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Preface

Hybrid High-Order (HHO) methods attach discrete unknowns to the cells and to the
faces of the mesh. At the heart of their devising lie two intuitive ideas: (i) a local
operator reconstructing in every mesh cell a gradient (and possibly a potential for
the gradient) from the local cell and face unknowns and (ii) a local stabilization
operator weakly enforcing in every mesh cell the matching of the trace of the cell
unknowns with the face unknowns. These two local operators are then combined into
a local discrete bilinear form, and the global problem is assembled cellwise as in stan-
dard finite element methods. HHO methods offer many attractive features: support
of polyhedral meshes, optimal convergence rates, local conservation principles, a
dimension-independent formulation, and robustness in various regimes (e.g., no
volume-locking in linear elasticity). Moreover, their computational efficiency hinges
on the possibility of locally eliminating the cell unknowns by static condensation,
leading to a global transmission problem coupling only the face unknowns.

HHO methods were introduced in [77, 79] for linear diffusion and quasi-
incompressible linear elasticity. A high-order method in mixed form sharing the
same devising principles was introduced in [78], and shown in [6] to lead after
hybridization to a HHO method with a slightly different, yet equivalent, writing
of the stabilization. The realm of applications of HHO methods has been substan-
tially expanded over the last few years. Developments in solid mechanics include
nonlinear elasticity [26], hyperelasticity [1], plasticity [2, 3], poroelasticity [16, 27],
Kirchhoff–Love plates [19], the Signorini [44], obstacle [59] and two-membrane
contact [69] problems, Tresca friction [53], and acoustic and elastic wave propaga-
tion [33, 34]. Those related to fluidmechanics include convection-diffusion in various
regimes [74], Stokes [6, 81], Navier–Stokes [23, 45, 82], Bingham [43], creeping
non-Newtonian [24], and Brinkman [22] flows, flows in fractured porous media [47,
106], single-phasemiscible flows [7], and elliptic [35] and Stokes [32] interface prob-
lems. Other interesting applications include the Cahn–Hilliard problem [49], Leray–
Lions equations [72], elliptic multiscale problems [60], H−1 loads [95], spectral
problems [38, 41], domains with curved boundary [21, 35, 36], and magnetostatics
[48].

Bridges and unifying viewpoints emerged progressively between HHO methods
and several other discretizationmethodswhich also attach unknowns to themesh cells
and faces. Already in the seminal work [79], a connection was established between
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the lowest-order HHO method and the hybrid finite volume method from [97] (and,
thus, to the broader setting of hybrid mimetic mixed methods in [85]). Perhaps the
most salient connection was made in [62] where HHOmethods were embedded into
the broad setting of Hybridizable Discontinuous Galerkin (HDG) methods [64]. One
originality of equal-order HHO methods is the use of the (potential) reconstruction
operator in the stabilization. Moreover, the analyses of HHO and HDG methods
follow somewhat different paths, since the former relies on orthogonal projections,
whereas the latter often invokes a more specific approximation operator [65]. We
believe that the links between HHO and HDG methods are mutually beneficial, as,
for instance, recent HHO developments can be transposed to the HDG setting. Weak
Galerkin (WG) methods [148, 149], which were embedded into the HDG setting in
[61 Sect. 6.6], are, thus, also closely related to HHO. WG and HHO were developed
independently and share a common devising viewpoint combining reconstruction
(called weak gradient inWG) and stabilization. Yet, theWG stabilization often relies
on plain least-squares penalties, whereas the more sophisticated HHO stabilization is
key to a higher-order consistency property. Furthermore, the work [62] also bridged
HHO methods to the nonconforming virtual element method [10, 119]. Finally, the
connection to the multiscale hybrid mixedmethod from [105] was uncovered in [46].

A detailed monograph on HHOmethods appeared this year [73]. The present text
is shorter and does not cover asmany aspects of the analysis and applications of HHO
methods. Its originality lies in targetting the material to computational mechanics
without sacrificingmathematical rigor, while including on the one hand somemathe-
matical results with their own specific twist and on the other hand numerical illustra-
tions drawn from industrial examples. Moreover, several topics not covered in [73]
are treated here: domains with curved boundary, hyperelasticity, plasticity, contact,
friction, and wave propagation. The present material is organized into eight chapters:
the first three gently introduce the basic principles of HHOmethods on a linear diffu-
sion problem, the following four present various challenging applications to solid
mechanics, and the last one reviews implementation aspects.

This book is primarily intended for graduate students, researchers (in applied
mathematics, numerical analysis, and computational mechanics), and engineers
working in related fields of application. Basic knowledge of the devising and anal-
ysis of finite element methods is assumed. Special effort was made to streamline the
presentation so as to pinpoint the essential ideas, address key mathematical aspects,
present examples, and provide bibliographic pointers. This book can also be used as
a support for lectures. As a matter of fact, its idea originated from a series of lectures
given by one of the authors during the Workshop on Computational Modeling and
Numerical Analysis (Petrópolis, Brasil, 2019).

We are thankful to many colleagues for stimulating discussions at various occa-
sions. Special thanks go to G. Delay (Sorbonne University) and S. Lemaire (INRIA)
for their careful reading of parts of this manuscript.

Namur, Belgium
Paris, France
December 2020

Matteo Cicuttin
Alexandre Ern
Nicolas Pignet
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