
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Evaluating the Impact of Transition Delay Faults in GPUs / Rodriguez Condia, Josie E.; Reorda, Matteo Sonza. - (2023),
pp. 353-358. (Intervento presentato al convegno International Conference on VLSI Design and 2023 22nd International
Conference on Embedded Systems (VLSID) tenutosi a Hyderabad (India) nel 08-12 January 2023)
[10.1109/VLSID57277.2023.00077].

Original

Evaluating the Impact of Transition Delay Faults in GPUs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/VLSID57277.2023.00077

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978950 since: 2023-05-31T12:00:17Z

IEEE

Evaluating the Impact of Transition Delay Faults

in GPUs

Josie E. Rodriguez Condia∗, Matteo Sonza Reorda∗

∗Politecnico di Torino - Department of Control and Computer Engineering (DAUIN)

{josie.rodriguez, matteo.sonzareorda}@polito.it

Abstract—This work proposes a method to evaluate the effects
of transition delay faults (TDFs) in GPUs. The method takes
advantage of low-level (i.e., RT- and gate-level) descriptions of a
GPU to evaluate the effects of transition delay faults in GPUs,
thus paving the way to model them as errors at the instruction
level, which can contribute to the resilience evaluations of large
and complex applications. For this purpose, the paper describes a
setup that efficiently simulates transition delay faults. The results
allow us to compare their effects with stuck-at-faults (SAFs)
and perform an error classification correlating these faults as
instruction-level errors. We resort to an open-source model of a
GPU (FlexGripPlus) and a set of workloads for the evaluation.
The experimental results show that, according to the application
code style, TDFs can compromise the operation of an application
from 1.3 to 11.63 times less than SAFs. Moreover, for all the
analyzed applications, a considerable percentage of sites of the
Integer (5.4% to 51.7%), Floating-point (0.9% to 2.4%), and
Special Function unit (17.0% to 35.6%) can become critical
if affected by a SAF or TDF. Finally, a correlation between
the fault‘s impact from both fault models and the instructions
executed by the applications reveals that SAFs in the functional
units are more prone (from 45.6% to 60.4%) to propagate errors
at the software level for all units than TDFs (from 17.9% to
58.8%).

Index Terms—Graphics Processing Units (GPUs), Functional
units, Instruction-level fault impact

I. INTRODUCTION

Nowadays, Graphics Processing Units (GPUs) are boosting

the execution of data-intensive and complex algorithms in the

safety-critical domain (e.g., autonomous systems, including

self-driving cars) with extensive requirements in terms of

reliability and dependability [1]–[3].

Both requirements (reliability and dependability) impose

challenges in the safety-critical domain since several studies

[4], [5] have demonstrated that modern GPUs, built with the

latest transistor technology nodes, are more prone to faults

and their effects may affect more severely the applications

in comparison to devices from other technology generations.

Thus, analyzing fault impacts is crucial, especially to identify

the most critical faults. These analyzes can also contribute

to the vulnerability analysis of internal modules, during early

design stages, so supporting the development of design im-

provements and effective countermeasures. Finally, they allow

devising suitable error/fault models working at higher abstrac-

tion levels, which may better support the reliability analysis

of complex systems integrating GPUs and the evaluation of

heavy workloads (e.g., Neural Networks), trading off accuracy

with the required computational effort. However, until recently,

the characterization and fault’s impact evaluation in GPUs

have been mainly focused on phenomena led by external

effects affecting the device (i.e., transient faults induced by

radiation) and have barely extended to effects arising during

the operational phase of a device (i.e., faults caused by aging or

wear-out), such as stuck-at faults (SAFs) and transition delay

faults (TDFs).

Commonly, the fault’s impact evaluation and analysis for

processors and accelerators, such as GPUs, is performed

using three main strategies: i) real experiments, ii) software-

based evaluation, and iii) architectural-based characterization.

The first strategy (such as the exposure to external sources

produced by radiation beams) is excellent in characterizing

fault effects on specific workloads. In fact, beam experiments

effectively evaluate the effects of transient faults in a device.

