribution Pµ(N),i.e. for finite values of µ:

lim
µ/M→0

PN,M(n) = Pµ(n) (3.31)

In our experimental regime the number of modes is usually very large (M ∼ 1013, see
section on experimental setup), so that the error in approximating the muti-thermal
distribution with a Poisson one is negligible. Since the single modes are correlated
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by δ functions, their sums must be correlated as well so that the joint distribution of
the bivariate variable n = {nS,nI} will be:

p(n) = Pµ(n)δ (n−nS)δ (n−nI) (3.32)

The effect of an attenuation channel, according to Eq. (3.16), leads to:

P(n|τ) = Pµ(nI)B(nS|nI,τ) (3.33)

Similarly to the classical case a decision can be taken by identifying a threshold
value nth

S :

nth
S :=

{
log(τ1/τ0)

log[(1− τ0)/(1− τ1)]
+1
}−1

nI (3.34)

such that if nS < nth
S , we have Pµ,M(nS,nI|τ0)> Pµ,M(nS,nI|τ1) and the value τ0 is

chosen. Otherwise we choose τ1. Note how the threshold value in Eq. (3.34) does
not depend on the form of the initial distribution so it is valid both in the exact
muli-thermal case and in the Poisson approximation. We can write the probability of
error of the quantum strategy, pqua,phc

err , as:

pqua,phc
err (τ0,τ1) =

1
2

∞

∑
nI=0

nth
S

∑
nS=0

P(n|τ1)+
1
2

∞

∑
nI=0

∞

∑
nS=nth

S

P(n|τ0) (3.35)

To evaluate Eq. (3.35) more easily it is useful to approximate the output distributions
in Eq. (3.33) with Gaussian ones, an approximation valid in the limit of M >> 0 and
when the number of photons is not too small.

Before discussing this approximation more in detail, it is convenient to analyse
an important issue in any possible realization of the Quantum reading protocol, the
effect of optical losses [72–74].

A quantity characterizing every quantum optical experimental setup is the quan-
tum efficiency 0≤ η ≤ 1. This quantity expresses the fraction of photons entering the
experimental setup that is actually detected. The total efficiency takes into account
photon losses from interaction with the environment and optical components as well
as the intrinsic quantum efficiency of the detector used.

It is well known that quantum properties require a good quantum efficiency η

to be revealed and the derived advantage over the classical limits is usually very
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sensitive the value of η . An analysis of its effect is then necessary to obtain accurate
predictions of the experimental outcome. The imperfect experimental setup acts
as an amplitude attenuation channel, with transmission η , on the input quantum
state. The effect of imperfect quantum efficiency is therefore indistinguishable from
the effect that an attenuator, such as the memory storing the value of a bit in its
attenuation coefficient as described before. From the standpoint of the photon number
distribution, this is stated by the composition property of the binomial distribution
characterizing the process:

N

∑
m=n

B(m|µ,τ)B(n|m,η) =
µ

∑
m=n

(
µ

m

)(
m
n

)
τ

m(1− τ)µ−m
η

n(1−η)m−n =

=

(
µ

n

) µ

∑
m=n

(
µ −n
m−n

)
τ

m(1− τ)µ−m
η

n(1−η)m−n =

=

(
µ

n

)
(τη)n(1− τ)µ−n

µ−n

∑
α=0

(
µ −n

α

)(
τ(1−η)

1− τ

)α

=

=

(
µ

n

)
(τη)n(1− τ)µ−n

(
1+

τ(1−η)

1− τ

)µ−n
=

=

(
µ

n

)
(τη)n(1− τη)µ−n =

=
µ

∑
m=n

B(m|µ,η)B(n|m,τ) = B(n|µ,τη) (3.36)

The classical limits found above, both the absolute one in Eq. (3.3) and the PC one
in Eq. (3.28), can be computed in case of a signal system with an efficiency ηs < 1
simply performing the substitution:

τα → ηsτα (3.37)

This is, in fact, a consequence of the indistinguishability of the two attenuation
processes, ηS and τα , that the state undergoes, and shows how the discrimination of
two quantum channels τ0 and τ1 with a signal quantum efficiency ηS is equivalent
to the discrimination between two channels ηsτ0 and ηSτ1 with perfect quantum
efficiency. This argument does not depend on the measurement performed, hence,
as pointed out, it is valid also in the case of the absolute bound. Equivalently, the
same resut can be obtained by considering the discrimination between the original
transmittances τ0 and τ1 with attenuated energy µηS. In other words the effect of
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optical losses on the classical performance is equivalent to reduce the energy of the
probe state, thus decreasing the accuracy. When quantum-correlated systems are
considered, however, aside from the energy reduction, an additional effect induced
by losses is the worsening of the correlations, therefore decreasing the advantage
that can be obtained. This reduction in correlation is shown in Eq. (3.39-3.40).

Note how in this section we are not discussing the fact that, in case of bipartite
correlations, the efficiency in detecting correlated photons, known as heralding
efficiency, can be lower than the efficiency in detecting the photons in a single
arm. This issue will be considered in detail in Chapter (5), when discussing the
patter recognition experiment. In the realization of the quantum reading protocol no
spatial resolution is needed and this gives the possibility to detect photons in an area
much larger than the coherence area of the spatial modes. As a result, experimental
misalignments and mode matching are reduced to a minimum, meaning that the
heralding efficiency practically coincides with the one of the single arm. This effect
will be relevant in the following section regarding Pattern recognition and will be
discussed more in depth there.

When the number of collected modes is large, the distribution after the channel
can be approximated to a bivariate Gaussian distribution. We have, in fact, a large
number of modes whose photon counts are independent identically distributed
random variables. Their sum is a random variable with mean value n̄ and covariance
matrix Σ. According to the multivariate central limit theorem its distribution will
converge, in the limit of M → ∞, to a multivariate Gaussian distribution with the
same mean vector and covariance matrix:

P(n|τ) M→∞−−−→ N (n̄,Σ) (3.38)

After the interaction a memory cell with parameter τ and considering also the
detection efficiencies, ηS and ηI , on the signal and idler systems respectively, the
mean value before detection is n̄ = {τηSµ,ηIµ}. Since both the losses, ηS and ηI ,
and the memory cell τ act as pure loss channels the output covariance matrix Σ can
then be evaluated using Eq. (3.25) and Eq. (3.16), yielding:

Σ(τ) =

(
τ2η2

S ⟨∆2nS⟩in + τηSµ(1− τηS) τηSηI⟨∆nS∆nI⟩in

τηSηI⟨∆nS∆nI⟩in η2
I ⟨∆2nI⟩in +ηIµ(1−ηI)

)
(3.39)
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where the subscript "in" refers to the quantities at the transmitter (input). The
off-diagonal term can be computed from the joint distribution after considering
independent losses on the two beams or by statistical considerations [75].

In our case, we have, in view of the initial perfect correlation in photon number
between signal and idler, ⟨∆2nS⟩in = ⟨∆2nI⟩in = ⟨∆nS∆nI⟩in. In the Poisson approxi-
mation we have ⟨∆2nS⟩in = ⟨∆2nI⟩in = µ and for the covariance matrix becomes:

Σ(τ) =

(
τηSµ τηSηIµ

τηSηIµ ηIµ

)
(3.40)

In the Gaussian approximation of Eq. (3.38) the probability of error of the quantum
strategy, in Eq. (3.35), becomes:

pqua,phc
err ≈ 1

2

∫
∞

−∞

∫
∞

−∞

dnIdnS min
x

(
N (n,Σ(τx))

)
(3.41)

Clearly, since the sums over the discrete variables nS and nI are being substituted
by integrals this approximation is meaningful only if the number of photon detected
is >> 0. Note how, while the integrals formally run from −∞, that may seem
problematic since clearly photon counts cannot be negative, in the regime of validity
of the approximation the probability of having values close to 0 is practically null. In
the experimental ranges analysed in the following the mean number of photons is of
the order of magnitude of µ ∼ 105 and the trasmissivity are high so we are always
well within the range of validity of this approximation. Eq. (3.35) greatly simplifies
the numerical evaluation of the probability of error and will be used in the following
analysis.

In Appendix B we show how for independent modes individual photon number
measurements on each mode yield no advantage over collective measurement.

3.2.4 Experimental setup

Fig. 3.3(a) reports a scheme of the experimental set-up. The multi-mode state
|TMSV⟩⊗M

S,I is realized experimentally using the process of spontaneous parametric
down conversion (SPDC)[76–78, 67] in a non linear crystal. A (1cm)3 type-II-Beta-
Barium-Borate (BBO) non-linear crystal is "pumped" by a CW laser of wavelength
λp = 405nm and power of 100mW. The down-converted photons are spectrally
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Fig. 3.3 Experimental setup for quantum reading. (a) Schematic of the experimental set-up.
The multi-mode TMSV source is generated in a BBO crystal. The signal beam passes through
the memory cell investigated, whose transmittance can be either τ0 or τ1 and is then detected
in the SS region of the CCD camera. The idler beam goes directly to the SI region of the CCD.
nS and nI are the total photon counts over SS and SI . BBO: Type-II-Beta-Barium-Borate non
linear crystal. IF: interferential filter (800±20nm). CCD: charge-coupled device camera. (b)
Signal photon counts as a function of the idler ones, 1000 acquisitions. The results regarding
τ0 ∼ 0.996, are reported in blue dots, while red dots corresponds to τ1 = 1. (c) Relative
frequency distribution for the signal photon counts nS, reported in blue for τ0 ∼ 0.996 and in
red for τ1 = 1. The image is taken from Ref. [1]
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selected, by an interferential filter (IF) at (800± 20)nm, around the degenerate
frequency (λd = 2λp = 810nm). The correlation of the photons is in momentum and
it is converted in the spatial correlation in the sample plan with a "far-field" lens in an
f − f configuration, meaning that both the crystal and the sample plane, where the
correlation are mapped, are positioned at one focal length from the lens (see scheme
in Fig. (3.3(a)). The focal length of the lens is fFF = 1cm. The sample plane is then
imaged to the detection plane by a second, imaging, lens.

The photons are detected by a charge-coupled-device (CCD) camera (Princeton
Instrument Pixis 400BR Excelon), working in linear mode, with high quantum effi-
ciency (nominally > 95% at 810nm) and few e−/(Pixel ·Frame) of electronic noise.
The physical pixels of the camera measure 13µm. In order to lower the acquisition
time and increase the read-out signal-to-noise ratio, a 12× 12 hardware binning
is performed on them, to constitute a detection pixel. Integrating the signal over
two spatially correlated detection areas SS and SI , for signal and idler respectively,
yields the total photon counts nS and nI . The temporal modes can be estimated to be
Mt ∼ 1010 and the total number of spatial modes is Ms ∼ 103 (for a more in depth
discussion on these estimates see Ref. [79]). Since NI ∼ 105, the mean occupation
number is NI/(Ms ·Mt)∼ 10−8 ≪ 1, meaning that, according to the discussion of
the previous section, the marginal distributions are well approximated by Poissonian
ones.

The memory cell is implemented inserting in the sample plan (the focal plan
of the "far-field" lens) of the first lens a coated glass-slide with a deposition of
variable transmission 0.990 < τ0 < 1. One bit of information is stored in the pres-
ence (τ = τ0) or absence (τ = τ1 = 1) of the deposition. To match the optical path
of the signal beam, the idler beam passes through the glass as well, but without
intercepting the deposition. Fig. 3.3(b) and Fig. 3.3(c) give a visualization of the
effect at the base of the quantum enhancement. The joint distributions of nS and
nI for τ0 and τ1 = 1 overlap less, due to their squeezed shape, with respect to the
marginal distributions of nS only, so that the distinguishability is increased. The
squeezed shape of the joint distributions, below the Shot Noise limit, of Fig. 3.3(b)
is purely due to quantum correlations and cannot be achieved by any classical source.
Classical correlated states could in fact result in a distribution with a "sigar" shape as
well, but at the cost of an increased marginal variance, resulting in a joint distribu-
tion having width along any direction limited by the shot noise set by the fixed energy.
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The parameters necessary for the subsequent analysis (N, τ0, η1, η2, electronic
noise νe) are estimated in a calibration phase. The channels efficiencies are estimated
using the absolute calibration method presented in Refs. [80]. To evaluate the error
probability in the discrimination between τ0 and τ1 two sets of 10000 frames are
acquired, one for each value of the transmittance. For each frame, using the values
of the parameters estimated in the calibration, PN,M(nS,nI|τu) is computed, from
which a value to the bit is assigned using the maximum likelihood rule discussed
above. Comparing the value recovered with the true value of the bit, a frequency
of error can be estimated that will converge to the probability of error for a large
number of frames acquired.

3.2.5 Results

In the following we will report the results of Ref. [1], original contribution of this
dissertation, in which the first realization of the quantum reading protocol was given
using the PC receiver described above. The quantum advantage is shown by a
numerical investigation of the informational quantum gain G = 1−H(pqua,phc

err )−
[1−H(pcla

err)] where pcla
err can be either the theoretical absolute bound of Eq. (3.3)

or the PC bound in Eq. (3.28). It turns out that a quantum advantage can be
obtained even considering a single TMSV state, i.e. M = 1. However, following
the discussion of previous section, the spreading of the energy over a large number
of modes, M → ∞, gives narrower marginal distributions, that in turn results in
an improved discrimination. Thus in the following we will evaluate numerically
pqua,phc

err in the Gaussian approximation discussed in the previous section, using Eq.
(3.41). Fig. 3.4 reports contour plots of the informational gain as a function of
the mean number of signal photons µ and one of the values of transmissivity, τ0,
while the other is fixed to τ1 = 1. In Fig. 3.4(A,B) the prediction are reported for
ideal efficiencies ηS = ηI = 1. Note how, in both cases, theory predicts an evident
information gain, which may approach the maximum value of 1, meaning that, in
certain regions the use of quantum resources allows the full recovery of the stored
information, whereas no information could be retrieved by classical means.

Panel A shows quantum gain over the classical strategy with PC, while panel B
shows the advantage over the absolute classical limit. It can be seen how increasing
the mean photon number, the maximum of the advantage shifts towards higher values
of transmissivity τ0. Intuitively, this is due to the fact that the gain does not depend
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Fig. 3.4 Theoretical information gain G for a quantum strategy with a PC receiver. The
information gain is computed assuming a TMSV-state transmitter with large number of
copies (M ≃ 1013) and a receiver based on photon counting. The plots report the gain as a
function of the transmittance τ0 and total mean number of photons µ (higher transmissivity
is set to τ1 = 1).Panel A reports the gain over the classical benchmark with PC in Eq. (3.28).
In panel B, the benchmark is the optimal classical limit in Eq. (3.3). The red curve represent
the MED strategy described in the main text, marking the limit after which the channels
are classically indistinguishable. In panels C and D, are reported the cases of imperfect
quantum efficiency, η = 0.76, for both the signal and idler systems. The gain over the photon
counting classical bound is shown in panel C, and the gain over the optimal classical limit
in panel D. The dashed lines indicate the regions where experimental data were collected.
These experimental data points are reported in Fig. (3.5). These plots are reported from Ref.
[1].
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only on the quantum performance, but is at its highest when classical strategies
start to fail while the quantum performance is still retained. This is well illustrated
if one consider the non-optimal mean-energy-discrimination (MED) strategy, i.e
measuring the mean photon number that will be either µ or τ0µ (assuming τ1 = 1).
The MED approach starts to fail when the difference in the average photon counts
becomes smaller than the noise associated with the Poisson fluctuations, i.e., when
τ0 > 1−µ−1. The red line reported in in Fig.( 3.4) represents the curve in which
this inequality is saturated. Note how, in Fig. 3.4(A), this curve follows the contour
lines of the plot, denoting with good accuracy the start of the maximum gain region.
Of course, when τ0 is approaching τ1 = 1 there is no way to distinguish among the
channels, neither classical nor quantum, so the information recovered by any strategy,
including the quantum one, must approach zero, and the information gain drops to
zero. The competition between these two tendencies determines the maximum of
the gain. When comparing with the optimal classical bound in Fig. 3.4(B), the gain
regions are in general narrower, and the start of the maximum deviates from the
MED curve. However, note that the optimal classical bound in Eq. (3.3) is achieved
with a theoretical measurement, not feasible in practice, while the quantum strategy
relies on simple photon counting measurement making the high advantage found
even more remarkable.

As discussed in the previous section, while the effect of losses on classical states
is equivalent to the attenuation of the signal energy, the quantum strategy suffers from
an additional worsening of the correlation, resulting in a lower gain. This drop can
be seen from Figs. 3.4(C-D), where the scenario with an efficiency ηS = ηI = 0.76
is reported. The maximum gain is reduced to ≃ 1/3 or ≃ 1/6, depending on the
classical benchmark considered. Still, this is a macroscopic amount of information
due to the fact that it refers to gain per cell and importantly shows how a sizeable
quantum advantage can be achieved in a realistic scenario.

