SpringerBriefs in Mathematics

Series Editors
Nicola Bellomo, Torino, Italy
Michele Benzi, Pisa, Italy
Palle Jorgensen, Iowa, USA
Tatsien Li, Shanghai, China
Roderick Melnik, Waterloo, Canada
Otmar Scherzer, Linz, Austria
Benjamin Steinberg, New York, USA
Lothar Reichel, Kent, USA
Yuri Tschinkel, New York, USA
George Yin, Detroit, USA
Ping Zhang, Kalamazoo, USA

SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Briefs are characterized by fast, global electronic dissemination, standard publishing contracts, standardized manuscript preparation and formatting guidelines, and expedited production schedules.

Typical topics might include:

A timely report of state-of-the art techniques A bridge between new research results, as published in journal articles, and a contextual literature review A snapshot of a hot or emerging topic An in-depth case study A presentation of core concepts that students must understand in order to make independent contributions

SpringerBriefs in Mathematics showcases expositions in all areas of mathematics and applied mathematics. Manuscripts presenting new results or a single new result in a classical field, new field, or an emerging topic, applications, or bridges between new results and already published works, are encouraged. The series is intended for mathematicians and applied mathematicians. All works are peer-reviewed to meet the highest standards of scientific literature.

Titles from this series are indexed by Scopus, Web of Science, Mathematical Reviews, and zbMATH.

More information about this series at https://link.springer.com/bookseries/10030

Matteo Cicuttin • Alexandre Ern • Nicolas Pignet

Hybrid High-Order Methods

A Primer with Applications to Solid Mechanics

Matteo Cicuttin
Department of Electrical Engineering
and Computer Science, Montefiore
Institute B28
University of Liège
Liège, Belgium
Nicolas Pignet
ERMES
Électricité de France R\&D
Palaiseau, France

ISSN 2191-8198
ISSN 2191-8201 (electronic)
SpringerBriefs in Mathematics
ISBN 978-3-030-81476-2
ISBN 978-3-030-81477-9 (eBook)
https://doi.org/10.1007/978-3-030-81477-9
Mathematics Subject Classification: 65N12, 65M12, 74S05, 65N30, 74B05, 74B20, 74C15, 74M10, 74M15, 74J05, 65-04
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Hybrid High-Order (HHO) methods attach discrete unknowns to the cells and to the faces of the mesh. At the heart of their devising lie two intuitive ideas: (i) a local operator reconstructing in every mesh cell a gradient (and possibly a potential for the gradient) from the local cell and face unknowns and (ii) a local stabilization operator weakly enforcing in every mesh cell the matching of the trace of the cell unknowns with the face unknowns. These two local operators are then combined into a local discrete bilinear form, and the global problem is assembled cellwise as in standard finite element methods. HHO methods offer many attractive features: support of polyhedral meshes, optimal convergence rates, local conservation principles, a dimension-independent formulation, and robustness in various regimes (e.g., no volume-locking in linear elasticity). Moreover, their computational efficiency hinges on the possibility of locally eliminating the cell unknowns by static condensation, leading to a global transmission problem coupling only the face unknowns.

HHO methods were introduced in [77, 79] for linear diffusion and quasiincompressible linear elasticity. A high-order method in mixed form sharing the same devising principles was introduced in [78], and shown in [6] to lead after hybridization to a HHO method with a slightly different, yet equivalent, writing of the stabilization. The realm of applications of HHO methods has been substantially expanded over the last few years. Developments in solid mechanics include nonlinear elasticity [26], hyperelasticity [1], plasticity [2, 3], poroelasticity [16, 27], Kirchhoff-Love plates [19], the Signorini [44], obstacle [59] and two-membrane contact [69] problems, Tresca friction [53], and acoustic and elastic wave propagation [33, 34]. Those related to fluid mechanics include convection-diffusion in various regimes [74], Stokes [6, 81], Navier-Stokes [23, 45, 82], Bingham [43], creeping non-Newtonian [24], and Brinkman [22] flows, flows in fractured porous media [47, 106], single-phase miscible flows [7], and elliptic [35] and Stokes [32] interface problems. Other interesting applications include the Cahn-Hilliard problem [49], LerayLions equations [72], elliptic multiscale problems [60], H^{-1} loads [95], spectral problems [38, 41], domains with curved boundary [21, 35, 36], and magnetostatics [48].