Unfortunately, the effects of permanent fault models (such

as SAF and TDFs) are more complex to evaluate using

this strategy since they physically and permanently corrupt

a device. Alternatives, such as hardware fault emulation [6]

of a target device, can be employed to evaluate SAFs effects

but can hardly evaluate the effects of TDFs due to the lack

of timing accuracy in the emulation of a GPU. The second

approach (software-based evaluation) is based on the mutation

of instructions executed by a real device to represent fault

effects, which allows modeling a larger set of faults but

introduces some limitations in the accuracy of the results.

Finally, architectural-based characterizations use representa-

tive circuit/system models (functional, structural, and low-level

micro-architectural at RT and gate level) in their analyses.

These architectural evaluations are closer to the real hardware

operation and can provide a representative characterization

of the impact of faults. However, long simulation times are

required due to the complexity of the architectural model and

the target abstraction level. Other characterization methods

include multi-level strategies and application-based characteri-

zations. In the first case, the combination of several abstraction

levels (i.e., micro-architectural and real experiments) boosts

the reliability evaluation on complex applications [7], [8], [3].

In the second case, the fault’s impact evaluation is based

on the application, and equivalent fault effects are injected

with limited accuracy regarding the relation between hardware

faults and their propagation as error effects [9].

Just recently, some authors [10] started to characterize the

effects of permanent faults on units inside a GPU, such as

the schedulers and some functional units. Unfortunately, to

the best of our knowledge, analyzing the impact of transition

delay faults in GPU structures has never been performed so

far. Thus, it was not possible until now to evaluate the effects

of transition delay faults considering the structural features of

the units in a GPU.

In this work, we propose a method to characterize and

evaluate the impact of transition delay faults in functional units

of GPUs. Moreover, we compare and evaluate the criticality

effect of SAFs and TDFs in the functional units of a GPU for

several workloads. Moreover, the proposed method provides

a preliminary step towards high-level error models (e.g., as

instructions errors) for the analysis of complex applications

in GPUs. The proposed approach is based on combining the

complete workload’s execution in micro-architectural models

and a multi-thread fault propagation evaluation of the targeted

units. For the evaluation and validation of the method, we

resort to an open-source GPU model (FlexGripPlus) [11],

implementing a micro-architecture of NVIDIA, targeting three

main functional units: the Integer (INT), Floating-point (FPU),

and Special Function Unit (SFU).

Results concerning the impact of TDFs, on the execution

of applications on a GPU are presented for the first time. The

fault’s impact comparison between TDFs and SAFs shows that

impacts of SAFs are higher (from 45.6% to 60.4%) than those

of TDFs (from 17.9% to 58.8%). Moreover, the results show

that considerable percentages of sites of the INT (up to 51.7%),

FPU (up to 2.4%), and SFU units (up to 35.6%) are prone to

produce failures when affected by any type of permanent fault

(SAFs or TDFs). Finally, we correlate both fault types (SAFs

and TDFs) to instruction-level software errors. This analysis

identifies the instruction types prone to excite and cause errors

for a given workload. The reported results show that both fault

types affect arithmetic, logic, and conversion-type instructions

in different proportions.

The proposed method is intended to support the analysis in

the functional safety domain and identify vulnerable and criti-

cal structures to SAFs and TDFs, which can guide designers to

provide improvements or introduce adequate countermeasures,

such as hardening specific points within the GPU. Moreover,

the proposed method can support the development of accurate

high-level error models, which can be simulated in a much

faster way than fine-grain micro-architectural fault effects.

This work includes the following contributions:

• The analysis of the low-level micro-architectural effects

of SAFs and TDFs in the INT, FPU, and SFU of GPUs

for several workloads;

• The identification of structural sites in the functional units

of a GPU, which are most prone to produce failures due

to SAFs and TDFs;

• The identification of faults corresponding to software

errors and the correlation of fault effects from SAFs and

TDFs to instruction-type errors.

The paper is organized as follows. Section II provides a

background about the organization of a GPU. Section III

INT …

SM

…

SM cluster

…

… Memory

partition

Memory

partition

Memory

partition

INT

FPU

FPU

SFU

…

Fig. 1. A general scheme of the internal organization of a GPU.

describes the proposed method to evaluate the effects of

faults in the GPU functional units. Section IV describes the

experimental setup, and Section V provides the results of the

fault effect evaluation on a set of typical workloads. Section V

reports the analysis performed on the results. Finally, Section

VI draws some conclusions and lists some future works.