Another interesting feature, already present in the ideal case of η = 1, but even
more visible in the plots for the more realistic situation (with η = 0.76, in Fig. 3.4.D)
is the increase of the maximum gain with the energy µ . The maximum value
approaches the unity for µ → ∞ in the the ideal case, but it is bounded by a value
≤ 1, function of η , in the non ideal one. At first this can be surprising, as it is
common for quantum advantages to become more evident in a low energy regime.
However it must be noticed, that this is not a direct consequence of the increase of
energy, but it follows from the trend of the maximum to move towards higher values
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of τ0 as µ increases. As discussed, higher value of τ preserve more of the initial
correlation of the initial state and the higher gain reflects that. Moreover the increase
comes alongside a narrowing of the region where there is a significant advantage, so
that low photon numbers could still be preferable in some cases.

Fig. 3.5 reports the experimental gain G evaluated from the experimental prob-
ability of error, pexp

err , both with respect to the optimal classical bound, reported in
blue, and to the classical PC bound, reported in red. The three panels are obtained for
a different number of photons in the signal beam, i.e., µ ∼ 1.15 ·105, 3.1 ·105 and
5.2 ·105 respectively, corresponding to the sections lines reported in the theoretical
plots in Figs.(3.4.C-D). The theoretical error bands in Fig. (3.5) are computed via
a numerical simulation of the experiment. The experimental point show a good
accordance with the theoretical model, with the majority of the data falling in the
confidence region at one standard deviation. All three panels, show a clear quantum
advantage in all the region reported. In accordance with theory, the maximum gain is
shown to increase with the mean signal energy but at the expenses of a narrowing of
the region in which the quantum enhancement can be found, as discussed previously.

Ref. [1] provided the first experimental demonstration of the quantum reading
protocol, showing how entanglement is able to boost the retrieval of classical infor-
mation from an optical memory cell, outperforming any classical strategy for the
same number of input photons. It is particularly interesting how this advantage can be
obtained with a relatively simple receiver design, based on direct PC measurements,
as opposed to other protocols that may require highly-theoretical, joint quantum
measurements. Moreover the resilience to losses showed by the protocol makes
it a good candidate for possible future application of quantum technologies. The
possible applications go beyond the simple memory model to different scenarios
based on the discrimination of bosonic loss channels.

In the following section we will discuss another protocol similar to the Quantum
reading one, and that can in fact be considered a generalization of it, the Quantum
Conformance Test protocol proposed for the first time in Ref. [2] and an original
contribution to this Thesis.
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Fig. 3.5 Experimental gain G of quantum reading. The experimental gain in bits is reported
as a function of the lower transmittance τ0, while τ1 = 1. Each of the three panels refer to a
different mean photon number µ in the signal beam: (a) µ = 1.15 ·105, (b) 3.1 ·105, and (c)
5.2 ·105. Blue data refers to the gain with respect to the classical optimal bound in Eq. (3.3).
Red data refers to the gain with respect to the classical photon-counting bound given in
Eq. (3.28). The experimental parameters are estimated independently in a calibration step
and are the mean signal energy µ , the detection efficiency of signal and idler channel ηS

and ηI and the electronic noise νe. While the value of µ is intentionally varied in the three
panels, the other parameters are kept fixed to: ηS = 0.78, ηI = 0.77, and νe ∼ 104. The plots
are reported from Ref. [1].



Chapter 4

Quantum Conformance Test and its
applications

4.1 Quantum conformance test

In this section, we will discuss the Quantum Conformance Test (QCT) protocol. The
QCT protocol was originally proposed recently in Ref. [2]. Its goal is to show that
there is an advantage in the use of quantum states in monitoring production processes,
modeled as ensembles of end-products having a given probability distribution, within
the formalism of quantum information. The same construction used to analyse the
QCT protocol, namely the analysis of the discrimination of convex combinations of
quantum channels can be used to analyze a variety of different physical situations,
e.g. to analyse dissipation in communication channels, and will be also used in the
next section to generalize the quantum reading protocol to the readout of imperfect
memory cells.

4.1.1 QCT theoretical model

In this subsection, we provide a theoretical formulation of the QCT protocol. Let
us define a process Px as an ensemble {gx(θ)Eθ}, producing a quantum object
Eθ , parameterized by θ . The parameter θ is extracted by a given set A , which
can either be discrete or continuous, according to the probability distribution gx(θ).
The subscript x denotes a binary classical random variable x = {0,1}. We suppose
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Fig. 4.1 Quantum conformance test scheme. A probe state ρ sends M signal modes through
a SUT, modelled as a pure loss channel Eτ . L idler modes are sent directly reach the receiver.
1 represents the identity operator. A POVM Π is performed on the output state. A decision,
y, is taken using the result of this measurement and data processing (DP), so that the process
generating Eτ is identified as conform (y = 0) or defective (y = 1). The scheme is taken from
Ref. [2].

that the quantum objects Eθ can be produced either by a reference process P0 or a
defective one P1, occurring with equal prior probability, i.e. πx := p(Px) = 1/2.
The quantum conformance test consists in irradiating a quantum state ρ over a
system under test (SUT) and performing a measurement on ρ after the interaction to
determine what process Px produced the SUT. A schematic of the QCT protocol
is reported in Fig.(4.1). A generic bosonic bipartite state ρ consisting of M signal
modes and L idler ones is irradiated over the SUT. After the interaction a generic
POVM, Π, having elements {Πi} is performed, followed by classical post processing
to recover the classical variable y = {0,1} giving a guess on the nature x of the
producing process Px. The test is deemed successful if y = x, i.e. if the guess
is correct. Here, we have to make a difference between the two possible kind of
incorrect guesses. In the previous chapter, when analyzing the quantum reading
protocol, there was no need to make this distinction as any kind of error would
lead to the same result, namely to the same information loss. In the QCT protocol
however x = 0 and x = 1 describe two different physical situations. Hence different
errors can have different significance and should be treated differently. The possible
scenarios are:

• False negative. In this scenario, a SUT produced by a conform process (x = 0)
is labeled as defective (y = 1). In an industrial context, this kind of outcome
can be seen as an economic loss for a manufacturer, as a conform process is
considered defective, and discarded for no reason. The probability of false
negatives will be denoted as p10.
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• False positive. A SUT produced by a defective process (x = 1) is labeled as
conform (y = 0). This outcome represents a risk since possibly unsafe products
are released. The false-positive probability will be referred to as p01.

A direct consequence of the possible asymmetry on the error is that the cost function
is not always the probability of error, and vastly depends on the situation at hand.
The analysis of false positives and false negatives and the analysis of their tolerance
level plays a central role in conformance testing, and will be discussed more in
depth later in this section. To evaluate the quantum advantage in a general scenario,
however, the total probability of error, perr:

perr =
1
2
(

p01 + p10
)

(4.1)

remains a balanced cost function. While the quantitative results may slightly vary
in function of the different costs related to different scenarios, the analysis of the
probability of error gives a good indication of the advantage that the use of quantum
resources can provide.

While the formalism introduced above can be used to analyze any kind of
parameterized channel Eθ , explicit results need the nature of the channel to be
specified. Ref. [2] considered the paradigmatic case of pure loss channels, and in
the following we will report the results obtained in this scenario. We will start by
analysing the performance that can be obtained by classical states, in the form of Eq.
(3.2), in the QCT protocol, and subsequently we will show that quantum states can
guarantee an advantage over any classical strategy.

Consider a Quantum conformance test, performed, according to the schematic
of Fig.(4.1), on a SUT that can be modeled by a pure loss channel Eτ . After the
interaction of a bipartite state ρ with the SUT, depending on the production process
Px the initial state will be mapped into either:

ρ0 = EP0 [(Eτ ⊗1)ρ]→ reference process

ρ1 = EP1 [(Eτ ⊗1)ρ]→ defective process (4.2)

where 1 denotes the identity on the idler modes, and EP [·] the expectation value
over the ensemble P . In general, the supports of the output states ρ0 and ρ1 will
overlap, meaning that the discrimination between the reference and the defective
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process after a POVM Π will be affected by a probability of error pρ,Π
err (P0,P1),

that is a function of the input state and measurement chosen as well as the processes
considered. As anticipated to get a general sense of the performance of different
strategies we will consider the minimization of the probability of error over all
possible input states and output measurements:

perr(P0,P1) = min
Π

[
min

ρ

[
pρ,Π

err (P0,P1)
]]

(4.3)

Since we are dealing with bosonic input states, as it was the case in the quantum
reading protocol, the minimization in Eq. (4.3) has to be performed under some
energy constraint. Note how in this case the lowest possible value of perr(P0,P1),
even for infinite energy, is not always zero rather a finite value given by the overlap
of the classical probability distributions, g0(τ) and g1(τ), characterizing the two
processes P0 and P1. This is represented in Fig. (4.3). In the following we fix
the mean number of signal photons to a given value µ . Physically this condition
makes sense as one would like to limit the energy irradiated over the SUTs, that in
some case of interest may be sensitive to the testing. In the following subsection
we will give a bound on the performance of classical states assuming an optimal
measurement.

4.1.2 Absolute bound for classical states

As introduced in the previous chapter, classical states are defined as the states having
a positive P-representation [71] and can be represented in the form of Eq. (3.2).
Consider a classical input state ρcla with fixed mean signal energy µ:∫

d2M
ααα d2L

βββ P(ααα,βββ ) |ααα|2 = µ (4.4)

The output states, after interaction with the SUT, are defined by Eq. (4.2) and are
denoted here as ρcla

0 and ρcla
1 . Let us formally define the best classical performance,

pcla
err, as:

pcla
err = min

ρcla

[
min

Π

[
pρ,Π

err (P0,P1)
]]

(4.5)

where the outer minimum is over the subset of classical states. Fixing the input state,
the minimum probability of error for the QCT protocol that can be obtained using
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classical states is equal to the minimum probability of error in the discrimination of
ρcla

0 and ρcla
1 . The best performance in this task is given once again by the Helstrom

formula:

perr(ρ
cla
0 ,ρcla

1 ) := min
Π

[
pρcla,Π

err (P0,P1)
]
=

1
2

(
1−D

(
ρ

cla
0 ,ρcla

1

))
(4.6)

where we used D(ρ0,ρ1) = ||ρ0 −ρ1||/2 to denote the trace distance. In view of
Eq. (4.6) the quantity in Eq.(4.5) can be lower bounded by upper bounding the
trace distance, D

(
ρcla

0 ,ρcla
1
)
, for a generic classical input state ρcla. Let us consider

first a scenario in which only the defective process P1 is distributed according to
some arbitrary distribution g1(τ), while the reference process P0 is strongly peaked,
i.e. it can be assumed that all the ensemble is composed of a single value of the
transmittance parameter τ0. In this situation, for any classical input state ρcla, we
can use the strong convexity of the trace distance to write:

D(ρcla
0 ,ρcla

1 )≤
∫

d2M
ααα d2L

βββ P(ααα,βββ )×

×D(Eτ0(|ααα⟩⟨ααα|)⊗|βββ ⟩⟨βββ |,EP1[Eτ(|ααα⟩⟨ααα|)]⊗|βββ ⟩⟨βββ |)

=
∫

d2M
ααα P(ααα)D(Eτ0(|ααα⟩⟨ααα|),EP1[Eτ(|ααα⟩⟨ααα|)]), (4.7)

where the expectation value EP1[·] is taken over the distribution g1(τ) and the last
equality follows from the fact that the unaffected reference system doesn’t change
the trace distance. Using once again the convexity of the trace distance we have:

D(Eτ0(|ααα⟩⟨ααα|),EP1[Eτ(|ααα⟩⟨ααα|)])
≤ EP1 [D(Eτ0(|ααα⟩⟨ααα|),Eτ(|ααα⟩⟨ααα|))]
= EP1[D(|

√
τ0ααα⟩⟨

√
τ0ααα|, |

√
τααα⟩⟨

√
τααα|)] (4.8)

To derive this expression, we used the fact that pure loss channels map coherent
states into coherent states, i.e. |α⟩ Eτ−→ |

√
τα⟩. The distance between two pure states

can be explicitly calculated as:

D
(
|
√

τ0ααα⟩, |
√

τααα⟩
)
) =

√
1−F(|

√
τ0ααα⟩, |

√
τααα⟩)2

=

√
1− e−|ααα|2(√τ0−

√
τ)2 (4.9)



50 Quantum Conformance Test and its applications

with F(·, ·) is the fidelity between two quantum states, that for pure state is the square
modulus of their overlap. Thus we can write:

D(ρ0,ρ1)≤ EP1

[∫
d2M

ααα P(ααα)

√
1− e−|ααα|2(√τ0−

√
τ)2

]
(4.10)

Given the condition in Eq. (4.4) on the mean number of photons on the signal system
µ we have (for proof see Supplementary Materials of Ref. [48]):

∫
d2M

ααα P(ααα)

√
1− e−|ααα|2(√τ0−

√
τ)2

≤
√

1− e−µ(
√

τ0−
√

τ)2 (4.11)

for any probability distribution P(ααα). Using the above inequality in Eq. (4.10) gives:

D(ρ0,ρ1)≤ EP1

[√
1− e−µ(

√
τ0−

√
τ)2

]
(4.12)

That yields the following lower bound for the performance of classical states in the
QCT protocol when one of the processes is strongly peaked:

pcla
err ≥

1−EP1

[√
1− e−µ(

√
τ0−

√
τ)2]

2
(4.13)

Now if we relax the condition of strongly peaked reference process, i.e. we let P0

be distributed as g0(τ0), we can use the convexity on the trace distance on both
arguments to have in place of Eq. (B.3) the following inequality:

D(EP0[Eτ(|ααα⟩⟨ααα|)],EP1[Eτ(|ααα⟩⟨ααα|)])≤
EP0EP1[D(Eτ0(|ααα⟩⟨ααα|),Eτ1(|ααα⟩⟨ααα|))] =
= EP0EP1[D(|

√
τ0ααα⟩⟨

√
τ0ααα|, |

√
τ1ααα⟩⟨

√
τ1ααα|)] (4.14)

Repeating the previous steps we can then lower bound pcla
err for two arbitrary processes

as:

pcla
err ≥ C :=

1−EP0EP1

[√
1− e−µ(

√
τ0−

√
τ1)2]

2
, (4.15)

The quantity C establishes a lower bound for the discrimination error probability
when considering classical input states and an optimal measurement strategy. Note
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how this bound is not tight, which means it may not be reached by any classical
receiver.

4.1.3 Classical states and PC receiver

In the previous section we derived C , the limit on the performance that can be
achieved with an optimal classical strategy, i.e. optimal classical input states and
an unspecified optimal receiver. Since this bound is not tight, it is not guaranteed
that it can be reached. Even in the case in which a strategy could be found that
saturates it, its implementation may be of difficult practical realization. For this
reason in this section we consider the case in which classical states are paired with
the PC receiver described in the previous chapter. The analysis of the best classical
performance achievable with the PC receiver gives a second classical benchmark,
whose performance can be experimentally validated.

Analogously to the quantum reading protocol we have that also in the QCT case
for classical input states the use of idler modes does not improve the performance.
Let us remind from Chapter (3) that, for classical states, the Poisson photon number
distribution has the minimum variance allowed at a fixed mean value. This means
that the best performance is achieved using signal states having a Poisson photon
number distribution. Fig. (4.3) offers a visualization of this. Indeed, the error
probability perr is proportional to the overlap of the measurement outcome distribu-
tions which, in the case of a PC measurement, are the photon number distributions.
Consequently an input state with a narrower photon number distribution will lead to
better discrimination performances.

