
01 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Constraint-Based Automatic SBST Generation for RISC-V Processor Families / Faller, Tobias; Deligiannis, Nikolaos;
Schwörer, Markus; SONZA REORDA, Matteo; Becker, Bernd. - (2023), pp. 1-6. (Intervento presentato al convegno
2023 IEEE European Test Symposium (ETS) tenutosi a Venice (Italy) nel 22-26 May 2023)
[10.1109/ETS56758.2023.10174156].

Original

Constraint-Based Automatic SBST Generation for RISC-V Processor Families

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ETS56758.2023.10174156

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978943 since: 2023-05-30T20:31:55Z

IEEE

Constraint-Based Automatic SBST Generation for
RISC-V Processor Families
Tobias Faller∗, Nikolaos I. Deligiannis†, Markus Schwörer∗,

Matteo Sonza Reorda†, Bernd Becker∗
∗University of Freiburg, Department of Computer Science - Freiburg, Germany

†Politecnico di Torino, Department of Control and Computer Engineering (DAUIN) - Turin, Italy

Abstract—Software-Based Self-Tests (SBST) allow at-speed,
native online-testing of processors by running software programs
on the processor core, requiring no Design for Testability (DfT)
infrastructure. The creation of such SBST programs often
requires time-consuming manual labour that is expensive and
requires in-depth knowledge of the processor’s architecture to
target hard-to-test faults. In contrast, encoding the SBST gener-
ation task as a Bounded Model Checking (BMC) problem allows
using sophisticated, state-of-the-art BMC solvers to automatically
generate an SBST. Constraints for the BMC problem are encoded
in a circuit called Validity Checker Module (VCM) and applied
during SBST generation.

In this paper, we focus on presenting a VCM architecture
and a constraint set that allows building SBSTs that make
minimal assumptions about the firmware, targeting hard-to-test
faults in the ALU and register file of multiple scalar, in-order
RISC-V processor families. The VCM architecture consists of
a processor-specific mapping layer and a generic constraint set
connected via a well-defined interface. The generic constraint
set enforces the desired SBST behaviour, including controlling
the processor’s pipeline state, memory accesses, and with that
executed instructions, register state, and fault propagations.
Using a generic constraint set allows for rapid SBST generation
targeting new RISC-V processor families while keeping the
generic constraints untouched. Lastly, we evaluate this approach
on two RISC-V processor families, namely the DarkRISCV and a
proprietary, industrial core showing the portability and strength
of the approach, allowing for rapidly targeting new processors.

Index Terms—Software-Based Self-Test, Functional ATPG,
Automatic SBST, Microprocessor Test, RISC-V

I. INTRODUCTION

Software-Based Self-Test (SBST) programs allow for at-
speed, native testing of processors in the field while not requir-
ing any kind of Design for Test (DfT) infrastructure. SBSTs
in form of Self Test Libraries (STLs) are in use by many core
and semiconductor companies which provide STLs together
with their devices for safety-critical applications. Even though
SBSTs might bring many benefits, their creation often is time-
consuming and costly, requiring manual labour of a skilled
developer that knows about the intricacies of the processor’s
micro-architecture at hand. The manually-written program has
to be constructed to make hardware faults visible, requiring
reasoning about the micro-architecture’s behaviour under fault
influence which is neither intuitive nor fast to comprehend.
Additionally, the SBST program has to be constructed for its
environment, making the SBST creation a complex process
that - until now - has to be repeated for every new design.

The introduction of the license-free RISC-V [1] instruction
set architecture (ISA) facilitated the creation of a vast amount
of new processor cores featuring different micro-architectures,
base instruction sets, and extensions posing new challenges for
SBST creation. Especially the shortened development cycles
and the automated high-level synthesis of whole processor
families that provide ISA extensions depending on the targeted
use-case requires a new adaptive, automated approach.

Bounded Model Checking (BMC) has been shown to
allow semi-automatic generation of SBSTs for processors
using manually constrained automatic test pattern generation
(ATPG) [2]–[5]. Extending that, [6] introduced an abstraction
of the applied constraints by introducing the so-called Validity
Checker Module (VCM). The VCM allows for specifying
constraints as a circuit written in a Hardware Description
Language (HDL) and is used during SBST generation to apply
constraints to the processor. By using a VCM the development
of constraints for complex SBST scenarios is simplified.

However, specifying SBST constraints for whole processor
families requires an even higher abstraction level. We present
a VCM architecture together with an exemplary constraint
set that allows for targeting multiple processor cores in an
automated way. Reusability of constraints is provided by
having a configurable constraint set that is specified in a
processor-agnostic way. These constraints are mapped onto
the processor at hand by a well-defined interface that relates
signals and behaviour between the processor and the interface.
The here presented VCM architecture together with an exam-
ple constraint set is the main contribution of this paper. To the
best of our knowledge, such a structured, generic approach has
not been presented before. Note that the architecture allows for
generating SBSTs that show a different behaviour compared
to the example constraint set presented here.

The example constraint set constructs an SBST run by
the firmware during idle times. It consists of only arithmetic
instructions and targets hard-to-test faults in the ALU and
register file. The SBST generation makes minimal assump-
tions about the firmware and is designed to be completely
independent of the firmware’s instruction memory and state.
It computes a checksum in an architecture register which is
later verified by the firmware. If a mismatch is detected the
firmware can take the appropriate measures according to its
use case.