II. ORGANIZATION OF A GPU

GPUs are special-purpose accelerators specially designed to

provide high throughput on an application by exploiting multi-

core parallelism. Thus, the organization of general-purpose

GPUs comprise arrays of configurable parallel processors

(’SIMD engines’, ’Streaming multiprocessors’ or SMs), see

Figure 1. Internally, Each SM also exploits parallelism by

implementing an architecture based on the Single-Instruction

Multiple-Data (SIMD) paradigm or variations, such as the

Single-Instruction Multiple-Thread (SIMT), and including

several scalar functional units (e.g., ’Streaming Processors’

or SPs) and special-purpose accelerators (’Special Function

Units’, or SFUs, and Tensor Processing Units, or TPUs).

Modern GPU architectures are organized as hierarchical sets

of SMs (i.e., ’SM clusters’), which include two to four SMs, to

provide significant control and enforce hardware parallelism.

In detail, each SM is organized in multiple pipeline stages

to allow the fetching, decoding, and processing of instructions.

Initially, one thread-group (warp) instruction is submitted for

parallel execution on the available functional units. One or

more instructions can be executed in parallel in the same

SM by dividing the functional units according to scheduling

policies in the controllers.

The functional units in the SMs (or CUDA cores) are

highly regular and are the main operative workhorse modules

in a GPU. Moreover, all thread operations performed with

the functional units directly address any level of the memory

hierarchy in the GPU since each operative thread in the SMs

can address a complete memory hierarchy. This hierarchy

includes a register file and shared, local, constant, and global

memories. In case of hardware faults inside the functional

units, their effects mainly correspond to errors in one of the

memory locations (the register file and the main memory) after

executing an instruction.

III. PROPOSED METHOD

This section describes the proposed method to evaluate the

impact of SAFs and TDFs in functional units of GPUs.

GPU

Parallel

workloads

1. Application profiling

RT+GL

2. Fine-grain characterization

Targeted functional unit

GL

Fault reports

3. Analysis and evaluation

HW faults Functional

Errors

HWF0

HWF5

HWF20

HWF3 HWF4

HWF1

HWF16

HWF7

HWF9

HWF11

Wrong

Predicate flag

(WPF)

Wrong

output result

(WOR) HWF12

HWF16

Workload’s
instructions

Identified

Errors

WPF0

WOR0

WOR1

WPF1

WOR2

…

IMUL R1, R2, R3

@P1: IADD R3, R5, R2

…

@P2: FFMA R1, R1, R3, R5

…

…
 …

…

Instruction’s traces

Sniffing report
…

…

Fig. 2. A general scheme of the proposed method to evaluate the impact
effect of TDFs and SAFs in functional units of GPUs.

The proposed method is based on three main steps (see

Figure 2): i) Application profiling, ii) Fine-grain fault injection

and propagation, and iii) Analysis and evaluation.

In the first step (Application profiling), each application is

profiled at the micro-architectural level (RT). The targeted

functional unit for the evaluation is the only one represented

at the gate level to increase the precision and accuracy in

the execution of the application. This step produces a trace

profile, storing the functional information of a targeted unit

in the GPU. Then, this trace profile serves as input for the

second step (fine-grain fault injection and propagation). In this

second step, a local and fine-grain fault simulation campaign

evaluates the effect of faults and the propagation effects for the

targeted unit. We exploit the fact that all functional units store

the outputs in any of the resources of the memory hierarchy

(i.e., register file or global memory) of the GPU. Thus, the

analysis of the primary outputs of the functional units is

equivalent to the analysis of the main observable points in the

complete GPU (memories). In this step, the primary outputs

are collected and stored. Finally, in the third step (Analysis

and evaluation), the collected outputs and the original trace

profile are analyzed to evaluate the fault impacts and identify

the error effects at the instruction levels.

The following subsections describe each step of the pro-

posed method for fault effect evaluation in detail.

A. Application profiling

This step consists of the trace, profile, and storage of all

changes on the primary inputs and outputs of a detailed

description of the targeted unit (gate-level). Thus, it is possible

to observe a fault-free operation of an application executed in

a low-level description of the GPU (RT- and gate-level).