The total probability of error, perr, of the procedure can be evaluated as the
average over the two possible processes, P0 and P1, of the conditioned probabilities
of error:

perr =
1
2
(p01 + p10) (4.16)

where according to the formalism introduced above pi j is the probability that the
discrimination procedure will give the outcome i conditioned to the SUT being
generated by the process P j. Since with a PC receiver the best classical performance
is achieved by input states having a Poisson photon number distribution, Pµ , we
evaluate Eq. (4.16) in this case. In order to do so, we exploit the result reported in
Eq. (3.26) of Chapter (3), the effect of a pure loss channel Eτ on the photon number
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distribution, Pµ(n), of a state Poisson distributed with parameter µ , is simply a
rescaling of the mean photon number:

Pµ(n)
Eτ−→ Pτµ(n) (4.17)

A SUT generated by the process Px has a transmittance τ distributed with known
probability density function gx(τ). The conditioned photon number distribution,
p(n|Px), can then be evaluated by taking the expected value over gx(τ) of the
distribution conditioned on the specific τ:

h(x)(n) := p(n|Px) = ⟨p(n|τ)⟩g =
∫ 1

0
Pτµ(n)gx(τ)dτ (4.18)

The probability of error can be expressed in terms of the distribution in Eq. (4.18)
using the fact that:

pi j = ∑
{n|y=i}

p(n|P j) (4.19)

where the sum is over all values of n such that the outcome of the decision is y = i.
The integral in Eq. (4.18) defines a compound distribution. We have then:

⟨n⟩h =
〈
⟨(n|τ)⟩Pτµ

〉
g = µ⟨τ⟩g (4.20)

⟨∆2n⟩h =
〈
⟨∆2(n|τ)⟩Pτµ

〉
g +
〈
∆

2⟨(n|τ)⟩Pτµ

〉
g =

= µ⟨τ⟩g +µ
2⟨∆2

τ⟩g (4.21)

To proceed in the analysis of the probability of error let us start by considering the
case in which both the processes distributions, gx(τ), have Gaussian form with mean
τ̄x and variance σ2

x , i.e. gx(τ) = Gx(τ). According to Eq. (4.20-4.21), we have for
the final photon number distribution, hGx(n):

Nx := ⟨n⟩h = µτ̄x (4.22)

s2
x := ⟨∆2n⟩h = µτ̄x +µ

2
σ

2
x (4.23)

If µ is large enough then the distribution hG(n) will converge to a Gaussian one
itself:

hGx ∼ GNx,s2
x
(n) µ >> 0 (4.24)
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where GNx,s2
x
(n) denotes a Gaussian distribution on the outcome n having mean

Nx and variance s2
x . In this approximation we can evaluate the probability of error

according to Eq. (4.16) and (4.19) as:

perr =
1
2

(
∑

{n|y=1}
p(n|P0)+ ∑

{n|y=0}
p(n|P1)

)

≈ 1
2

(∫
{n|y=1}

GN0,s2
0
(n)+

∫
{n|y=0}

GN1,s2
1
(n)

)
(4.25)

when used once again the assumption µ >> 0 in Eq. (4.24) to approximate the the
sums with integrals over n.

To determine the regions of integration, we impose the condition GN0,s2
0
(nth) =

GN1,s2
1
(nth). This condition defines up to two threshold values, nth, for n, whose

expression if s0 ̸= s1 can be computed to be:

n(−)
th =

N0s2
1 −N1s2

0 −κ

(s1 − s0)(s1 + s0)

n(+)
th =

N0s2
1 −N1s2

0 +κ

(s1 − s0)(s1 + s0)

κ :=
√

s2
0s2

1

(
2(s1 − s0)(s1 + s0)(logs1 − logs0)+(N1 −N0)

2
)

and, if s0 = s1:

n(0)th =
N0 +N1

2
(4.26)

Consider the first case, i.e. s0 ̸= s1. The case s0 = s1 can be treated in a similar way
with a few adjustment so we won’t report it. We assume, without loss of generality,

s1 > s0,

we have n(+)
th > n(−)

th , and the value y = 1 will be selected if n > n(+)
th or n < n(−)

th , so
that:

perr ≈
1
2

(∫ n(−)
th

−∞

GN0,s2
0
(n)+

∫ n(+)
th

n(−)
th

GN1,s2
1
(n)+

∫
∞

n(+)
th

GN0,s2
0
(n)

)
(4.27)
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We note how the first integral should run from 0 rather than −∞ but since we are
considering µ >> 0 we can approximate the exact range of integration with the latter
(n(−)

th can take also negative values but in that case the integral will not contribute to
perr). Let us define:

Ex(nth) = erf
[nth −Nx√

2sx

]
(4.28)

Where erf(x) is the error function. We have:

perr ≈
1
2

(
1−qG

)
(4.29)

qG :=
1
2

(
E0(n(+)

th )+E1(n(−)
th )−E0(n(−)

th )−E1(n(+)
th )

)
(4.30)

To simplify the expression above, we note how, if s0 ≈ s1 one of the threshold values
will be far from the center of both distributions so that it can be neglected and the
solution can be considered unique. In this approximation we have:

qG ≈

q(+)
G if τ̄0 ≤ τ̄1

q(−)
G if τ̄0 > τ̄1

(4.31)

where:

q(+)
G :=

1
2

(
E0(n(+)

th )−E1(n(+)
th )

)
(4.32)

q(−)
G :=

1
2

(
E1(n(−)

th )−E0(n(−)
th )

)
(4.33)

Eq. (4.29-4.33) provide an approximation for the best performance of classical
states in the QCT protocol when the processes considered are Gaussian distributed.

Another interesting case to analyze is the one of uniformly distributed processes.
Consider a uniform distribution having mean τ̄ and half width δ , Uτ̄,δ (τ) the integral
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in Eq. (4.18) can be evaluated analytically. We have:

hU(n) = p(n|Px) =
1

2δ

∫
τ̄+δ

τ̄−δ

Pτµ(n)dτ =

=
Γ(n+1,µ(τ̄ −δ ))−Γ(n+1,µ(τ̄ +δ ))

2δ µn!
(4.34)

where Γ(a,b) is the incomplete gamma function, and for brevity we omit the depen-
dence on x of h and the parameters of the distribution. Using Eq. (4.20)-(4.21) we
have:

Nx = ⟨n⟩h = τ̄xµ (4.35)

s2
x = ⟨∆2n⟩h = τ̄xµ +

1
3

δ
2
x µ

2 (4.36)

If as in previous section, we assume, µ >> 0, the distribution in Eq. (4.34) has two
noteworthy extreme cases:

1. if sx > µδx, hU(n) can be approximated by a Gaussian distribution, hU(n)∼
GNx,s2

x
(n).

2. if sx << µδx, hU(n) can be approximated with a uniform one, hU(n) ∼
UNx,µδx(τ).

These approximations in the two regimes are shown in Fig. (4.2).

In the first case, since the final distribution is a Gaussian one, the results above
can be used in the evaluation.

The previous analyses are given as examples for some notable distributions. In
a more general scenario the probability of error depends on both the distributions
at hand, g0 and g1. While sometimes it will be possible to find either exact or
approximate analytical solutions for the probability of error, as it was the case for
the Gaussian and uniform cases considered above, when this is not possible the
probability of error can be evaluated numerically. Let us define the generic best
performance of classical states paired with PC measurements as:

C PC := pcla,PC
err =

1
2

(
1−qg

)
(4.37)

where it is understood that the form of qg is determined by both the distributions gx.
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Fig. 4.2 Limiting cases for the distribution hx(n). In figure are shown the two limiting
cases for the distribution hU(n), in case of uniform process distribution, as described in the
main text. The panel on the left represents case (1), sx > µδ . The one on the right case (2),
sx << µδ . The image is taken from the Supplementary materials of Ref. [2].

In the next section we will analyse the performance TMSV input states.

4.1.4 TMSV states and PC receiver

In the following we will provide an overview of the quantum strategy that we used
to surpass the best classical performance C , thus proving a quantum advantage. The
input state used ρ , is the same used in the Quantum reading protocol and discussed
in the previous chapter, namely a collection of M replicas of a two-mode squeezed
vacuum (TMSV) state. The receiver used is the PC one.

According to the analysis of Sec(3.2.1) the probability of error is found using
Bayes theorem that for the QCT protocol yields:

p(Px|nnn) =
p(nnn|Px) p(Px)

p(nnn)
=

p(nnn|Px)

p(nnn|P0)+ p(nnn|P1)
(4.38)

where we used the fact that the defective and reference processes are equiprobable,
p(P0) = p(P1) = 1/2, and p(nnn|Px) = ⟨nS,nI|ρx|nS,nI⟩. If we consider a single
value of transmittance τ from Sec.(3.2.1) we can write:

p(nnn|τ) =
∞

∑
m=nS

Pµ,M (m,nI)B (nS|m,τ) . (4.39)
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A

B

C E

D F

Fig. 4.3 Visualization of error probabilities in the QCT protocol. Panels A-B show the
distributions of the reference process (red), P0, and defective one (blue), P1. The two rows
present the two cases of big and very small initial overlap. Panels C-D show the resulting
photon number distribution p(n) when classical state is used as a probe. The overlaps
between the two distributions, highlighted in green and blue, the two colors distinguishing
the cases where the reference or the defective process are most likely, are visualizations of
the conditional error probabilities, at a given value of τ , while their weighted sum gives an
visualization of the total error probability. The advantage offered by quantum correlation can
be seen in Panels E-F that display the case in which quantum probes are used. The plots are
taken from Ref. [2].
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and then making use the linearity of quantum operations the distribution conditioned
to the process Px becomes:

p(nnn|Px) =
∫
Ax

p(nnn|τ)gx (τ)dτ. (4.40)

Naturally all the approximation that we made in the previous chapter on the distri-
bution p(nnn|τ) are still valid as long as we remain in the regime of high number of
modes M >> 0 and not too low signal energy µ . These conditions are met in all the
range of theoretical and experimental exploration in the following, so that we can
evaluate Eq. (4.40) using Eq. (3.38) and according to Eq. (3.35) the probability of
error is:

Q := pqua,PC
err =

1
2

∫
∞

−∞

∫
∞

−∞

dnIdnS min
x

(
p(nnn|Px)

)
, (4.41)

p(nnn|Px) =
∫
Ax

N (n,Σ(τx))gx (τ)dτ.

where N (n,Σ(τx)) is a multivariate normal distribution on the photon number
having mean n̄ and covariance matrix given by Eq. (3.40). We conclude this section
by giving a visualization of the advantage provided by quantum correlated states.
In panels A-B of Fig. (4.3) two possible scenarios for the initial distributions of
conform and defective processes, g0(τ) and g1(τ), are shown. In panel A, two
distributions whose overlap is negligible are considered, whereas, in panel B, the
parameter distributions are significantly overlapping. In panels C-F, the photon
number probability distributions, from which the outcome y is determined, is shown
both in the case of classical (C-D) and quantum (E-F) input states. The initial
process distributions are convoluted with the noise emerging from the measurement,
associated with each probe state. One can observe that the noise present in the state
which probes the SUT translates into an error in the discrimination. In both cases
considered, it is clear how the effect of the quantum correlation on the marginal
measurement distribution is a dramatic narrowing leading to a significant reduction
in the overlap and thus on the probability of error.

4.1.5 Non-ideal efficiency

Similarly to the QR protocol discussed in the previous chapter, the most relevant
experimental effects are losses due to imperfect detectors and optical elements.
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𝑓FF=1 mm 𝑓FF

IF
(800 ± 20 nm)

(        CW 
𝜆p = 405 nm)

Pump

Fig. 4.4 Schematic of the experimental setup for QCT. The experimental scheme is analogous
to the one used for the Quantum reading. The multi-mode TMSV state is generated pumping
a BBO crystal with a laser at 405 nm. The correlation in momentum is converted into
correlation in position in the sample plane using a lens of focal fFF. The sample is imaged
on the CCD camera using a second lens. The signal beam passes through the sample of
transmittance τ and is then detected in the SS region of the CCD, while the idler beam goes
directly to SI , without interacting with the sample. The idler optical path is matched with
the sample’s one using a non-absorbing glass. nS and nI are collected integrating the signals
over the two detection regions. The scheme is taken from Ref. [2]

These effects can be encompassed by a single coefficient, η ≤ 1, the efficiency of
the channel. According to the discussion of Sec.(3.2.3) the effect of the efficiency
can be evaluated using the fact that the action of a loss η and the one of the SUT,
commute. For classical probes, the effect of η is to reduce the energy available for the
discrimination and in the classical case the bounds found can be evaluated accounting
for the inefficiency by performing the substitution µ → ηµ in the formulas referring
to the ideal efficiency case. In the quantum case an additional effect is the reduction
of correlation between signal and idler. Due to this reduction in correlation, in
general it is expected that the quantum advantage will be reduced as η becomes
lower. This is accounted for in the covariance matrix Σ, appearing in Eq. (4.41),
whose expression is given in Eq. (3.39).

In the following sections, we will discuss the experimental setup used to realize
the QCT protocol and the data analysis.
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4.1.6 Experimental setup

The experimental setup is analogous to the one used for the Quantum Reading
realization described in Sec.(3.2.4) of the previous chapter. The experiment is based
on spontaneous parametric down-conversion, generating a multi-mode TMSV state
in a 1 cm3 type-II β -barium borate (BBO) crystal pumped by a continuous-wave
laser at λp = 405 nm, delivering a power of 100 mW. The correlation in momentum
of the down-converted photons is mapped into spatial correlations using a lens in
f - f configuration. The number of correlated photons in the signal and idler branch is
measured by integrating the signal in two selected region of a CCD camera operated
in the conventional mode. The number of counts of the camera is indeed proportional
to the number of photons. The proportionality coefficient, named electronic gain,
is calibrated by a specific procedure. A schematic is given in Fig. (4.4). The SUT
is an absorption sample consisting of a coated glass plate, which presents different
transmittance regions, realized with depositions of variable density. To match the
optical paths of both beams a blank coated glass is inserted in the idler beam’s path.
While the experimental parameters explored are different from the one used in the
QR experiment the number of spatial-temporal modes collected is still very large
(∼ 1013) and the mean occupation number per mode is very small (∼ 10−8) meaning
that the condition required for the approximation made in the sections above are
always met in the experimental regime explored. The detection efficiencies ηS and
ηI are estimated, along with the other experimental parameters, in a preliminary
characterization by exploiting the correlations of the SPDC process [79, 76]. Since
the final objective of the QCT protocol is the discrimination of two distribution
we collected a large number of measurement, NDτ

= 2 · 104, for different values
of transmittance τ , thus creating the experimental dataset that we used to mimic
arbitrary distributions with the procedure described in the next section.

4.1.7 Data analysis

In this section we will give an overview on how the data needed to evaluate the
experimental probabilities of error was collected and analyzed. A more technical
and detailed discussion on the data analysis is reported in Appendix C.

According to Eq. (4.1) the total probability of error is composed of the two con-
ditional contributions p10 and p01. Experimentally this contributions are estimated
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separately. As it will be discussed in the following sections, to reduce the number of
parameters, the reference process, P0 will be considered strongly peaked around a
value τ0. Under this condition a dataset, D , conditioned to the process being P0 can
be created simply by taking ND measurements with a SUT having transmittance τ0.
The outcome of the measurement can then be processed according to the discussion
of the previous section to assign a label, either 0 or 1. Since the dataset is generated
by P0 the frequency of error fD(P1|P0) can be estimated simply by counting the
number of instances in which the process was mislabeled as 1 over the total number
of measurements. The frequency fD(P1|P0) will then converge to the conditional
probability of error p10 for a very large number of measurements.

The defective process, P1, will be distributed according to some arbitrary distri-
bution g1(τ). In order to create a dataset D , conditioned to the process being P1 the
measurements must be taken on SUTs having transmittance distributed according
to f (τ) ∼ g1(τ), i.e. we want the experimental distribution of the transmittance
values probed to be as close as possible to the theoretical one of P1. While this
could be done a priori it is more convenient, as we argue in Appendix C, to take
measurements uniformly across a wide enough range of transmittance values and
acting a posteriori, with a procedure of statistical weighting. This procedure consist
in discarding measurements on certain values of τ in order to reach the condition
f (τ)∼ g1(τ), and it is described in detail in Appendix C. The advantages of using
the statistical weighting, rather than restraining the values of τ a priori, is that it
mitigates the lack of experimental control over the exact value of τ and the fact
that the same experimental data could be rearranged to approximate different target
distributions. Once the dataset conditioned to P1 is generated, the conditional
probability of error p01 can be once again estimated from the frequency of error
fD(P0|P1), that will converge to it in the limit of a large number of measurements.

4.1.8 Theoretical Results

For any strategy considered the performance of the QCT is a function of the mean
photon number µ , as well as the form of the distributions of the processes considered,
g0(τ) and g1(τ). As already mentioned, Fig. (4.3) provides a visualization of the
discrimination problem. The measurement strategy considered at the receiver is
photon counting. In panel (A) the distributions of the processes to be discriminated
are shown, g0(τ) in red and g1(τ) in blue. In the first row, the two distributions
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Fig. 4.5 Theoretical error probabilities for uniform and Gaussian distributions. In both
panels, the mean number of signal photons is fixed to µ = 105 and the mean value of the
defective process is τ̄1 = 0.997. The reference process distribution is considered strongly
peaked, g0 ≈ δ (τ − τ̄0). The plots show the error probabilities as functions of the mean
value of the reference process τ̄0, for different variances of the defective process σ2, reported
in the legend, and for different discrimination strategies. The quantum strategy is reported
in solid line, the classical strategy with PC is dotted and the optimal classical strategy is
dash-dotted. In Panel A the defect distribution, g1(τ), is uniform, while in panel B it is
Gaussian. The distributions g1(τ) for different values of variance are reported over the plots.
The image is from Ref. [2].
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barely overlap. Nonetheless, when a probe with finite energy is used to perform
the discrimination, the intrinsic quantum noise of the state results in a significant
amplification of the overlap on the photon number distribution, i.e. the measurement
outcome distributions. For the best classical input states this is shown in panel (C),
where the two possible photon number distributions are plotted, after the interaction
with the SUT. The overlap area, highlighted in green, offers a visual representation
of the error probability, in particular perr is equal to half the highlighted area. The
overlap cannot be reduced using classical states without increasing the signal energy.
On the other hand, quantum correlations, at the same signal energy, offer a significant
improvement, as already pointed out. Panel (E) shows the marginal photon number
distribution for the quantum strategy described in Sec(4.1.4), conditioned to a given
measurement outcome for the idler system. The overlap between the two distributions
is dramatically reduced, leading to much more efficient discrimination. It is indeed
in the quantum photon number correlations that the nature of the advantage resides.
The effect is to greatly reduce the photon number noise. The second row depicts
a situation in which the overlap of the parameter’s distributions’ is significant. In
panel (B), the distributions have different variances but the same mean value. The
classical discrimination strategy, pictured in panel (D), performs very poorly in this
case, with the two processes being almost indistinguishable. Panel (F) demonstrates,
once again, the quantum strategy can be used to recover some distinguishability.
Note how the best performances (shown in Fig. (4.3-E and 4.3-F) are achieved in
the limit of large M so that µ/M ≪ 1, the regime of validity of the analysis above.