Bridges and unifying viewpoints emerged progressively between HHO methods and several other discretization methods which also attach unknowns to the mesh cells and faces. Already in the seminal work [79], a connection was established between
the lowest-order HHO method and the hybrid finite volume method from [97] (and, thus, to the broader setting of hybrid mimetic mixed methods in [85]). Perhaps the most salient connection was made in [62] where HHO methods were embedded into the broad setting of Hybridizable Discontinuous Galerkin (HDG) methods [64]. One originality of equal-order HHO methods is the use of the (potential) reconstruction operator in the stabilization. Moreover, the analyses of HHO and HDG methods follow somewhat different paths, since the former relies on orthogonal projections, whereas the latter often invokes a more specific approximation operator [65]. We believe that the links between HHO and HDG methods are mutually beneficial, as, for instance, recent HHO developments can be transposed to the HDG setting. Weak Galerkin (WG) methods [148, 149], which were embedded into the HDG setting in [61 Sect. 6.6], are, thus, also closely related to HHO. WG and HHO were developed independently and share a common devising viewpoint combining reconstruction (called weak gradient in WG) and stabilization. Yet, the WG stabilization often relies on plain least-squares penalties, whereas the more sophisticated HHO stabilization is key to a higher-order consistency property. Furthermore, the work [62] also bridged HHO methods to the nonconforming virtual element method [10, 119]. Finally, the connection to the multiscale hybrid mixed method from [105] was uncovered in [46].

A detailed monograph on HHO methods appeared this year [73]. The present text is shorter and does not cover as many aspects of the analysis and applications of HHO methods. Its originality lies in targetting the material to computational mechanics without sacrificing mathematical rigor, while including on the one hand some mathematical results with their own specific twist and on the other hand numerical illustrations drawn from industrial examples. Moreover, several topics not covered in [73] are treated here: domains with curved boundary, hyperelasticity, plasticity, contact, friction, and wave propagation. The present material is organized into eight chapters: the first three gently introduce the basic principles of HHO methods on a linear diffusion problem, the following four present various challenging applications to solid mechanics, and the last one reviews implementation aspects.

This book is primarily intended for graduate students, researchers (in applied mathematics, numerical analysis, and computational mechanics), and engineers working in related fields of application. Basic knowledge of the devising and analysis of finite element methods is assumed. Special effort was made to streamline the presentation so as to pinpoint the essential ideas, address key mathematical aspects, present examples, and provide bibliographic pointers. This book can also be used as a support for lectures. As a matter of fact, its idea originated from a series of lectures given by one of the authors during the Workshop on Computational Modeling and Numerical Analysis (Petrópolis, Brasil, 2019).

We are thankful to many colleagues for stimulating discussions at various occasions. Special thanks go to G. Delay (Sorbonne University) and S. Lemaire (INRIA) for their careful reading of parts of this manuscript.

Namur, Belgium
Paris, France
December 2020

Matteo Cicuttin
Alexandre Ern
Nicolas Pignet

Contents

1 Getting Started: Linear Diffusion 1
1.1 Model Problem 1
1.2 Discrete Setting 2
1.3 Local Reconstruction and Stabilization 6
1.4 Assembly and Static Condensation 9
1.5 Flux Recovery and Embedding into HDG Methods 14
1.6 One-Dimensional Setting 18
2 Mathematical Aspects 21
2.1 Mesh Regularity and Basic Analysis Tools 21
2.2 Stability 25
2.3 Consistency 26
$2.4 \quad H^{1}$-Error Estimate 29
2.5 Improved L^{2}-Error Estimate 30
3 Some Variants 35
3.1 Variants on Gradient Reconstruction 35
3.2 Mixed-Order Variant and Application to Curved Boundaries 38
3.3 Finite Element and Virtual Element Viewpoints 46
4 Linear Elasticity and Hyperelasticity 51
4.1 Continuum Mechanics 51
4.2 HHO Methods for Linear Elasticity 55
4.3 HHO Methods for Hyperelasticity 62
4.4 Numerical Examples 68
5 Elastodynamics 71
5.1 Second-Order Formulation in Time 71
5.2 First-Order Formulation in Time 77
5.3 Numerical Example 81
6 Contact and Friction 85
6.1 Model Problem 85
6.2 HHO-Nitsche Method 87
6.3 Numerical Example 94
7 Plasticity 97
7.1 Plasticity Model 97
7.2 HHO Discretizations 101
7.3 Numerical Examples 105
8 Implementation Aspects 109
8.1 Polynomial Spaces 109
8.2 Algebraic Representation of the HHO Space 112
8.3 L^{2}-Orthogonal Projections 113
8.4 Algebraic Realization of the Local HHO Operators 116
8.5 Assembly and Boundary Conditions 124
8.6 Remarks on the Computational Cost of HHO Methods 126
References 129