In detail, a dynamic profiling mechanism is employed to

collect information from the primary input and outputs of

a targeted unit in the GPU. In fact, the mechanism is an

additional structure included in the original design, which ex-

ploits the multi-threading execution to speed up the simulation

and profile several cores in parallel using the same running

application. Moreover, this dynamic mechanism can be used to

perform the profiling on individual cores. The generated traces

(Sniffing reports) serve as a fault-free operation of the target

units and supports the fine-grain fault injection campaigns and

the analysis steps. The second set of reports (Instruction’s

traces) stores the traces of the executed instructions per

application, which are employed to identify the instructions

exciting the faults in the units and support the evaluation and

analysis of impact fault effects.

B. Fine-grain fault injection and propagation

In this step, a focused fault injection campaign is performed

on the gate-level version of a target functional unit only.

Since we are interested in the fault’s impact effects on the

functional units, we only consider the effects of those faults

propagated across the unit and capable of affecting any output

during the execution of the application’s instructions, which

are equivalent to the propagation of errors into one of the

memory resources in the GPU. For this purpose, a fault is

detected when at least one mismatch is produced in the unit’s

outputs as an effect of an internal fault.

The fault-free profile feeds the functional units during the

fault injection campaigns, so injecting the equivalent data from

the application on each specific unit. In practice, all functional

units are profiled and fault simulated to evaluate the fault

impact for all threads in a parallel program. As in the first

step, the performance’s speed up is obtained when exploiting

the multi-threading execution of fault injection campaigns. As

a result of the fault injection campaigns, a set of output fault

reports (Fault reports) are combined with the instruction traces

to analyze and evaluate the impact of the fault effects.

The proposed strategy collects the information of each

executed instruction. In case of a mismatch with the fault-free

simulation, the report stores the fault effects from the unit’s

primary outputs and the detection time, which are later used in

the correlation of the fault impacts of the units and the effect

on the application’s instructions. This procedure also identifies

performance issues caused by TDF effects.

C. Analysis and evaluation

This step is internally divided in two sub-steps: 1) the

preliminary analysis, and 2) the correlation analysis. In the first

case, the preliminary analysis evaluates the impact of faults

inside the unit and the propagation effects on the application.

Moreover, this analysis identifies the vulnerable and critical

sites inside each functional unit for SAFs, TDFs, or both.

Finally, the analysis provides the binary-level fault effects

on the operations’ outputs. The second analysis (correlation

analysis) identifies and maps the fault effects caused by TDFs

and SAFs, as software errors impacting the applications. In this

case, the analysis determines those faults causing errors in the

instructions of an application. An additional analysis focuses

on the software errors to classify the instruction types exciting

the faults (in the functional units) which impact the execution

of the instructions inside the applications. The correlation

analysis combines the collected reports (sniffing and fault)

and relates the detected time (of a fault) and the execution

of a given instruction, so identifying the source instruction

activating and propagating the effect of a fault. This analysis

is intended to support the development of accurate high-level

error models by identifying error effects at the instruction

levels for TDFs and SAFs.

In detail, the fault reports are analyzed, and the fault effects

are classified following three main categories according to the

effects on the outputs of a target unit: i) Output Value Corrup-

tion (OVC), ii) Hang, and iii) masked. Faults are classified as

OVCs when the effect of a fault corrupts at least one output.

Moreover, a fault is identified as Hang when it corrupts, stops,

and collapses the operation of the targeted functional unit, so

it cannot provide a stable output. Finally, the fault is classified

as masked when the fault is not propagated or does not cause

any effect on the functionality and the output value. At the

instruction level, we classify the fault impacts as instruction

errors using two categories: i) impact on results (as Wrong

output result error or WOR), and ii) impact on predicate

flags (as Wrong Predicate Flag error or WPF). A WPF is a

fault corrupting the output predicate flags of the instruction, so

incorrectly enabling or disabling predicate conditions, which

serve as input conditions for other instructions in the parallel

program. Both categories are selected considering the possible

effects of a fault on the individual thread execution of an

instruction and the feasible representation of an error by

modifying the instruction. An WOR error represents a fault

inside a unit impacting an instruction by affecting the output

value with a wrong result.