In order to reduce the number of considered parameters, from this point on, we
assume the reference process P0 to be strongly peaked around τ0, i.e. we consider
processes such that g0 (τ)≈ δ (τ − τ̄0), where δ (τ) is the Dirac delta distribution. For
the defective process distribution g1(τ) we consider two different noteworthy cases:
the Gaussian distribution, g1(τ) = G1(τ), and the uniform one, g1(τ) = U1(τ). The
choice of considering a Gaussian probability distribution for the transmittance τ is
justified by the wide range of physical phenomenons it can describe. In the Gaussian
case, the processes are fully characterized by their mean value that, following the
notation introduced in Sec.(4.1.3), we denote τ̄ , and their variance σ2. On the other
hand, the uniform distribution, U(τ) is well suited to describe situations in which
there is a complete lack of knowledge of the nature of the process, whose range can
be limited by the physical constraints of the apparatus. Once more, the processes
are characterized by two parameters only: their mean τ̄ and half-width δ . To assure
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a fair comparison of the error probabilities for Gaussian and uniform distributions,
their parameters are chosen such that the resulting variances are the same. Using the
fact that for a uniform distribution ⟨∆2τ⟩U = δ 2/3 the condition to be imposed is
δ =

√
3σ .

In Fig. (4.5) we report the performance of each of the strategies described above:
the classical one with optimal measurement, C , discussed in Sec(4.1.2), the classical
one with photon counting, C pc discussed in Sec(4.1.3) and the quantum strategy
Q of Sec.(4.1.4). The error probability is plotted as a function of the reference
transmittance, τ0. The number of signal photons is fixed to µ = 105, and as the mean
value of the transmittance generated by the defective process to τ̄1 = 0.997. Panel
(A) reports the case of a uniformly distributed defective process, while panel (B)
considers Gaussian distributed one. The results are shown for different values of
the variance (denoted by different colors). In the range of parameters studied, the
quantum strategy (solid lines) outperforms both the classical lower bound (dashed
lines) and the strategy employing a classical probe and PC (dotted lines). Note
that, when τ0 = τ̄1 both classical and quantum strategies have their maximum error
probability. Indeed, in this configuration, the overlap between the initial distributions
gx is maximum and this initial indistinguishability, intrinsic to the problem, cannot
be reduced whatever the readout strategy adopted, either classical or quantum.
However, the quantum strategy adds less measurement noise with respect to the
classical approach, maintaining a certain discrimination capability, while the classical
approach leads to the saturation of the error probability, perr ∼ 0.5.

4.1.9 Experimental results

The presence of a quantum advantage for the QCT protocol is validated experimen-
tally by implementing the quantum strategy of Sec.(4.1.4) with the setup described
in Sec(4.1.6). The classical strategy with PC is implemented with the same setup
using the fact that the marginal distributions of signal and idler system are very close
to Poissonian ones, meaning that they can achieve the best performance. In other
words the classical strategy is implemented using only the measurement outcomes
on the signal system to make the final decision. In our experimental demonstration
the efficiency on signal and idler branch was estimated to be ηS ≈ ηI = 0.78, mean-
ing that the advantage obtained in a real scenario is less than the one yielded by
theoretical prediction with ideal efficiency presented in Sec(4.1.8).
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Fig. 4.6 Experimental results for the QCT protocol. The experimental and theoretical
error probabilities are plotted as a function of the reference parameter τ0, for different
values of the defective process’ mean value τ̄ and half-width δ A : {δ = 0.001, τ̄ = 0.999},
B : {δ = 0.002, τ̄ = 0.994} and C : {δ = 0.003, τ̄ = 0.997}. On the left-hand are shown
the theoretical curves for ideal detection efficiency (ηS = ηI = 1). In the right column are
reported the experimental error probabilities obtained using the quantum PC strategy, black
dots, and the classical PC one, circles, along with the theoretical curves in both cases and the
theoretical absolute classical bound, C . For the quantum theoretical error probability are
reported green shaded areas representing the confidence interval at one standard deviation.
The experimental efficiencies of the channels are ηS ≃ ηI ≈ 0.76, while the mean number of
signal photons is µ ≈ 105. Image from Ref. [2].
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The experimental results are shown in Fig. (4.6). The three rows in Fig. (4.6)
report the error probability for three different setting of the defective distributions
distributed uniformly: panels A, D with {δ = 0.001, τ̄ = 0.999} , panels B,E with
{δ = 0.002, τ̄ = 0.994}, panels C,F with {δ = 0.003, τ̄ = 0.997}. The reference
process is assumed to be well approximated by a delta function centered in τ̄0 = τ0,
as it was already the case in the previous section. The experimental points are
reported for the classical and quantum strategy with photon counting together with
the theoretical prediction for the quantum strategy Q and the classical performance
with PC,C PC, as well as the classical optimal bound C . The results are displayed
in Fig. 4.6 (D-E-F). The theoretical results with ideal efficiency, ηS = ηI = 1, are
reported as a comparison in Fig. 4.6 (A-B-C). The theoretical curves drawn using
the parameters estimated for each acquisition, the mean numbers of photons, the
efficiencies ηS and ηI of the signal and idler channels (both set to 1 in panels (A-B-
C)), as well as the electronic noise ν of the camera. Data at different values of τ were
collected using a sample with a varying spatial transmittance. From this experimental
dataset different defect distributions can be realized following the procedure outlined
in Sec(4.1.7).

Most points fall within the confidence interval for all three regimes considered.
The quantum strategy always brings an advantage with respect to the classical one
based on PC, even in the case of degraded detection efficiency of the real experiment.
However, in some regions, namely when τ0 start to fall within the range of the defect
distribution, the optimal classical bound C on the error probability can become
smaller than the quantum strategy error probability. This point can be put into
perspective considering Fig. 4.6 (A-B-C), which are constructed with the same
experimental parameters but unit detection efficiency. In this case, the quantum
strategy overcomes any classical one without exception in the region shown. We note
that, as expected, while the classical error probabilities are only slightly modified
by the change in efficiency η , the quantum one improves significantly in the case
of η = 1. This effect stems once again from the fact that, spurious losses η reduce
the photon number correlations between signal and idler channels, an effect relevant
only to the quantum strategy.
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Fig. 4.7 Cost analysis in QCT. The dependence on the signal photon number nS of the total
error probability (perr), false positive (p01) and negative (p10) are shown in Panel A in case
of post processing minimizing perr. The reference process distribution is considered strongly
peaked around the value τ0 = 0.8. The defective process distribution is chosen uniform with
mean τ̄ = 0.9 and half-width δ = 0.09. In panel B, the parameter are the same, but a biased
maximum likelihood post-processing is used with bias coefficient b = 0.6. In panel C, the
number of photons is fixed to µ = 500 and it is analysed the dependence if the cost C on b.
All the other parameters are the same as the previous panels. Panel D reports the optimum
value of b as a function of S. The plots are taken from Ref. [2].
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4.1.10 Cost function analysis

As anticipated in Sec.(4.1.1) the average probability of error is not always the best
cost function. In some situations, it can be required to impose a constraint in either
one of the conditional probabilities p01 or p10, instead of their sum. These two
types of error represent, in fact, different scenarios and the minimization of one
can be deemed more important than the other and it is then natural that the cost
function has to be weighted accordingly. The notion of cost quantifies the fact that
in the mislabelling of a process, the false-positives and false-negatives may not be
equivalent for the operator making the decision. One type of error may be more
“costly" than the other. To extend our analysis to this more general scenario we
introduce the coefficient 0 < S < 1, and define the total cost C of the conformance
test as

C = Sp10 +(1−S)p01. (4.42)

The cost C replaces the total probability of error as the figure of merit to be minimized
for the evaluation of the QCT. The minimization of the cost will also minimize the
total probability of error, perr, if S = 1/2. On the other hand if S ̸= 1/2, minimizing
C will not, in general, yield the minimum total error probability.

In the following, it will be shown how the readout strategies presented in the
previous sections, consisting of PC and a maximum likelihood decision, both for
classical and quantum probes, can be modified to minimize a generic cost C. Fol-
lowing the formalism introduced in the previous sections, the general term for the
probabilities pi j is:

p01 = ∑
n

p(n|P1)Θ[p(n|P0)− p(n|P1)]

p10 = ∑
n

p(n|P0)Θ[p(n|P1)− p(n|P0)] (4.43)

where Θ is the Heaviside step function, equal to 1 if its argument is positive and 0
otherwise.

In Fig. (4.7-A) the false-positive and false-negative probabilities are plotted as
functions of the mean number of signal photons for both the classical and quantum
PC strategies, in the case where perr is the optimized quantity. In both cases, classical
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(red lines) and quantum (blue lines), the false-negative probability tends to be smaller
than the false-positive one, meaning that the procedure is more likely to select the
reference process rather than the defective one. This unbalance is determined by
the fact that the analysis is performed on a reference process having a distribution
strongly peaked around τ0, while, the defective process is distributed uniformly.
In terms of photon counts probability, this results in the fact that, when there is a
significant overlap, the most peaked process, P0, is chosen, while the defective
one is selected in a range that is larger, but also less likely to be measured. This
results in the procedure being biased towards P0. This can also be seen in Fig. (4.8)
where are reported the experimental conditional probabilities of error, along with
the theoretical curves as a function of the reference process transmittance τ0. The
experimental points for the false positive and negative of the classical and quantum
strategies with a PC receiver, can be evaluated using the data analysis procedure,
described in Sec.(4.1.7) and Appendix C, from the same dataset used to evaluate the
total probability of error. The preference toward P0 is more evident when there is a
strong overlap between reference and defective process, i.e. as τ̄0 approaches τ̄1 (set
to τ̄1 = 0.999 in Figure). In this region in fact very little information is available for
the discrimination an the algorithm selects according to the discussed preference,
resulting in the peak in distance between p10 and p01.

The post-processing used up until now, i.e the decision rule selecting y when
p(nnn|Py) ≥ p

(
nnn|P1−y

)
, minimizes the probability of error by construction. To

minimize the cost C, a different post processing is needed. This new post-processing
can be found by modifying the decision rule used up until now, to make it more
likely that one specific process is selected according to some parameters. A new
decision rule can be defined such that y is selected when:

B(y)p(nnn|Py)≥ B(1−y)p
(
nnn|P1−y

)
(4.44)

where we have introduced:

B(0) =
1−b

2

B(1) =
1+b

2
(4.45)

with b ∈ [−1,1]. Hereinafter, we will refer to this new post-processing as "biased
maximum likelihood". If a positive b is selected, the defective process will be chosen



70 Quantum Conformance Test and its applications

Fig. 4.8 Theoretical and experimental conditional probabilities of error for the quantum and
classical strategies with PC receiver. The experimental conditional probabilities of error, for
unbiased post-processing, are reported along with the theoretical ones for a uniform defect
distribution with τ̄ = 0.999 and δ = 0.001. The mean number of signal photons is µ ≈ 105

and the channels efficiencies are ηS ≃ ηI ≈ 0.76. The plot is reported from Ref. [2]

more often, while a negative b makes it more likely that reference one is selected.
In other words, the value of b can be varied to shift p01 and p10, reducing the cost
function C at the cost of the increase of the total error probability. This can be seen
in Fig. (4.7.B) where p01 and p10 have been moved, with respect to the balanced
case of Panel A, and the total error probability slightly increased, for both the
classical and quantum strategies. The quantum advantage found when minimizing
the error probability is well preserved with the biased maximum likelihood decision.
The optimization of C is performed by varying the coefficient b. As an example,
consider the case in which S = 1/4, meaning that each false positive is considered
three times as costly as a false negative. In this situation, a positive value for b is
required to reduce the number of times the reference process P0 is selected overall,
thus reducing the false positive probability p01. In Fig. (4.7-C) it is reported the
dependence of C on b(0). Both in the quantum and classical cases, as expected, there
is a single optimum value for b, that minimizes the cost. Fig. (4.7-D) shows the
dependence of the optimum value of b on S, with respect to the cost C.
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4.1.11 Discussion

In the first section of this chapter, we discussed the QCT, a protocol addressing the
conformance test task, exploiting quantum probe states to show an advantage over
classical measurements. In particular we considered test where the systems under
test, representing possible outputs of the unknown process to be monitored, are be
modelled by pure loss channels.

In Sec.(4.1.2) we found a lower bound on the error probability that can be
achieved in the discrimination task, using any classical source paired with an optimal
measurement. In Sec.(4.1.4) we discussed a strategy based on quantum states, namely
TMSV states, in conjunction with a simple receiver consisting of a PC measurement
and a maximum likelihood decision. It was shown how this quantum strategy is able
to surpass the performances of any classical strategy. The quantum enhancement is
due to the high degree of correlation (entanglement) of TMSV states, whose nature
is fundamentally quantum. To give an additional experimental benchmark, we also
analysed, in Sec.(4.1.3) the case of a classical source paired with photon-counting
measurements at the receiver.

The quantum advantage was shown to persist for a wide range of parameters. The
advantage exists even in presence of losses due to possible experimental imperfec-
tions, and the results were validated with an experimental realization of the protocol.
An experimental advantage was showed in a realistic scenario where experimental
losses amounted to more than 20%, highlighting the robustness of the protocol.

The states used to achieve these results are relatively easy to produce and the
receiver design is of simple implementation as well, making the results obtained
particularly significant in view of possible practical applications of the protocol with
present technology. It is remarkable that an advantage was found notwithstanding the
fact that the bound on the performance of classical states, C , is not tight, meaning
that the actual quantum advantage could effectively be higher. Moreover in the next
section we will show how the proposed quantum strategy, relying on an independent
measurement over individual systems is able to surpass the performance of classical
states even when joint measurements over a collection of systems are allowed for
the latter. The QCT protocol discussed in this chapter could find applications in the
foreseeable future in significant problems concerning the monitoring of production
process of any object probed with quantum states. As an example, the results showed



72 Quantum Conformance Test and its applications

on loss channel QCT can be used to enhance the accuracy in the identification of
issues in concentration and composition of chemicals production.

4.2 Quantum readout of an imperfect memory

The formalism introduced above with the QCT protocol is suited to analyse a variety
of problems beside the production process monitoring proposed in the original
formulation. In the following we will apply this formalism to the readout of an
imperfect digital memory. This problem was first studied in Ref. [3], an original
contribution of this Thesis work. An imperfect memory is defined as a memory
composed by cells encoding binary information in values of transmittance that
are not known exactly but are extracted from two well characterized probability
distributions. In other words rather then encoding the information in two real values
of transmittance τ0 and τ1, as it was the case for the ideal memory cells in the
quantum reading protocol discussed in Chapter 3, an imperfect memory encodes the
information in two classical random variables T0 and T1. This description is more
suitable to describe real scenarios. In fact the encoding of classical data in a physical
support can be done up to some level of accuracy due to errors and the imperfection
of the writing process. Moreover, some degradation of the storage data can happen
over time because of physical or chemical instability of the support. Any realistic
read-out strategy should take into account this uncertainty and aim to minimize its
effect.

In the following we will give a formal statement of the readout problem with
imperfect memories and compare the performance that can be obtained by classical
and quantum strategies. The analysis will be extended beyond the single cell readout
by considering a more general classical benchmark on a multicell memory where
collective measurements of the probed cells are allowed. It will be shown that
local, cell-by cell, quantum readout remains anyway better in recovering the stored
information even when compared to a global classical benchmark. A multicell
memory can be seen as a large block of cells for which the information is stored,
according to some classical encoding, in classical codewords expressed by a set of
cells configurations. In the limit of very large memories (infinite number of cells) the
maximum amount of information retrieved can be found with a constrained (at fixed
energy) optimization of the Holevo bound [56, 58, 57], discussed in Sec.(2.3) of
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Chapter (2). A solution of this optimization for classical input states and imperfect
encoding will be shown.

4.2.1 Memory cell model and local readout strategies

Consider an optical memory composed of D cells, each storing one bit of information
in two possible values of transmittance τ0 and τ1. As always the readout of each
cell is carried out using a transmitter emitting a bipartite optical probe in a state ρ ,
consisting of M optical modes in the signal system, interacting with the cell while
L modes of the idler system are sent directly to a receiver, where a joint POVM
is performed on signal and idler modes. A decision on the value, y = 0,1, of the
recovered bit is taken after classical post processing of the measurement result. An
ideal memory, like the one described in the Quantum reading protocol (Chapter
3), stores the information in one of two real transmittance parameters, τ0 or τ1 of
each cell, modeled as a pure loss quantum channel Eτ . Similarly a single cell of
an imperfect optical memory stores one bit of information in one of two possible
random values of transmittance, Ti, with i = 0,1, each having known probability
distribution gi(τi), and prepared with the same prior probability p0 = p1 = 1/2. In
other words the problem of information retrieval from an imperfect memory cell is
a quantum channel discrimination problem, between convex combinations of pure
loss channels Eτ . Hence the problem is formally the same as the QCT and the results
found in the previous section can be used. While in the QCT protocol the most used
figure of merit was either the total probability of error or some weighted one, in the
context of memory reading, the information recovered by the procedure is a more
fitting figure of merit. Remember that given the total probability of error perr the
information recovered I is:

I = 1−H(perr) (4.46)

where H(p) = −p log2 p− (1− p) log2(1− p) is the binary Shannon entropy. In
the following, we will compare the performance of the local quantum read-out
strategy based on TMSV input states, where local means that each cell is probed and
measured separately, with respect to three different classical benchmarks: the two
local ones discussed in the QCT protocol, namely the absolute classical bound and
the classical bound with PC measurements and finally a newly introduced global
optimal classical strategy. In the last one, an array of D cells is probed by a tensor



74 Quantum Conformance Test and its applications

product state ρ⊗D, and the receiver is allowed to perform a collective measurement
across the memory.

To this end let us introduce the information recovered by each of these strategies:

• Optimal classical strategy. The optimal classical strategy refers the perfor-
mance of classical states (defined in Eq. (3.2)) paired with an optimal measure-
ment. For this scenario the quantity C in Eq. (4.15) establishes a lower bound
on the probability of error. For more details see Sec(4.1.2). We point out that
C may not be a tight bound, so it may be not possible to find a strategy that
saturates it. From C we can define an absolute upper bound on the information
that can be recovered by classical states, with local readout, as:

Iabs
C := 1−H(C ) (4.47)

• PC classical strategy. The second strategy consist in classical states paired
with the PC receiver described in Sec.(3.2.1). This strategy is described in
Sec.(4.1.3) and the best performance achievable is reached by input states
having Poisson photon number distribution and expressed by the quantity by
C PC in Eq. (4.37). Consequently we define the information recovered:

IPC
C := 1−H(C PC) (4.48)

• Quantum strategy. The final local strategy considered consists of a collection
of M copies of TMSV states paired with the PC receiver. The performance in
this scenario, discussed in Sec (4.1.4), is given by the quantity Q in Eq. (4.41).
The information recovered in this case is:

IPC
Q := 1−H(Q) (4.49)

In the following section we will introduce a new bound on the performance that can
be achieved by classical states when encoding and collective measurement over a
very large array of cells are allowed. We call this bound the global classical limit.
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4.2.2 Global classical limit

A real memory is constituted by a very large array of D cells. In informational
terms, every single cell can be seen as encoding the binary random variable X in
an ensemble {pi,ρi}, i = 0,1. A direct encoding (one bit per cell) may not be the
more efficient storing strategy if the array of length D can be probed in parallel and
a joint measurement on all the outputs is allowed. In general it is most efficient
to use codewords to store information onto the array of cells. The strategies that
we will consider for the retrieval are such that each cell is probed by a copy of a
state ρ , meaning that the total probing state is of the form ρ⊗D. The information
is recovered by a joint global POVM measurement at the output. The multicell
storage/retrieval of information can be seen as a transfer of information through the
memory, characterized in terms of quantum channels. Consequently the maximum
rate of information, ID, that can reliably stored and retrieved per single channel use
(cell of the memory) is upper bounded [62] by the Holevo quantity χ , introduced in
Sec.(2.3) :

ID ≤ χ(ρ) := S(ρ)−∑
i

piS(ρi) (4.50)

where ρ = ∑i piρi. In this case i = 0,1, ρi = Egi[(Eτi ⊗mathds1)ρ] are the states
after the interaction with the memory cell and pi is the probability for the cell to be
prepared with either one of the values of Ti, that in our case is pi = 1/2. In the case of
D → ∞, that usually is a good approximation since digital memories are usually very
large, the Holevo-Schumacher-Westmoreland (HSW) theorem, discussed in Sec.(2.3),
assures that a POVM exist such that the bound is saturated. The optimization of
the quantity in Eq. (4.50) over any state ρ at fixed mean signal energy µ provides
an ultimate limit on the rate of information per bit that can be stored and retrieved
accurately. However this optimization is not easy to perform on the full space of
states. The maximization becomes significantly easier if it is restricted to the class of
classical input states. Let us define the maximum global classical information, χcla,
as the maximization of χ over all classical states:

χcla := max
ρcla

χ(ρ) (4.51)

To find χcla we first find the Holevo quantity for a single mode coherent state and,
following the procedure of a similar proof in Ref. [62], given in the context of an
ideal memory, then we show that the quantity found is equal to the classical capacity.
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Consider an input single mode coherent state |α⟩⟨α| for the readout procedure.
The constraint on the number of photons (see Eq(4.4)) gives the condition |α|2 = µ .
Let us denote the Holevo quantity for this state as χα . To compute χα we use the
fact that pure loss channels map coherent states into coherent states, Eτ(|α⟩⟨α|) =
|
√

τα⟩⟨
√

τα|, giving for the output states after the interaction with the memory cell:

ρ
α
0 = Eg0[|

√
τα⟩⟨

√
τα|] =

∫
dτg0(τ)|

√
τα⟩⟨

√
τα|

ρ
α
1 = Eg1[|

√
τα⟩⟨

√
τα|] =

∫
dτg1(τ)|

√
τα⟩⟨

√
τα| (4.52)

Since there are no idler modes we omitted them from the notation. We have then:

χα = S(p0ρ
α
0 + p1ρ

α
1 )−∑

i
piS(ρα

i ) (4.53)

The computation of the entropy is complicated by the fact that the distributions gi are
in general continuous ones. To overcome this problem a uniform discretization of the
distribution can be performed to some appropriate dimension k. In this approximation
the integrals over τ in Eq. (4.52) are substituted by finite sums,

∫
dτ → ∑

k
i . With this

substitution it is easy to see how each entropy term in Eq. (4.53) can be rewritten as
some convex combination of a finite subset of maximum dimension 2k of coherent
states. The calculation of χα than can be reduced to the calculations of terms in the
form:

S

(
K

∑
i=1

qi|
√

τiα⟩⟨
√

τiα|

)
(4.54)

where qi are suitable probability coefficients depending on the initial distributions
gi and the term considered. For the first term on the right hand side of Eq. (4.53)
the coefficients qi will depend also on the probabilities pi, that in this discretization
represent the initial distributions gx(τ), and the sum will in general be on K = 2k
terms. For the two entropies in the summation, the sum will go over K = k terms.

The set {|√τiα⟩} is a non-orthogonal basis of a K-dimensional Hilbert space.
The entropy can be computed using the fact that for any state ρ =∑

K
i=1 qi|

√
τiα⟩⟨√τiα|,

we have:
S(ρ) = S(QG) (4.55)
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where Q = Diag[qi] and G(i, j) = G( j, i) = ⟨√τiα|√τ jα⟩ are the elements of the
Gram matrix G. We can write, in fact [81]:

S(ρ) =− ∂

∂n
Tr(ρn)

∣∣∣
n=1

(4.56)

And

Tr(ρn) =
K

∑
i1,...,in=1

qi1 · · ·qin⟨
√

τi1α|√τi1α⟩ · · · ⟨√τinα|√τi1α⟩=

=
K

∑
i2,...,in=1

qi2 · · ·qin⟨
√

τi2α|√τi3α⟩ · · · ⟨
√

τin−1α|√τinα⟩GQG(in, i2) =

=
K

∑
in=1

qinG(QG)n−1(in, in) = Tr[(QG)n] (4.57)

And combining the results of Eq. (4.56) and Eq. (4.57) yields the equality reported
in Eq. (4.55).

Eq. (4.55) allows to skip the orthogonalization of the subspace, which would
represent a computational heavy task for large values of k, so it is useful even when a
closed form may not be available for a given probability distribution and for arbitrary
k. A numerical evaluation of χα can be performed using Eq. (4.55-4.56). The
Holevo quantity χα for the continuous set is recovered as the limit for k → ∞ of
χα(k). In the following section we will show how χα coincides with the classical
capacity χcla.

The fact that the classical capacity can be computed using a single-mode coherent
transmitter can be proved using the argument of Ref. [62] that we report in the
following.

Consider the class P of pure coherent transmitters. The class formed by convex
superpositions of elements of P constitutes the class of classical states. It can
be proved [62], using the convexity on ρ of the Holevo information χ , that if the
capacity of the class P , χP , is concave in the number of photons µ , it must be
larger or equal to the capacity of the whole class of classical states:

χP ≥ χcla (4.58)
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Fig. 4.9 Comparison of information recovery. The information recovered by the classical
strategies and the quantum one is compared for different parameters of the transmittance
distributions g0(τ0) and g1(τ1), both assumed gaussian. In the first row, the mean value of g1
is fixed to τ̄1 = 0.982 and the standard deviations of the distributions to σ1 = σ0 = 0.001.
In panel A, the mean value of g0 is fixed to τ̄0 = 0.972 and the information is shown as a
function of the mean number of signal photons µ . In panel B the mean photon number is
fixed to µ = 104 and the information is reported as a function of τ̄0. In the second row, the
parameters of the transmittance distributions are changed in order to increase their overlap,
with τ̄1 = 0.976, τ̄0 = 0.966 and σ1 = σ0 = 0.0025. In panel D µ = 104. The plots are
reported from Ref. [3].
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χP is in fact concave in this case and the concavity can be checked numerically,
so Eq. (4.58) holds. On the other hand given that P is a subclass of the classical
states, the capacity of P cannot be larger than the one of classical states, so that Eq.
(4.58) must be an equality. Then the capacity of classical states is saturated by pure
coherent states.

To complete the proof, one must simply show that a single coherent mode
saturates the capacity of P . This can be done [62] using the fact that, acting with
unitary transformations on the output states one of any pure classical input, one can
rearrange the signal photons in a single mode obtaining the same result as a single
mode input [62]. Given that the Holevo quantity is calculated on the output states
and that the von-Neumann entropy does not change under unitary transformation
this means that single mode coherent states can achieve the best performance in P ,
i.e. χα = χP = χcla, that concludes the proof.

4.2.3 Results

To analyse the readout performance of the readout strategies outlined, in the follow-
ing the distributions gi(τi) of the random variables Ti will be assumed to be Gaussian
and with the mean value denoted as τ̄i and the standard deviation as σi. Fig. (4.9)
reports the information recovered per cell, for two possible configurations of the
transmittance’s distributions. In the first row it is shown a situation in which the
overlap between g0 and g1 is negligible. In this case, although the transmittance
values are uncertain, in principle the value of the bit is codified in an almost unam-
biguous way, and an ideal readout would be able to almost always recover the bit
correctly. However, quantum fluctuations introduce further noise, which reduces
the final distinguishability, and at fixed signal energy the information that can be
recovered will be limited. Panel A shows the information recovered as a function
of the mean number of signal photons µ . The information recovered increases
as the signal energy is increased, up until it saturates at the maximum amount of
information for a single binary cell, i.e. one bit. In the range shown in the figure the
saturation is only visible for the quantum strategy, IPC

Q , reported in red, that reaches
it earlier than any of the classical ones, even earlier than the global capacity bound
χ . This shows how with the use of quantum resources a reliable recovery of the
information can be reached with significantly less energy than otherwise needed. In
Panel B the mean number of signal photons is fixed, along with all other parameters,
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𝑎𝑏𝑠

Fig. 4.10 Quantum Gain in the readout. The quantum gain G is reported as a function of the
mean number of signal photons µ and the mean value of one of the encoding transmittance
distributions, τ̄0. In the upper row, the parameters are fixed to σ0 = σ1 = 0.001 and τ̄1 =
0.997. Starting from the left, GPC is the quantum gain over to the performance of classical
states an photon counting receiver, Gabs over the absolute bound of classical states considering
local readout, and Gχ over the bound on the classical performance with global measurements.
The lower row reports the same figures of merit but the parameters are changed to σ0 = σ1 =
0.0025 and τ̄1 = 0.991. Plots from Ref. [3].
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and it is shown the dependence of the information recovered on the value τ̄0. The
recovered information is higher when τ̄0 is far from the fixed mean value τ̄1, as it
can be expected, and starts decreasing when the two values get too close. However,
the strong degree of correlation of the source in the quantum case, reflects in a much
narrower low-informative region, the deep in Fig. 4.9B, due to the reduction in
quantum fluctuations. In the second row of Fig. 4.9 it is reported the case of a more
significant overlapping of the initial distributions, due to their increased standard
deviations, showed in the bottom-left box. The dependence on the mean photon
number µ is showed in panel C while in panel D it is showed the dependence on the
transmittance τ̄0. The information saturates at a value smaller than 1 bit (specifically
0.8) due to the initial overlapping of the distributions. In view of the initial ambigu-
ous encoding, in fact, not even a perfect measurement could recover full information.
Panel D displays an effect similar to panel B, with a drop in information recovered
as τ̄0 approaches the fixed value of τ̄1. The low-informative region is widened w.r.t
the case of non-overlapping distributions. In this scenario, where there is a greater
part of indistinguishability not due to fluctuations, the quantum strategy still offers a
significant improvement over the classical ones.

Fig. 4.10 show contour plots of the quantum gain that as in Chapter (2) is defined
as the difference:

G = IPC
Q − Icla (4.59)

where Icla, can represent each one of the three classical bounds defined in Eq.s (4.47),
(4.48) and (4.50). GPC, Gabs and Gχ is the quantum gain w.r.t IPC

C , Iabs
C and χcla

respectively. The plots in Fig. 4.10 report the gain as a function of the mean number
of photons µ and of the transmittance τ̄0. The other parameters are fixed. In the first
row the standard deviation of both distributions is fixed to σ0 = σ1 = 0.001, a value
small enough to reduce the initial overlapping. The quantum gain in all three cases is
significant in most of the region of analysis. The quantum strategy, realized with PC
measurement, performs very well against the same measurement strategy realized
with classical probes, with the gain GPC reaching values above 0.9 bits. Such a high
gain means that in this region using a quantum probe would allow to recover almost
all the information in region whereas the same detection strategy with classical states
would almost completely fail. A similar result is found for the gain over the optimal
local classical bound, Gabs, although the values of the gain are slightly lower, with
a maximum of around 0.8 bits. It is remarkable that the gain Gχ over the classical
global limit, representing the bound on the information recovered per cell after a
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𝑎𝑏𝑠

Fig. 4.11 Efficiency analysis The quantum gain is showed for different values of overall
efficiency η . Panel A shows the dependency of the gain on the main number of signal
photons µ . The case of ideal efficiency η = 1 is reported in solid line, while the cases
η = 0.9 an η = 0.8 are reported in dashed and dot dashed lines respectively. The parameters
of the distributions g0 and g1 are τ̄0 = 0.972, τ̄1 = 0.982 and σ0 = σ1 = 0.001. In panel B
the mean number of signal photons is fixed to µ = 104 and the dependency on the mean
transmittance τ̄0 is showed. Plots from Ref. [3]
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global measurement, is significantly higher than zero in a wide region and peaks
at values higher than 0.7 bits per cell. These results shows how, even if not trivial
classical encoding over large memories is used, quantum correlation still offer an
improvement. For small mean number of photons, where quantum fluctuations are
more relevant, the range of transmittance showing a significant advantage is wider
as it can be seen in all three panels. In the second row the effect of increasing the
standard deviation to σ0 = σ1 = 0.0025 is shown. This increase leads to a large
overlapping between the initial distributions in the region explored. The effect is,
in general, a reduction of the gain due to the initial ambiguity of the encoding
that reduces the value of accessible information a recovery to less than one bit and
consequently the space for quantum advantage.