It is worth noting that the proposed approach uses several

fault simulators to handle the complexity of a large design,

such as GPUs. An individual fault simulator can hardly be

used as the main solution since most of them are optimized

to analyze SAFs and TDFs in scan-based designs. Moreover,

the computational power and latency increase according to

the design’s complexity and size when dealing with designs

without those structures. Thus, the proposed method handles

and reduces the analysis time for such large designs.

IV. EXPERIMENTAL SET-UP

A custom framework was developed based on a general

controller that manages the operation of the three steps in the

proposed method. The first step (application profiling) uses

a logic simulator (ModelSim by Siemens EDA) handling a

mixed description (at the RT and gate level) of the GPU.

Moreover, the focused fault injection campaigns are performed

by adapting the logic simulator (Z01X by Synopsis) with the

targeted functional unit at the gate level. This logic simulator

can be configured to inject either (Slow-to-Rise and Slow-to-

Fall) TDFs or SAFs by a main controller of the framework.

For the experiments, one fault is injected per fault simulation.

Finally, custom tools analyze the reports and evaluate the effect

of the fault as instruction error effects. Moreover, the complete

TABLE I
MAIN FEATURES OF THE SELECTED APPLICATIONS

Duration
(cc)

Size
(ins.)

Data memory
footprint (bytes)

Functional units

INT FPU SFU

Sobel 115,666 98 1,024
√ √ √

Euler 8,178 74 8,192
√ √ √

nn 44,909 25 8,192
√ √ √

Vector add 33,583 12 16,384
√ √

Reduction 9,134 69 8,612
√ √

Transpose 19,896 53 12,288
√

FFT 41,096 175 768
√

framework supports multi-threading operation to speed up the

simulation and analysis procedures, so several functional units

(e.g., FPU0, FPU1, and FPU2 inside an SM) are analyzed

simultaneously during the execution of an application.

Since the functional units directly employ the memory

hierarchy of the GPU (i.e., the register file), the propagation of

any fault to the primary outputs also implies the propagation

and visibility on any of the destination registers per thread.

Thus, there is no missing observability on faults during the

focused fault injection campaigns to characterize the impact

of faults inside a unit.

V. EXPERIMENTAL RESULTS

The fault’s impact evaluation targets three main functional

units inside the SMs of a GPU: INT, FPU, and SFU. The

FlexGripPlus model was configured with one SM, 32 INT

cores, 32 FPUs cores, and 4 SFUs to force the execution of

all tasks from a parallel program on the same functional units

and analyze the fault impact considering all possible operands

from an application. In fact, all functional units (INT, FPU,

and SFUs) in an SM core are profiled, evaluated, and analyzed.

The gate-level descriptions of the functional units for the fault

injection experiments were obtained after synthesis using the

15nm open-cell technology library [12].

In the evaluation experiments, one fault (SAF or TDF) is

injected into a target site before the execution of each fault

simulation. A TDF is labeled as detected when there is at

least one mismatch in the outputs or delay effects of at least

one clock cycle. Seven typical workloads (Reduction, Sobel,

Euler, Nearest Neighbor or nn, Vector Add, Transpose, and

FFT) are selected for the evaluation of the fault impact on the

functional units. These applications excite different functional

units and are selected among the CUDA SDK samples and

Rodinia test suites [13]. Table I reports the main features of

the selected applications, including the number of instructions,

execution time, memory footprint, and functional units used.

The analyses consider each parallel application’s workload

per core (all executed operations and input operands per

thread). More in detail, the performed experiments report

information about 6.85x10
5, 1.51x10

6, and 9.91x10
6 faults

injected in the SFU, INT, and FPU units, respectively, for both

fault models (SAFs and TDFs). The simulation experiments

required from about 0.25 hours to 2.5 hours, per application,

for a total of around 10 hours.

00%

20%

40%

60%

80%

INT FPU SFU INT FPU SFU INT FPU SFU INT FPU INT FPU INT INT

Sobel Euler nn vector_add Reduction Transpose FFT

SAF TDF

Fig. 3. Average percentage of SAFs or TDFs faults in the functional units
producing a failure on the outputs for several workloads.