As extensively discussed in the previous chapter for the QR protocol, and in the
previous section for the QCT one, optical losses play a central role in experimental
realizations. We remind that losses are accounted by the term 1−η , with η being the
efficiency 0 ≤ η ≤ 1 and that while for the classical case the losses are equivalent to
an effective reduction of the probing energy, in the quantum case losses also have a
hindering effect on the correlations thus reducing the advantage that can be reached.
The effect of losses on the gain is reported in Fig. 4.11. The gain for the distribution
case of non-overlapping initial distribution for different values of the efficiency
η . In panel A it is displayed the gain as a function of the mean number of signal
photons µ . An advantage over the classical local bounds is preserved up to η = 0.8
(20% of losses), although the magnitude of the gain is reduced. The advantage w.r.t.
the classical capacity bound is preserved for higher values of efficiency, η = 0.9,
but it is lost at η = 0.9. We point out that the figure reported refers to gain per
cell of information, so even a small fraction of gained information could result
in a sizeable improvement over very large memories. Panel B reports the gain as
a function of the mean transmittance τ̄0. Along with the overall reduction of the
gain, due to losses it can be observed a widening of the low-informative region in
the τ̄0 range. Finally, in Fig. 4.12 we compare the performance of the retrieval
strategy proposed in this section with the one using only the two central values of
transmittance τ̄0 and τ̄1, ignoring the distributions characterizing the memory. The
information IPC

C recovered using classical states and photon counting is compared
with the information IPC,MV

C recovered with the same resources but using only the
mean values of the distributions. As expected, the characterization of the memory,
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Fig. 4.12 Comparison of post-processing. In the plot is shown the information recovered with
two maximum likelihood post processing, one IPC

C , using full information on the distributions
of T0, and T1, as discussed in the main text, and the other IPC,MV

C using only the mean values
of the distributions τ̄0 and τ̄1. The parameters are fixed to τ̄0 = 0.925, σ0 = 0.005, τ̄1 = 0.965
and σ1 = 0.01. Figure form Ref. [3].

i.e. the knowledge of the distribution of the physical parameter used for the encoding,
and its use in the decision algorithm bring an advantage in the readout.

4.2.4 Discussion

In this second section of the chapter, the effect of an imperfect characterization of a
memory cell on its readout performance was analysed. It was considered the case of
an optical memory storing a bit of information in two values of transmittance T0 and
T1 that are not known with arbitrary precision. In other words T0 and T1 are classical
random variables for which we assumed Gaussian distributions. For the readout
task a quantum readout strategy, consisting of TMSV states transmitter and a PC
receiver was compared with three classical informational limits, namely the classical
optimal bound for a single-cell readout, the best classical performance achievable
with a PC receiver, and the classical capacity limit allowing collective measurements
over a memory composed of a large number of cells. It was shown how the local
quantum strategy reaches a notable advantage in terms of bit recovered per cell over
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all of them. Remarkably this is true even when considering the global classical
strategy, as anticipated at the end of the Sec.(4.1). To study the performance in view
of possible applications, we considered the effect of optical losses in this scenario
as well, showing the robustness of the protocol to this effect, with the advantage
preserved for losses around 20%, the value achieved in experiments in the similar
realizations of the other protocols discussed. We also demonstrated how taking
properly into account the parameter distributions, when available, in the decision
algorithm allows, in general, to optimize the readout performance. Albeit the work
discussed in this section is mainly focused on a model of digital memory, the results
can be applied to different scenarios involving convex superposition of loss channels.



Chapter 5

Quantum enhanced pattern
recognition

In this chapter we will discuss an application to the enhanced quantum sensing
techniques, discussed in the previous chapters, to a complex task of practical interest,
namely pattern recognition. We will start by giving a formal definition of the patter
recognition problem, highlighting its relation with the single-pixel readout, and
then showing how the enhancement offered by a quantum readout translates to a
dramatic improvement in the pattern classification performance, both theoretically
and experimentally. We will discuss two different experimental setups. In the
first method the images are acquired with a scanning procedure, i.e. each spatially
distributed pixel is read independently at different times. In the second one all the
image is probed at once in a single shot, which may be preferable in applicative
scenarios. While the difference between the two configurations is mainly technical
the single shot acquisition introduces a not trivial trade-off between spatial resolution
and quantum enhancement that we will comment.

5.1 The patter recognition problem

A binary pattern is defined as an array of d ×d binary pixels. Each pixel encodes
one bit of information. Let us consider a physical realization of the pixel that, as in
Chapter 3, physically stores the information in two possible values of transmittance,
τ0 and τ1. A pattern recognition task is defined as the classification of patterns into
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predetermined categories, an example being the classification of handwritten numeri-
cal digits. Since we are considering patterns stored in a physical support the first step
to be performed is a sensing procedure to efficiently extract the information. The
sensing should be designed to minimize the pattern classification error probability,
pC

err. As in the previous chapters, the general sensing procedure can be described
by an input state ρ , in general bipartite to allow ancillary assistance, interacting
with the object encoding the information, and an output POVM measurement Λ

followed by classical post-processing, as shown in Fig. (5.1.A). In the following, the
measurement Λ considered we will be restricted to be only local, single-pixel, ones.

After the sensing the outcome is processed classically. For local measurements
this means that a binary value is assigned to each pixel with a certain probability
of error ppx

err. Then the pattern, represented by a certain configuration of the cell’s
values is classified by a given classical algorithm. The bit-flip probability ppx

err is
related to the pattern classification error pC

err by a generally non-linear map MC

defined by:
pC

err = MC(ppx
err) (5.1)

clearly the map MC will depend on the classification problem at hand, i.e. the
images space in which the patterns are defined and the classes considered, and it
is reasonable to assume it to be a monotonic map for any effective classification
algorithm. Given the monotonicity of MC the minimization of pC

err is equivalent to
minimizing ppx

err, over all possible input state and POVM measurements.

We consider once again sensing performed by bosonic states at fixed energy, so
the single-pixel readout problem is the same as what discussed in Chapter 3. The
readout strategies considered here are:

• Optimal classical strategy: Classical input states ρcla, i.e. convex superpo-
sition of coherent states, are paired with a theoretical optimal measurement
Λ. This strategy was analysed in Sec.(3.1), and its performance is given in
Eq. (3.3). However, the measurement needed to saturate this theoretical bound
appears non-feasible experimentally.

• PC classical strategy: An experimentally feasible classical strategy based on
photon counting (PC) measurements at the receiver, with performance close
to optimality. This second strategy is discussed in Sec.(3.2.2) and its best
performance is reported in Eq. (3.28).
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• PC Quantum strategy: The quantum strategy is realized using a product of
Two Mode Squezed Vacuum (TMSV) States, ⊗M|TMSV⟩, as input and a PC
measurement. Its performance is analysed in Sec.(3.2.3).

We point out that the cells’ size and dimension of the array d2, can be a native
characteristic of the physical support but also they can be practically determined
by resolution properties of the sensing apparatus, for example the pixel structure of
a camera or the resolution of an optical system, so that, in practice, τ0 and τ1 are
intended as the values corresponding to each readout pixel. As anticipated we exper-
imentally realized the quantum enhanced pattern recognition in two configurations,
a scanning-like and a parallel, single-shot one. These experimental realizations are
discussed in the following section.

5.2 Experimental Pattern recognition

The two experimental schemes are pictured in Fig. 5.1 (B-C). The state ρqua =
⊗M|TMSV⟩S,I is produced by travelling wave Spontaneous Parametric Down Con-
version (SPDC) of type II in a non-liner crystal pumped by a continuous laser. Due
to the conservation of the transverse momentum q, in particular qS = −qI , signal
and idler photons are emitted along correlated directions (spatial modes) which are
mapped into symmetric pixels of a CCD camera. As was the case in the previous
Chapters, in experimental conditions, the exposure time of an image acquisition is
much longer than the coherence time of the process, resulting in many temporal
modes (on the order of 1011) for each acquisition, giving a total number of photons
collected, µ in the order of a few thousands. The conditions M ≫ 1 and µ ≪ 1 which
maximize the quantum advantage are clearly fulfilled and, at the same time, so that
the single-pixel photon statistics is practically indistinguishable from the Poisson
one. For this reason, the best classical performance with photon counting can be
experimentally reached by considering only the signal beam in this configuration,
according to the results of Sec.(3.2.2) stating that the classical limit in Eq. (3.28) is
reached by any Poisson distributed input states. The experimental setup is the same
described in the previous chapters and a more detailed description can be found in
Sec.(3.2.4) and Sec. (4.1.6).



5.2 Experimental Pattern recognition 89

A

B

C

Fig. 5.1 Scheme of Pattern Recognition. Panel A shows the general configuration of a
pattern recognition problem. An image composed of binary pixels, having one of two
possible values of transmittance, is probed by a bipartite state ρSI . The signal (S) system
interacts with the image. The idler (I) system is directly sent to the measurement apparatus
where a joint measurement is performed with the signal. The result of the measurement
are processed classically to classify the patterns. Panel B show a possible experimental
configuration, called scanning-like, in which each pixel of the image is read separately and
the total image is "scanned" with sequential single-pixel measurements. Panel C shows a
different configuration in which the image is read in a single shot and pairwise correlation of
the different modes of the initial state are used to enhance the classification.
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Traveling wave SPDC is, in general, spatially broadband. Hence there are many,
in the order of several thousands, pairwise correlated spatial modes [82–84] available
for spatially resolved multi-pixel quantum readout. However, this introduces a trade-
off between the spatial resolution, in terms of the number of spatial pixels available
in a single-shot measurement, and the magnitude of reduction of the pixel error
probability due to quantum correlation. This point is discussed in Sec.(5.2.2).

In the next section we will describe the "scanning-like readout" experimental
configuration, that yields the best quantum enhancement. In section (5.2.2) we will
present the "multi-pixel readout" that allows spatially resolved pattern acquisitions
within a single shot measurement, a scenario closer to real applications.

5.2.1 Scanning-like readout

The scanning-like scenario mimics a readout in which the physical binary pattern
encoded by the transmittance τ0 and τ1 is scanned point-by-point. This configuration
is shown in Fig. (5.1-A). First, a large number of independent measurements of two
well characterized transmittances τ0 and τ1 is taken. A bit value (y = 0,1) for each
measurement is assigned according to Bayes rule following the procedure discussed
in Sec.(3.2.1). Here, the photon-counts registered into a large region of the CCD
array, collecting a large number of signal and idler spatial modes respectively, are
summed up to mimic a single-pixel. This allows to get the best possible correlation
between the signal and idler number of photons, nS and nI . The result of this
procedure are two sets of binary data A0 = {y(0)k }k=1,..,K and A1 = {y(1)l }l=1,..,L for
the known values of the transmittance τ0 and τ1 respectively, where L+K ≫ d2.
This same procedure is performed both for the quantum strategy and the classical
one, where only the signal beam is used.

From those sets the average experimental pixel error probabilities can be evalu-
ated. The results are reported in (5.2.A). The plot shows the probability of error as
a function of one of the transmittances τ0, while the other value is fixed to τ1 = 1,
along with all the other parameters. The experimental points are reported both for
the classical (red) and quantum (blue) strategies realized with PC measurements,
along with their theoretical curves, and compared with the theoretical bound on the
classical performance (green), defined by Eq. (3.3). In general the error probability,
for all strategies, increases as the two transmittances become closer and closer, as
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Fig. 5.2 Single-pixel readout error probabilities. The plot reports the error probability in the
readout of the single-pixel as a function of one of the transmittances, τ0, while the other is kept
fixed at τ1 = 1. The estimated mean number of photons per pixel is µ = (1.45±0.05) ·105,
the efficiencies are ηS = 0.795± 0.01 and ηI = 0.79± 0.005, and the electronic noise is
ν ≈ 6 ·103. The probability of error for the quantum strategy is reported in blue, the classical
strategy with photon counting in red and the best classical strategy in green.

expected. However, through the range of parameters showed, the strategy employing
quantum states sensibly outperforms the classical one paired with the suboptimal PC
measurement and clearly surpasses also the theoretical absolute classical bound.

The data from the set A0 and A1 can be virtually rearranged to reproduce the
outcomes of a sequential spatial scanning of any given d ×d binary pattern. For this
reason we call this configuration "scanning-like readout". Note that, for an accurate
evaluation of the pattern recognition task, which is the goal of the present analysis,
the used approach is highly preferable with respect to the real scanning of spatial
samples. In fact, the last one would requires the physical realization and scanning of
a large number of different spatial sample, which is hardly feasible and actually not
necessary.
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Fig. 5.3 Readout of handwritten digits with different strategies. Two examples of binary
pattern of dimension 28x28 with quantum and classical (Photon counting) readout noise.

The pattern recognition performance was evaluated using the MINST handwritten
digit dataset [85], containing a training set composed of 60 thousand samples of
handwritten numerical digits and a test set of 10 thousand ones. An experimental
test set for the pattern recognition evaluation is assembled by reproducing all the test
patterns by picking experimental data from the sets A0 and A1. Some examples of
digit contained in the dataset, and a comparison of the effect of the noise in either a
classical and a quantum binary readout are shown in Fig. (5.3).

The noisy digits produced by the sensing were classified using a k-Nearest
Neighbor (k-NN) classifier. A k-NN classifier compares the pattern tested with all
the patterns in its training set. A metric is decided to evaluate the distance between
the tested pattern and the training ones. In the case of binary patterns the most natural
metric is the Hamming distance, defined as the number of discording pixels for two
patterns. According to the metric chosen, the k closest patterns in the training set
to the tested pattern are selected and the class of the test pattern is assigned as the
more common among the k closest training patterns. The most intuitive example is
given by the case k = 1 when the algorithm simply assigns the class of the closest
pattern in the training set to the tested one. The classification error PC

k−NN is reported
in Fig. (5.4.A) as a function of the transmittance τ0. Note how the performance
of the (k-NN) classifier is related in a highly non-linear way to the single-pixel
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Fig. 5.4 Classification error with the K-NN algorithm. The plots show the classification
error in the handwritten digit recognition as a function of one of the encoding transmittance
value, τ0, while τ1 = 1. The points reported refer to a classification performed with a k-NN
algorithm. Experimental points are reported for the quantum (blue) and classical (red) photon
counting readout along with the theoretical predictions. The green band reports a simulation
of the performance obtained with a pixel readout at the absolute classical limit.

error probability. For smaller τ0, roughly corresponding to a classical pixel error
probability below 0.3 (see Fig. 5.2.A), the classification is very robust to noise. In
this range, in fact, the classification error is very small for all the strategies and,
consequently, the quantum advantage is also rather small. For higher transmittance
τ0, however, the algorithm becomes very sensitive to the pixel readout noise level
and here the advantage provided by the quantum strategy is amplified. For instance,
for τ0 = 0.9983, a modest pixel error probability advantage, from ppx

cla,PC = 0.39 to
ppx

qua,PC = 0.33, causes the classification error to be reduced from PC
k−NN ≈ 46% to

PC
k−NN ≈ 21%.

It is natural to wonder if the amplification of the quantum advantage observed
for the k-NN classifier is a property of this specific algorithm or is a more general
behavior characterizing the pattern classification task. To partially address this
question, we performed the same analysis with another classification algorithm that
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uses a more complex and refined Machine Learning approach: a Convolutional
Neural Network (CNN).

While for the k-NN algorithm a noiseless training set was the best option this
is not the case for the CNN. If no noise is introduced during the training stage,
thus not allowing the CNN to "adapt" to a noisy classification, the algorithm could
perform poorly when presented with very noisy test images. This is confirmed by
the numerical investigation, showing that, within statistical fluctuations, the best
classification performance is achieved when the algorithm is trained with training
patterns having similar levels of noise as the test ones. Fig. (5.5) reports the results
for CNN classification performance.

By comparing Fig. (5.5) and Fig. (5.4), it appears that the behaviour of CNN
and k-NN classifiers is qualitatively very similar. In particular, the results confirm
that the advantage in sensing provided by quantum resource, in the single-pixel
readout, is preserved and even amplified when considering further complex non-liner
post-processing task, such as pattern recognition.

5.2.2 Parallel multi-pixel readout

The scanning-like readout of the previous section represents a meaningful proof-
of-principle, necessary for a clean and faithful comparison with the theory. In this
section we consider the case of a multi-pixel parallel readout. This configuration
is depicted in Fig. 5.1 B. The pattern is acquired in single-shot, as it would be
convenient in various realistic scenarios. The TMSV state produced by SPDC is
spatially multimode characterized by a Gaussian intensity cross-correlation with
finite coherence length lc, which can be much smaller than the beam size, so that a
spatially parallel readout can be performed using a single source. Pairwise correlated
modes are detected by symmetric pairs of pixels in the CCD chip as represented in
Fig. 5.1 B, so that thousand pixel pairs are in principle non-classical correlated at
the same time. However, to efficiently collect the correlated modes, the size of the
pixel lD must be larger than the coherence length. This poses a limit in the number
of independent pixel available for a parallel readout. It is convenient to introduce a
"collection efficiency" ηc, representing the probability that, given a photon detected
in a pixel namely of the signal arm, its twin arrives in the appointed pixel in the
idler arm. Let us denote the single-arm efficiencies ηS and ηI , for the signal and
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Fig. 5.5 Classification error with the CNN. The classification error as a function of τ0 (τ1 = 1)
is reported for a CNN. Simulated points are reported for the quantum (blue) and classical
(red) photon counting readout. The classification performance in this case depends on the
level of noise of the training set. The best classification is shown in the solid line, while the
performance obtained by training with the theoretical predicted level of noise is reported in
dashed lines.
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the idler arm respectively. In this way, the probability to detect a pair of correlated
photon in two selected pixels is the product ηcηSηI . The photon statistics and the
correlation are modified by the non-unitary efficiency. In particular, the covariance
of the detected photon numbers nS and nI , is:

⟨∆nS∆nI⟩= ηcηSηI⟨∆nS∆nI⟩in (5.2)

where ⟨∆nS∆nI⟩in is the initial covariance of the source. More in depth discussion
on this topic is presented, for example, in Ref.s [75, 86]. The collection efficiency
ηc increases as the dimension of the detection pixel becomes much larger than the
coherence area of the source. In the single cell-readout configuration of Chapter
(3-4) or the ’scanning-like readout’ presented in the last section, it is possible to
collect a large amount of coherence areas in a single detection pixel, so that ηc → 1,
whereas when spatial resolution is required, ηc will typically be smaller than 1. The
consequence of this reduced correlation efficiency is a trade-off between the spatial
resolution and the amount of the quantum advantage in the single-pixel readout,
since the classical strategies do not use correlations to reach the best performance,
while the TMSV quantum one does. The enhancement of the quantum signature as
the size of the detection pixel increases can be seen by plotting the Noise reduction
Factor (NRF), orange curve in Fig. (5.6). The NRF, defined as NRF = ⟨∆2(nS −
nI)⟩/⟨nS + nI⟩ [82, 75], is an indicator of non-classicality. Assuming balanced
channels efficiency ηS = ηI = η0, can be written in terms of ηc as NRF = 1−η0ηc

[75]. The effective resolution was reduced by performing an averaging filter, of
appropriate size, in order to preserve the number of pixels in the final image.

Fig. 5.6 A shows the experimental pixel error probabilities for both classical
an quantum PC readout in function of the resolution, namely the pixel size. On
the one side, the increase of the pixel size has the direct consequence of raising the
number of signal photons per pixel, that explains the dropping of classical error
probability. On the other side, quantum error probability decreases faster than the
classical analogous, because the detectable quantum correlation increases while
loosing spatial resolution.

Here, the comparison of the experimental results with a theoretical bounds is
not straightforward and we will avoid it. In fact, the binary pattern are physically
fabricated with certain characteristic spatial features. When the image is binned at a
lower resolution, comparable with the spatial features, for a pixel that falls across
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Fig. 5.6 Multi-Pixel readout performance as a function of the spatial resolution. In the left
panel the single-pixel error is shown, as well as the NRF (see main text). The mean number
of photons per pixel, at full resolution is µ = 1380±20, while the total channel efficiencies
of signal and idler branches are ηS = 0.795±0.01 and ηI = 0.815±0.01. In the right panel
it is reported the error in the pattern classification with a k-NN algorithm.

the edge between τ0 and τ1 the binary model is no longer valid. Such border effects
becomes not negligible as the resolution decreases and they are very complicated to
be accounted for in a theoretical model. In fact the number of pixels on the border,
the distribution of their effective average transmittance depends on the characteristic
of the set of patterns.

We evaluated the pattern recognition performance once again on the MINST
handwritten digit dataset using a k-NN algorithm for the classification. While the test
dataset is composed of 10 thousand patterns, producing and acquiring 10 thousand
samples is a not feasible and unnecessary. In fact, the error in the classification
can be broken down in two contributions. The first contribution is intrinsic to the
classification algorithm while the second one comes from the noise in the readout. In
our case, with a pixel readout error larger than 0.3, the classification error is clearly
dominated by the noise in the sensing. For reference, the classification error with
noisy readout is in the range of 40− 60% while the intrinsic classification error
without noise is of the order of 4%. So, we assume that the classification error can
be well studied printing only a small subset of pattern from the original MINST set,
namely 10, and performing on each of them one thousand different acquisitions with
independent noise realizations, forming a total dataset of 10 thousands noisy test
images. The samples, containing digits from 0 to 9, were realized on a AR-cooated
glass slide combining laser lithography, sputtering deposition of titanium in high
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vacuum and lift-off technique. The transmittance of the deposition is estimated as
τ0 = 0.987±0.003.

The resulting classification error is reported in Fig. 5.6B as a function of the
spatial resolution. The results are reported up to a resolution of 39 µm which is
equivalent to an effective rescaling of a factor 3 with respect to the original size
of the dataset (28x28 pixels). They confirm the main results of the of the previous
section, in sensing scenario dominated by quantum noise, a relatively small quantum
enhancement in the single-pixel probability, namely from 0.33 to 0.29, is converted
in a substantial improvement, around 20%, in the classification.

5.3 Discussion

In this section, we demonstrated experimentally how quantum-enhanced sensing
offers a significant advantage in the task of pattern recognition. As a test bed we have
considered the problem of classification of handwritten digits. A quantum readout
strategy based on TMSV states and photon counting measurement brings a relevant
advantage in the classification errors with respect to any classical sensing.

The experiment was realized in two different configurations. The first one, a
"scanning-like readout", was performed with the aim to reach the maximum quantum
advantage at the price of a higher acquisition time, due to the fact that a scanning
of the sample is required. In this case, the quantum strategy was able to clearly
outperform the optimal classical bound.

In the second configuration a single-shot multipixel readout of the pattern was
considered. In this case it was shown a large advantage with respect to the classical
bound that uses photon counting, an interesting result in view of possible real
applications.

To show that the quantum advantage is independent of complexity of the clas-
sification algorithm the same data was processed both with a k-NN classification,
a simple but robust strategy, and a more computationally complex Convolutional
neural network algorithm. In both cases the results obtained were very similar, the
quantum advantage in the sensing is maintained and often amplified in the pattern
recognition task. The results presented here are particularly promising for short
terms application in biological spatial pattern recognition. Nonetheless, they also
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pave the way to experimental studies of quantum-enhanced pattern recognition in
the spectral and temporal domain.



Chapter 6

Conclusions

In this dissertation we analysed different protocols in the field of quantum hypothesis
testing (QHT). This field, while very rich from a theoretical standpoint it’s still at
a stage in which experimental demonstrations are somewhat lacking, with some
exceptions like the achievements in the specific case of quantum illumination. With
the aim of fill the gap, the original results presented in the previous chapters showed
experimentally an absolute quantum advantage in QHT protocols that may have
significant importance for applications. In particular we focused on the quantum
reading (QR) of classical information encoded in a digital memory, as well as
quantum conformance test (QCT) of production process and pattern recognition
tasks. Here by absolute we mean an experimental advantage obtained over theoretical
ultimate bounds on the classical performances, such as the ones reported in Eq.(3.3)
and Eq.(4.15). These results are, in fact even more noteworthy when considering
the rarity of practical demonstrations in this particular field. Moreover we want to
point out that even though the results were indeed proof-of-principle, the technique
used are relatively simple when compared to what is required for other quantum
technologies or even some sophisticated protocols in classical communication. In all
the instances reported, an advantage was shown using TMSV states, that nowadays
are routinely produced in quantum optics laboratories, and well developed correlated
photon counting techniques. The robustness shown by these techniques to detection
noise, and particularly optical losses, suggest that even though these realization are
really recent, having all been published in the last couple of years, possible real
applications may not be so far.
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The first original contribution that we discussed, in chapter 3, was the experi-
mental realization of the QR protocol. This protocol has been proposed in 2011 but
an experimental demonstration was lacking. In our realization we implemented a
very simple receiver design consisting in photon counting measurements followed
by a maximum likelihood decision. As it turns out this simple design, paired with
TMSV input states is enough to reach a convincing advantage in the protocol, close
to the theoretical predictions of the original proposal, at least considering ideal
detectors. Moreover this design showed a very good resilience to optical losses, with
a significant portion of the advantage preserved in experimental conditions in which
the total efficiency was slightly lower than 80%. We stress once again the importance
of this point, as optical losses are often the dominant deviating effect between ideal
performances and practical one.

The QCT protocol, introduced in Chapter 4, describes the discrimination of
two production processes, namely discovering possible deviations of a process with
respect to a reference. Each process outcome is represented by a classical ensamble
of quantum channels and thus the QCT can be seen as a generalization of the QR
protocol, from the discrimination of pure loss channels, to the discrimination between
convex combinations of channels. For this protocol we found an analytical expression
for a lower bound on the probability of error, characterizing the performance of
classical states. With the same quantum readout strategy of the QR, we demonstrated
theoretically and experimentally also for the QCT an advantage with respect to
the classical counterparts. Additionally a deep analysis of the false positive and
false-negative types of discrimination errors has been done, in view of their practical
importance in the context of QCT. Moreover, we showed how the formalism and
results obtained in the QCT protocol can be used to model a different problem,
namely a digital memory with imperfect writing. In this context we demonstrated
how the quantum strategy with direct single cell encoding and readout is not only
able to beat the classical strategy in the same scenario, but remarkably also a more
general, global classical strategy. A global strategy consists of codeword encoding
over a large amount of cells, and a global output readout. In this scenario we were
able to find a limit to the performance by formulating the problem in terms of mutual
information over repeated uses, which is accounted by the Holevo bound.

Finally in Chapter 5 we showed that the quantum enhancement offered by
quantum states to the sensing can dramatically improve the performance in a complex
task such as pattern recognition. It turns out that the relation between the pixel error
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and pattern classification error is not a linear function. As a exemplary case, we
considered the classification of handwritten digits. When evaluating the classification
performance, even an apparently modest quantum reduction of the single pixel error
results in a significant improvement in the classification. The quantitative advantage
obtained clearly depends on the classification algorithm used, and for this reason
we considered two paradigmatic examples: a k-nearest neighboor classifier and
a convolutional neural network. The first is one of the most simple classification
algorithm avaliable but resilient to input noise, while the second one is far more
complex. The overall results were very similar for both algorithms. Our results
strongly suggest that in this task the quantum advantage is non only preserved but
even amplified in some regions. This is indeed a very interesting result in view of
possible application of quantum techniques to complex tasks.

In conclusion in this work we tried to approach the field of quantum hypothesis
testing/ quantum channel discrimination in a more application oriented way. In the
fast developing field of quantum technologies an analysis of the practical feasibility
of the various protocols is indeed very important, but still missing in some cases.
The protocols we discussed were for the most part concerned with pure loss channels
a very well studied topic. In particular, in quantum metrology it has been known for
many years that photon counting measurements yield near optimal results, in the
estimation of the loss parameter. Nonetheless, as far as we know, we were the first to
analyze their performance in the discrete case. Maybe unsurprisingly we found that,
as in the continuous counterpart, photon counting measurements perform very well.
The analysis of the practical attainability will play an increasingly important role
in quantum hypothesis testing as the fields approaches near technological maturity,
and we think that drawing inspiration from fields such as quantum metrology or
the also very closely related quantum communication could be very beneficial,
with the opposite being of course true as well. The experimental realization of
protocols in QHT is of huge interest in view of the relevance and variety of their
possible applications. For the discrimination of bosonic losses these applications
range from the enhancement of classical data readout, to conformance testing, e.g.
for chemical concentrations and compositions, spectroscopy, biological pattern
recognition, unknown objects ranging and position finding and many others.
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Appendix A

Photon number distribution after a
loss

To convince oneself of Eq.(3.16) one can consider the more intuitive unipartite case.
A generic bosonic input state ρI can be written, in the Fock basis, as:

ρI =
∞

∑
m,n=0

cn,m|n⟩⟨m|=
∞

∑
m,n=0

cn,m
(â†)n
√

n!
|0⟩⟨0|(â)

m
√

m!
(A.1)

The effect of a pure loss channel, as already pointed out, is the same as the one of a
beam splitter (BS), where only one port is considered at the output (see Fig.(A.1)).
Let us consider the state ρ entering one of two input ports of a BS, that we denote I.
The state of the other port, denoted as E, is the vacuum state, ρE = |0⟩E⟨0|, since
we are considering pure losses. If necessary one could consider, for example, a
thermal states in this port, and the result would describe an evolution consisting in
both losses and addition of thermal noise. Let us denote T the output of interest
of the beam splitter, i.e. the one corresponding to the transmission of the input I,
and R the other one. Both T and R are initially in a vacuum state, ρT = |0⟩T ⟨0|
and ρR = |0⟩R⟨0|. The initial total state of the system is the tensor product of all
the subsystems, ρTOT = ρI ⊗ρE ⊗ρR ⊗ρT . For bosonic input the evolution of a
beam splitter is described by the already mentioned input-output relations. Inverting
the input-output relations yields for the input field, in terms of the transmitted and
reflected ones, â =

√
τ ât − i

√
(1− τ)âr. The total evolution of ρTOT after the BS

can be then computed by substituting â in terms of the transmitted and reflected
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Fig. A.1 Pure loss channel as a Beam splitter. A pure loss channels can be seen as a beam
splitter in which one of the output ports is traced out.

fields:

ρOUT =
∞

∑
m,n=0

cn,m
(â†)n
√

n!
(|0⟩I⟨0|⊗ |0⟩E⟨0|⊗ |0⟩R⟨0|⊗ |0⟩T ⟨0|)

(â)m
√

m!
=

= |0,0⟩I,E⟨0,0|⊗
∞

∑
m,n=0

cn,m
(
√

τ â†
t + i

√
(1− τ)âr

†)n
√

n!
(|0,0⟩R,T ⟨0,0|)

(
√

τ ât − i
√

(1− τ)âr)
m

√
m!

The state of the subsystem RT , ρR,T , is then obtained by tracing out the systems I
and E:

ρR,T = trE,I(ρOUT ) =

=
∞

∑
m,n=0

cn,m
(
√

τ â†
t + i

√
(1− τ)âr

†)n
√

n!
(|0,0⟩R,T ⟨0,0|)

(
√

τ ât − i
√

(1− τ)âr)
m

√
m!

(A.2)
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For bosonic fields ât and âr are commuting operators so that the powers can be
written in terms of their binomial expansions:

ρR,T =
∞

∑
m,n=0

cn,m

n

∑
k=0

m

∑
j=0

wm,n,k, j|n− k,k⟩R,T ⟨m− j, j| (A.3)

wm,n,k, j :=
(

n
k

)(
m
j

)√
τn+m−k− j(1− τ)k+ j

√
n− k!

√
m− j!

√
k!
√

j!√
n!
√

m!

Tracing out the system R yields the output state of the channel Eτ(ρI):

Et(ρI) = trR(ρR,T ) =
∞

∑
l=0

⟨l|ρR,T |l⟩=

=
∞

∑
m,n=0

cn,m

min{m,n}

∑
j=0

(
n
j

)(
m
j

)√
τn+m−2 j(1− τ) j√n− j!

√
m− j! j!√

n!
√

m!
|n− j⟩T ⟨m− j|

(A.4)

The photon number distribution for the output is then:

⟨n|Eτ(ρI)|n⟩=
∞

∑
m=0

cm,m

m

∑
j=0

(
m
j

)(
m
j

)
τm− j(1− τ) j(m− j)! j!

m!
δ (n,m− j) =

=
∞

∑
m=n

cm,m

(
m
n

)
τ

n(1− τ)n−N =
∞

∑
m=n

p0(m)B(n|m,τ) (A.5)

the term
(m

n

)
τm(1− τ)n−m = B(n|m,τ) is, in fact, a binomial distribution with

m trials and probability of success τ and cm,m = ⟨m|ρI|m⟩ = p0(m) is the photon
number distribution of the input state. The process can be seen as each photon
undergoing a Bernulli trial with probability of success τ giving raise to a binomial
distribution with m trials. Eq.(A.5) shows how the effect of the channel Eτ on an
arbitrary initial photon number distribution p0(n) is to compound it with a binomial
distribution. Eq.(3.16) follows from the fact that only the identity acts on the idler
modes so that the initial distribution is composed with a binomial only on the signal
system.