Fig. 4. Percentage of hardware sites in the functional units propagating SAF,
TDF, or both effects.

A. Architectural analysis

Figure 3 depicts the average percentage of faults (SAFs and

TDFs) affecting the outputs for each application (OVC and

hang effects), which are obtained after analyzing the faults

propagated on all functional units.

In general, SAF effects are more critical than TDFs for all

programs and corrupt more frequently the operation of the

functional units for the evaluated workloads from 1.23 (e.g.,

SFU for euler) to 11 times (e.g., FPU for nn).

In detail, an overview of the instruction’s workloads shows

that INT cores are used to calculate the addressing of memory

resources and the management of parallel parameters (i.e.,

thread ID), which contributes to explaining the moderate

criticality of SAFs (from 29% to 67%). Interestingly, TDFs

inside the INT cores produce lower effects (from 6.6% to

48.9%) for all analyzed workloads.

The results show that SAFs affect the FPUs in a moderate

percentage (from 9.53% to 35.9% of propagated effects), but

TDFs in the FPUs barely propagate effects (from 1.3% to

3.9%). The limited number of ’FPU-type’ instructions in the

programs and the structure of the FPUs seem to be the causing

factor for the observed impacts of SAFs and TDFs. Regarding

the SFU unit, the experimental results show that a moderate-

low percentage of SAFs (6.2% to 43.3%) and TDFs (1.9% to

35.5%) corrupt the operations on the evaluated workloads. In

detail, the impact effects of SAFs and TDFs are proportional

to the number of instructions per application using the SFU

unit. In fact, euler and nn employ a high number of ’SFU-

type’ instructions (i.e., RCP, EXP, or SIN), which are more

prone to fault effects than other applications (i.e., sobel) with

a few number of SFU-type instructions.

A micro-architecture analysis of fault effects reveals that

SAFs or TDFs impact the three functional units (INT, FPU,

and SFU) similarly. In fact, a fault can corrupt from 1 to 35

primary outputs in any functional unit. In detail, the analysis

shows that most propagated fault effects mainly corrupted one

TABLE II
PERCENTAGE OF FAULTS ASSOCIATED TO SOFTWARE ERRORS FOR INT,

FPU AND SFU.

SAFs (%) TDFs (%)
INT FPU SFU INT FPU SFU

Sobel 56.90 47.27 52.96 52.85 25.97 47.81
Euler 60.48 48.27 56.95 40.88 22.46 47.42

nn 59.69 48.97 57.39 42.22 17.90 45.71
vector add 57.81 45.60 - 46.98 19.45 -
Reduction 58.96 46.29 - 55.97 21.92 -
Transpose 55.62 - - 58.80 - -

FFT 59.10 - - 54.21 - -

(33.3% to 84.9% of SAFs, and from 26.5% to 87.6% of TDFs),

or two (9.8% to 44.2% of SAFs, and from 7.7% to 35.7% of

TDFs) primary outputs for all analyzed workloads.

A second analysis identifies the most vulnerable sites con-

cerning SAFs and TDFs (see Figure 4). The first and second

bars represent the percentage of sites that, when affected by

a SAF or TDF, respectively, produce a failure. The third bar

discriminates the percentage of ’Partially Corruptible’ (PoCo)

and ’Fully Corruptible’ (FuCo) sites impacted by both fault

types. A PoCo site is affected by at least one and up to

2 or 3 faults from both fault types. In contrast, FuCo sites

propagate all (four) permanent faults (2 SAFs and 2 TDFs).

Interestingly, the same percentage of sites affected by TDFs

is also vulnerable to SAFs. Moreover, the percentage of FCs

varies from around 32.1% to 85.8% of all identified sites

for each functional unit. Thus, the unit’s fault vulnerability

depends on the application and its coding style, which affects

the percentage of critical sites prone to SAFs, TDFs, or both.

B. Correlation between hardware faults and software errors

Based on the gathered results, we performed an analysis

to correlate the propagated faults and the possible software

errors for each application. In detail, we analyze the potential

effect of all propagated faults (from each functional unit) as

instruction-level software errors. The instruction-level errors

are classified following the WOR and WPF categories, intro-

duced in Section III, which can easily be used for instruction-

level fault modeling in functional units.

Table II reports, for each functional unit, the percentage

of SAFs and TDFs mapped as instruction-level errors. The

identified errors only consider propagated faults causing either

WORs (around 99% of identified errors) or WPFs (about

1% of identified errors). The missing percentage of faults

corresponds to those producing other error effects, which

can hardly be represented as effects during the instruction’s

execution (i.e., hanging). The results show that SAFs can

be more easily associated with instruction-level errors than

TDFs. In fact, a considerable percentage of faults are directly

associated with instruction errors, from about 55.6% to 60.4%,

45.6% to 48.9%, and 52.9% to 62.6%, for the INT, FPU,

and SFUs, respectively. In contrast, the association of TDFs

as errors varies according to the functional unit. In detail, a

considerable percentage of faults (from 42.2% to 58.8%) are

associated with errors for the INT unit. Similarly, a moderate

percentage of TDFs (from 39.3% to 47.8%) in the SFUs maps

into instruction-level errors. However, just a few percentages

TABLE III
CORRELATION BETWEEN INSTRUCTION-LEVEL SOFTWARE ERROR, PRODUCED BY SAFS AND TDFS, AND THE INSTRUCTION TYPES PER APPLICATION.

Fault type SAFs TDFs

Unit INT FPU SFU INT FPU SFU

Ins-types
arith.

(%)

Logic

(%)

Conv.

(%)

Config

(%)

arith.

(%)

Conv.

(%)

Config

(%)

arith.

(%)

Config

(%)

arith.

(%)

Logic

(%)

Conv.

(%)

Others

(%)

arith.

(%)

Conv.

(%)

Others

(%)

arith.

(%)

Others

(%)

Sobel 67.4 13.2 16.7 2.7 79.9 8.2 11.8 98.5 1.5 65.8 12.3 14.4 7.5 86.0 7.7 0.0 99.5 0.5
Euler 71.4 16.9 7.3 4.4 96.8 2.7 0.6 99.1 0.9 60.2 24.5 0.0 15.3 95.7 0.0 0.0 99.3 0.7

nn 63.2 14.7 15.1 7.1 99.5 0.0 0.5 98.1 1.9 67.7 26.8 3.2 2.2 86.7 13.0 0.0 99.5 0.5
vector add 77.2 9.1 8.9 4.7 98.1 0.0 1.9 - - 76.1 13.2 8.5 2.2 100.0 0.0 0.0 - -
Reduction 68.6 14.4 14.6 2.4 89.2 8.9 1.9 - - 63.9 11.5 15.5 9.0 57.1 13.7 14.6 - -
Transpose 61.8 14.8 19.8 3.6 - - - - - 14.3 3.0 69.3 13.4 - - - - -

FFT 72.3 17.1 8.8 1.8 - - - - - 82.5 11.5 5.5 0.4 - - - - -

of TDFs (from 17.9% to 25.9%) are propagated into errors.

The structure of the units and their critical paths (in particular

in the FPU) seem to be the main factor for the reduced

percentage of TDFs associated with software errors.

Finally, we associated the identified software errors with

the dynamic instructions in the applications to determine the

main instruction types exciting faults and propagating the

errors. Table III reports (for each application) the normalized

percentage of software errors (WORs + WPFs) classified

among the instruction-types using any functional unit. In

detail, the instruction types for the three functional units are:

logic, arithmetic, and conversion. Additionally, for the SAFs

evaluation, the (config) category represents errors activated

by any instruction. Similarly, the (others) category, for the

TDFs evaluation, describes errors affecting the performance

by adding one or more clock cycles (without impacting the

produced data). For SAFs, the arithmetic type (i.e., ADD and

MAD) is dominant and causes the most errors in all units. In

fact, this type is highly used in all applications to configure

threads and process operands, thus explaining the results.