Appendix B

Equivalence between individual and
collective measurements for
independent modes

In this appendix we show how there is no advantage in measuring the photons number
separately for each mode rather than performing a collective measurement. Consider
the M independent modes to be measured separately. The joint distribution of the M
pairs {ni}i=1...M, ni = (ni

S,n
i
I), follows from Eq.(3.29) and from the independence

of the modes:

P({ni}|τ) =
M

∏
i=1

|cn(ni
I)|2B(ni

S|ni
I,τ) (B.1)

Let’s now consider a discrimination, between τ0 and τ1, done using each of the out-
comes ni. In particular let’s consider the ensemble M = {{ni}|∑M

i ni
S = nS,∑

M
i ni

I =

nI}. The probability of success in the discrimination of this ensemble , ps(M ),
is the average over it of the probability of success of the single configurations,
ps({ni}). Suppose that for a given configuration {ni} the value chosen is τu, then
the a posteriori probability is given by:

p(τu|{ni}) = p({ni}|τu)

p({ni}|τ0)+ p({ni}|τ1)
(B.2)

that give also the probability of success for the configuration {ni}. If τu is the choice
for one of the configurations, it must be the choice for all the other elements in M
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as well, in fact substituting Eq.(B.1) in the condition for the choice P(τu|{ni}) ≥
P(τ1−u|{ni}) yields:

τ
∑

M
i ni

S
u (1− τu)

∑
M
i ni

I−∑
M
i ni

S ≥

τ
∑

M
i ni

S
1−u (1− τ1−u)

∑
M
i ni

I−∑
M
i ni

S (B.3)

That depends only on the sums of the occupation numbers and not on the specific
configuration, since the sums are fixed in M . Indeed solving the inequality above
for ∑

M
i ni

1 = nS yields the same threshold in Eq. (3.34). The probability of success
for each configuration in M is given by Eq.(B.2) so that the ensemble averaged
probability of success is:

ps(M ) = E[ps({ni})]M =

= ∑
{ni}∈M

p({ni}|τu)

p({ni}|τ0)+P({ni}|τ1)
pM ({ni}) (B.4)

Where PM ({ni}) is the distribution of the configurations in M given by:

pM ({ni}) = p({ni})
∑N p({ni})

=

=
p({ni}|τ0)+ p({ni}|τ1)

∑N (p({ni}|τ0)+ p({ni}|τ1))
=

=
p({ni}|τ0)+ p({ni}|τ1)

Z
(B.5)

substituting in Eq.(B.4) we get:

ps(M ) =
1
Z

N

∑P({ni}|τu) (B.6)

The summation on the right hand side of Eq.(B.6) is the sum of the independent
probabilities of all the configurations in M ,i.e. of all the configurations having a
certain sum {nS,nI}, so it must be the probability distribution of the pair {nS,nI}.
This can also be seen by an explicit calculation of this term:

N

∑P({ni}|τu) = (|cn(ni
I)|2)M

τ
nS(1− τ)nI−nS ∑

M

M

∏
i

(
ni

I
ni

S

)
(B.7)
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where (|cN(ni
2)|2)M =∏

M
i |cN(ni

2)|2 has been taken out of the sum because it depends
only on nS and nI and not on the configuration. For the sum on the right-end side we
have:

∑
M

M

∏
i

(
ni

I
ni

S

)
=

∑i ni
I=nI

∑

∑i ni
S=nS

∑
M

∏
i

(
ni

I
ni

S

)
=

=
∑i ni

I=nI

∑

(
nI

nS

)
=

(
nI +M−1

nI

)(
nI

nS

)
(B.8)

Where the Vandermonde equality was used to solve the sum on ni
S and the sum on ni

I

was over a quantity not depending on it so it gave just a multiplication constant. Sub-
stituting this result gives ∑M p({ni}|τu) = P({n}|τu), {ni}= {ns,nI}, as expected.
Eq.( B.6) can be then rewritten as:

ps(M ) =
p({n}|τu)

p({n}|τ0)+ p({n}|τ1)
= ps({n}) (B.9)

Where the constant Z can be evaluated both by using the same identity used for the
numerator or by normalization of ps(M ). Eq. (B.9) shows that as anticipated the
best performance offered by M modes separate measurements of independent modes
coincides with the one given by a collective measurement.



Appendix C

QCT Data analysis

The total probability of error in the QCT procedure, perr, can be divided in two sepa-
rate contributions, as shown in Eq.(4.1). p10 is the probability of error conditioned
to the object being produced by the process P0, while p01 refers to the conditional
case in which the correct process is P1.

The process P0 is assumed to be strongly peaked around a value of transmission
τ0, as discussed in Sec.(4.1.8). In this scenario the contribution p10 can be evaluated
experimentally using an object with transmittance τ0 and repeating the discrimination
procedure ND times, to construct the experimental dataset of outcomes D . The
frequency of error fD(P1|P0) on D will converge to the probability of error p10 as
ND → ∞.

On the other hand, the process P1 will have an arbitrary, but known, probability
density, denoted g1(τ). To estimate the probability p01, a dataset of outcomes D

needs to be constructed in a way that is representative of a test performed on objects
distributed according to the density g1(τ). This can be achieved by experimentally
creating a collection of L datasets Di each generated from a different value of
transmittance τi, 1 ≤ i ≤ L, in a range [τmin,τmax] determined by the distribution
g1(τ) one wants to approximate. Consider, for example, the target distribution to
be a uniform one having mean value τ̄ and half-width δ . This distribution can be
approximated by taking measurements with L different object having transmittance
τ equispaced in the interval [τmin = τ̄ −δ ,τmax = τ̄ +δ ]. In the case of a Gaussian
distribution, having mean value τ̄ and variance σ2, measurements can be taken in
the interval [τ̄ − kσ , τ̄ + kσ ], where k can be chosen depending on the accuracy
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required for the approximation. In general, for an arbitrary distribution g1(τ) a value
0 ≤ r ≤ 1 can be set and τmin and τmax determined such that:∫

τmax

τmin

g1(τ)dτ = r (C.1)

The final dataset used to estimate p01 can be constructed in different ways. Let us
denote as Ni the number of points in each dataset Di. The most straightforward
one is to take a number of measurements Ni, such that the union dataset DU =⋃L

i=1 Di directly approximates the outcome of g1(τ), i.e. taking proportionally more
measurement for more probable values τi.

An approach that gives more flexibility is to fix the number of measurements
taken for each τ to a given N̄, i.e. Ni = N̄ ∀i. In this case, the union dataset DU will be
composed of NU = LN̄ measurements extracted ideally from a uniform distribution
in [τmin,τmax]. A procedure of statistical weighting, consisting in discarding a certain
amount of measurement generated from selected τi, can then be used to rearrange the
union dataset, to create the final one Dg, approximating the outcomes of g1(τ). This
procedure is described in detail in the following subsection. The downside of using
this approach is that the number of measurements performed will be higher than
the number of measurements that will compose Dg. However, there are different
practical advantages. In practical scenarios in fact there is a limited control in
selecting an exact value for the transmittance τ , so it may be difficult to have exactly
equispaced values. This situation is shown in Fig.(C.1). Panels A and B report the
plots of an equispaced sampling of the interval [τmin = 0.5,τmax = 1] in the ideal
and noisy cases respectively. When the values τi are affected by random noise their
distribution is affected as well as shown in panels C and D. Panel C refers to the ideal
case where the empirical distribution of τ is uniform as expected. In this ideal case,
selecting before the measurements appropriate coefficients Ni could be an effective
way to achieve a good approximation of the target transmittance distribution. In
the noisy case however, whose distribution is reported in panel D, the distribution
is not only non uniform but, in most cases, unknown before the experiment is
performed. For this reason, supposing a priori a uniform distribution of the sampling
and selecting the values Ni accordingly could result in a bad approximation of g1(τ)

by the empirical transmittance distribution.

Since the amount of noise varies depending on experimental conditions in cases
in which the deviation from a uniform distribution of the empirical one is small, or in
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Fig. C.1 Sampling of a transmittance interval. Panel A reports an ideal equispaced sampling
for the transmittance τ in the interval [0.5,1]. Panel B reports the same plot in a noisy case,
i.e. where the τi are taken equispaced but a value can be assigned up to a certain precision.
Panels C and D are the histograms referring to panels A and B respectively. Image taken
from the supplementary materials of Ref.[2].
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cases in which it can be well characterized beforehand, acting on the coefficient Ni

remains a viable solution. Another advantage of the a posteriori statistical weighting
procedure is the fact that the procedure can be repeated with the same initial data
with different target distributions, meaning that the probability of error over different
distributions can be evaluated without having to perform the experiment again.

A formal description of the statistical weighting procedure used to create a dataset
Dg approximating one generated by a probability density g1(τ) will be given in the
following.

Approximation using statistical weighting

Using the notation of the previous section, the initial experimental union dataset
DU will be composed by NU = LN̄ measurement results where each group of N̄
measurements refers to a different transmittance τi, 0 ≤ i ≤ L, where the values τi

are a sampling of the interval [τmin,τmax] selected according to Eq.(C.1).

The aim is to generate a dataset Dg to be a good approximation of an ideal dataset
generated with measurement with objects having transmittance distributed as g1(τ).

In order to do this let us define the map H Π
ρ , from a distribution on τ onto a

distribution G(X) of the experimental outcomes X (e.g. the distribution of photon
pairs):

G(X) = H Π
ρ [g1(τ)] (C.2)

The subscript ρ and superscript Π denote the dependence of the map on the initial
state used to probe τ and the measurement performed (for brevity they will be
omitted from here on after).

We want to operate a transformation W on our initial union dataset, DU
W−→ Dg,

such that the points in Dg are distributed as X ∈ Dg ∼ G(X). Let us introduce the
weight vector w = [w1, ...,wL]. DU is composed of L subsets Di, each composed of
N̄ experimental points, Di = [X1

i , ...,XN̄
i ]. From w we define the transformation Wi

acting on each Di, Di
Wi−→ D ′

i , to extract a random fraction N′
i = ⌊wiN̄⌋ of experimen-

tal points from Di. We can then define the transformation W as the one acting on
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DU and yielding the union set of all the D ′
i :

DU
W−→ Dg =

L⋃
i=1

D ′
i (C.3)

A successful approximation is therefore dependent on the optimization of the vector
w.

To perform this optimization a figure of merit has to be introduced. To do so let us
define a probability density function, f (τ), approximating the empirical distribution
in DU . This can be done using a normalized histogram. The interval [τmax,τmin] is
divided into K sub-intervals with equal width, where K is selected via an adequate
algorithm. A categories vector, τC = [τC

1 , ...,τ
C
K ], is defined taking τC

i as the middle
point between the edges of the i-th sub-interval. The empirical distribution f (τ) is
then defined as:

f (τ) =
K

∑
i=1

ci

2lL
Θi(τ) (C.4)

where ci are the number of occurrences on the i-th sub-interval, Θi(τ) is a step, L is
the number of different values of τ and l is the half width of each sub-interval:

Θi(τ) =

1 τi − l ≤ τ ≤ τi + l

0 otherwise
(C.5)

l =
τmax − τmin

2K
(C.6)

Using Eq.(C.2) the probability distribution in Eq.(C.4) defines a distribution for the
experimental outcomes, F(X):

F(X) = H [ f (τ)] (C.7)

By construction W transforms F(X) in F ′(X)∼G(X) and since the map H does not
depend on the probability distribution, the effect of W is equivalent to transforming
f (τ) in f ′(τ)∼ g1(τ):

H [ f (τ)] = F(X)
W−→ H [ f ′(τ)] = F ′(X)∼ G(X) = H [g1(t)]

f (τ) W−→ f ′(τ)∼ g1(τ) (C.8)
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The weight vector w can be optimized by introducing the parameterized function
fw(τ):

fw(τ) =
K

∑
i=1

ciwi

2lL
Θi(τ) (C.9)

depending on w = [w1, ...,wK] under the normalization constraint:

∫
fw(τ)dτ = 1 −→

K

∑
i=1

ciwi

L
= 1 (C.10)

Note how in this configuration, the transformation acts separately on each of the K
sub interval rather than on each of the L values of τ measured, so that the vector w
has dimensionality K ≤ L.

Clearly the initial empirical distribution is f (τ) = fw0 , where w0 = [1, ...,1] and
the target function is f ′(τ) = fw’, where w’ is the optimal weight defined to obtain
the best approximation f ′(τ)∼ g1(τ). Formally, let us define the objective function
to be maximized:

T (w) =
∫ √

g1(τ) fw(τ)dt (C.11)

and the optimal vector w’:
w’ = argmaxwT (w) (C.12)

T (w) is the Bhattacharyya coefficient (BC) between the distribution fw(τ) and g1(τ),
a measure of their similarity, and ranges between 0 and 1. T (w′) gives a quantitative
measure of how close the experimental dataset can be arranged to a dataset produced
by the distribution g1(τ). A threshold value 0 ≤ Tth ≤ 1 can be defined such that
the approximation is accepted if T (w′) ≥ Tth and rejected otherwise. Some other
constraint must be imposed before performing the optimization, namely:

0 ≤ wi ≤ 1 ∀i (C.13)

The first inequality follows from the fact that the statistical weight has to be non
negative and the second one from the fact that the statistical weight represents the
fraction of data that are selected from each dataset and since the data are considered
fixed, i.e. new data cannot be added after the initial dataset has been created, all wi

must be less than 1.



122 QCT Data analysis

The fixed data condition in Eq.(C.13) is not compatible with the normalization
constraint in Eq.(C.10), but this issue is easily solved taking into account the number
of experimental points in each dataset in the formulation of our problem.

The number of experimental data in the original union dataset is NU = LN̄. Since
the transformation W consists exclusively in discarding data, the number of points in
the final dataset will be NT ≤ NU . It is clear that NT will influence the variance of
the estimated gain, so it makes sense to fix it before the optimization process rather
then leaving it as a free parameter. We can then redefine fw(τ) as:

fw(τ) =
K

∑
i=1

NU

NT

ciwi

2lL
Θi(τ) (C.14)

This yields the new normalization condition:

K

∑
i=1

NU

NT

ciwi

L
= 1 (C.15)

The new definition for fw(τ) shifts the normalization condition in Eq.(C.10), imposed
on the number L of different τ , to the new one in Eq.(C.15) where it is imposed on the
number of experimental data in the final dataset. With this new definition, the initial
distribution is f (τ) = fw0(τ), where in this case w0 = [w0, ...,w0] and w0 = NT/NU .
In this formulation, w is exactly a statistical weight vector, i.e. defines the fraction
of experimental data taken from each sub interval dataset, and the optimal vector
w′, can be found maximizing T (w) under the fixed data constraint of Eq.(C.13)
and the normalization one in Eq.(C.15), that are now compatible conditions. The
optimization of eq.(C.11) under the K + 1 constraint described can be solved, in
general, by numerical methods. This procedure, will yield the optimal value w′. The
choice of the sub-intervals number K could influence the outcome of the procedure,
but we decided not to include it in the optimization process to avoid unnecessary
numerical complications, as good approximation can be reached in a wide variety of
cases performing the binning before the optimization, using well known algorithms.
The binning in our case was performed using Sturges rule.

Fig.(C.2) shows some examples of the approximation of a distribution from
simulated experimental datasets. In the examples reported the target distribution is a
Gaussian one with mean τ̄ = 0.65 and standard deviation σ = 0.1 and is reported
in each panel as a red line. In the first row, Fig.(C.2).A, the experimental values of
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Fig. C.2 Approximating a distribution with different initial dataset. Row A shows the initial
dataset and the best approximation for different numbers of experimental data taken, N̄ = 150
and N̄ = 500. Row B reports the same situation when the initial dataset is taken in a smaller
interval. Row C considers a "faulty" initial dataset, having few measurements around the
peak of the target distribution. The image is taken from the supplementary materials of
Ref.[2].
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τ are taken from a uniform distribution in [τ̄ −3.5σ , τ̄ +3.5σ ], meaning that τmin

and τmax are selected imposing r = 0.9995 in Eq.(C.1). Starting from the left, the
first panel shows the initial experimental distribution. The second and third panels
show the best approximation in the situation in which are considered measurement
with L = 100 different values of τ and, for each τ , the experimental points taken
are N̄ = 150 and N̄ = 500 for the second and third panel respectively. The number
of points of the final dataset is fixed to NT = 10000 in both cases. If not enough
points can be discarded, as it is the case in the second panel, a good approximation
is difficult to reach. In the third panel a lot of experimental points are taken and, as
can be expected, a good approximation can be reached for most of the distributions .
In Fig.(C.2).B the same scenario considered in row A is reported but considering
an initial dataset taken in a smaller interval, such that r = 0.997 (half width of
[τmin,τmax] equal 3σ ). Since the datasets are randomly generated a direct comparison
may be unfair. Nonetheless, it can seen that reducing the interval may be useful since
more data will be taken at the peak of the target distribution. In the second panel,
referring again to the situation of N̄ = 150 we can see a better approximation with
respect to the same panel in row A. Finally, row C reports the results in the same
situation but in case of a faulty initial dataset, i.e. one having very few values around
the peak of the target distribution. In this scenario even with N̄ = 500 experimental
data for each τ (third panel) a good approximation cannot be reached, suggesting
that in those cases it may be worth performing the measurements again.
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