Moreover, a moderate percentage of errors (from 2.6% to

19.8%) are caused by logic or conversion types. Interestingly,

a small percentage of errors (from 0.5% to 4.7%) are classified

by any instruction type. In principle, the errors produced by

TDFs follow the same trend, and arithmetic-type operations

are highly prone to errors in most programs. However, the

Transpose program shows a high percentage of errors (69.3%)

caused by conversion-type instructions. These results imply

that the program’s coding styles play a major role in the

fault impact. Interestingly, a detailed overview of the results

shows that a small percentage of the errors produced by TDFs

do not corrupt the result but affect the performance (others

classification from 0.5% to 15.3%) only. As conclusion, the

correlation of software errors and instructions types allows the

development of accurate fault models mimicking the effects of

SAFs and TDFs at higher abstraction levels.

VI. CONCLUSIONS AND FUTURE WORK

This work first proposes a method to characterize the

effect of transition delay and stuck-at faults on three GPU’s

functional units (INTs, FPUs, and SFUs). The results show

that, in general, transition delay faults are less likely to produce

failures than stuck-at faults. Both transition delay and stuck-

at faults may impact a high percentage of structures inside

the considered units. Moreover, all sites prone to propagate

errors from transition delay faults are also vulnerable to stuck-

at faults. Furthermore, the results show that the workload’s

coding style plays a significant role in the possible mapping

of faults to software errors. These results are a preliminary

step in developing accurate high-level error models for faults

affecting functional units and support a significant speed-up

in the evaluation of safety for GPU applications.

The proposed method can support preliminary steps of

the failure mode and effect analysis in the functional-safety

domain since the method evaluates and combines the effect of

faults with the possible error impacts on running applications.

Moreover, the method effectively identifies critical structures

affected by stuck-at and transition-delay faults.

In future works, we plan to extend the analyses and identify

accurate fault-error correlations for individual instructions

toward developing instruction-level error models.

REFERENCES

[1] W. Shi et al., “Algorithm and hardware implementation for visual per-
ception system in autonomous vehicle: A survey,” Integration, vol. 59,
pp. 148 – 156, 2017.

[2] F. F. d. Santos et al., “Demystifying gpu reliability: Comparing and
combining beam experiments, fault simulation, and profiling,” in 2021

IEEE International Parallel and Distributed Processing Symposium

(IPDPS), 2021, pp. 289–298.
[3] ——, “Analyzing and increasing the reliability of convolutional neural

networks on gpus,” IEEE Transactions on Reliability, vol. 68, no. 2, pp.
663–677, 2019.

[4] S. Hamdioui et al., “Reliability challenges of real-time systems in
forthcoming technology nodes,” in 2013 Design, Automation Test in

Europe Conference Exhibition (DATE), 2013, pp. 129–134.
[5] C. Lunardi et al., “On the efficacy of ecc and the benefits of finfet

transistor layout for gpu reliability,” IEEE Transactions on Nuclear

Science, vol. 65, no. 8, pp. 1843–1850, 2018.
[6] C. Lopez-Ongil et al., “Autonomous fault emulation: A new fpga-based

acceleration system for hardness evaluation,” IEEE Transactions on

Nuclear Science, vol. 54, no. 1, pp. 252–261, 2007.
[7] F. F. d. Santos et al., “Demystifying gpu reliability: Comparing and

combining beam experiments, fault simulation, and profiling,” in IEEE

International Parallel and Distributed Processing Symposium (IPDPS),
2021, pp. 289–298.

[8] ——, “Revealing gpus vulnerabilities by combining register-transfer
and software-level fault injection,” in 2021 51st Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN),
2021, pp. 292–304.

[9] J. Wei et al., “Analyzing the impact of soft errors in vgg networks
implemented on gpus,” Microelectronics Reliability, vol. 110, p. 113648,
2020.

[10] J. E. R. Condia et al., “An effective method to identify microarchitectural
vulnerabilities in gpus,” IEEE Transactions on Device and Materials

Reliability, vol. 22, no. 2, pp. 129–141, 2022.
[11] ——, “Flexgripplus: An improved gpgpu model to support reliability

analysis,” Microelectronics Reliability, vol. 109, p. 113660, 2020.
[12] M. Martins et al., “Open cell library in 15nm freepdk technology,” in

Proceedings of the 2015 Symposium on International Symposium on

Physical Design, 2015, p. 171–178.
[13] S. Che et al., “Rodinia: A benchmark suite for heterogeneous comput-

ing,” in IEEE international symposium on workload characterization

(IISWC), 2009, pp. 44–54.