The rest of the paper is organized as follows: Section II
introduces the VCM concept and its application in SBST
generation. Section III presents a VCM architecture with a
constraint set that allows the generation of the aforementioned
SBST. In Section IV we present the results for two example
processor families, and lastly, we draw some conclusions.

II. BACKGROUND

A. Validity Checker Module (VCM)

The Validity Checker Module (VCM) is a circuit written
in a Hardware Description Language (HDL). It encodes a
set of functional constraints that are applied to the Circuit
Under Test (CUT). The VCM is synthesized into a gate-
level representation and is encoded together with the miter
circuit of the gate-level CUT (a circuit containing the fault-
free and faulty CUT) into a single BMC problem. As shown
in Figure 1, the VCM observes the miter circuit via its inputs.
The VCM’s inputs are connected to the miter circuit’s internal
and external signals. This allows for observation of the CUT’s
state and environment under fault-free and faulty conditions
at the same time. The VCM’s logic validates the CUT’s state
and behaviour according to its encoded constraints. The VCM
has validity outputs that indicate the validation result of each
constraint as Boolean value. An output value of 1 indicates
that the corresponding functional constraint is held. When
generating the BMC problem, all VCM validity outputs are
constrained to always have an output value of 1. This enforces
the functional constraints of the VCM and with that a valid
behaviour of the CUT.

Figure 1. VCM observes miter circuit (left) and validates constraints (right)

The original concept of the VCM as Boolean constraint
specification has been significantly extended. Support for
detecting DON’T CARE values in the miter circuit is added by
providing additional IS DON’T CARE inputs for the VCM.
This is required for processing DON’T CARE values in the
VCM as it operates on a purely Boolean gate-level. Then,
going beyond the core concept of using the VCM as only a
constraint specification, additional special inputs and outputs
are provided. The special inputs do not correspond to miter
circuit signals and are instead used to pass binary encoded
parameters into the VCM. These parameters enable and disable
constraints in the VCM and allow for configurability without
the need for multiple gate-level variants originating from the
same HDL code. During the BMC process, these inputs are
constrained according to a user-defined configuration. Special
so-called result outputs are implemented that allow the VCM
to produce binary encoded data on its outputs. This data is

later extracted from the solution of the BMC problem. With
that, observations of the CUT’s state can be pre-processed via
the VCM and the applied configuration and later be used for
the following steps in the test generation.

III. APPROACH

The SBST program generation is implemented in our Au-
tomated Test Pattern Generation (ATPG) framework named
FreiTest that was derived from PHAETON [6]. Even though
the core concept of the VCM originates from PHAETON, the
framework has been fully rewritten and redesigned for RISC-V
SBST generation. This includes the circuit import, VCM
handling, the fault simulation, data export and visualization,
as well as Conjunctive Normal Form (CNF) generation and
the whole ATPG process itself.

The SBST generation is a computationally expensive and
complex task. Therefore, we split the problem of SBST
generation into smaller steps that are executed as shown in
the listing below.

1) Processor and VCM gate-level description import
2) Fault list generation
3) Reset sequence generation
4) Testability check for each fault
5) Instruction sequence generation using BMC
6) Instruction sequence elimination
7) Instruction sequence concatenation to an SBST
8) SBST evaluation and statistics export

During steps 3, 4, 5 and 8 the VCM is used to apply constraints
to the processor or to evaluate the processor’s behaviour. In
Section III-A we will focus on the VCM’s architecture that
enables porting the steps that are described in the following
section to new processor cores and families. Following that,
in Section III-B we will focus on the constraint sets that are
used during these four VCM-using steps.

For SBST generation the processor and VCM are expected
to be present as gate-level description Verilog sources. The
VCM and processor sources are previously synthesized from
RTL to a gate-level description using the synthesis tool of
choice and a target technology library. An adapter library that
maps library cells to basic Verilog primitives is required for
FreiTest to support new target libraries.

Step 1) The gate-level sources are read into a graph structure
in FreiTest. Step 2) A fault list is generated based on the
processor’s gate-level structure. Step 3) A reset sequence
is generated that initializes all architecture registers of the
processor to a known state. Step 4) Multiple testability checks
are performed for each fault of the fault list. The checks
are performed to find faults for which no SBST can be
generated, for instance, faults that to be detected require a
reset of the processor or a non-functional state in general.
Step 5) After the testability check, all fault statuses except
untestable faults are reset and the generation of instruction
sequences for the SBST starts. An instruction sequence is a
short sequence of instructions that is created to make the fault

effect visible. A BMC problem that generates an instruction
sequence is constructed and solved. Subsequently, when a
solution is found a fault simulation is performed that tests all
so far untested faults. If they are detected, they are dropped.
Step 6) After all instruction sequences have been generated, a
reverse fault simulation is performed. This removes duplicates,
unnecessary or dominated instruction sequences that have been
generated during the parallel instruction sequence generation.
Step 7) The full SBST is constructed by concatenating all
instruction sequences into a single sequence of instructions.
Step 8) Finally, the fault list is reset to its original state and
a fault simulation is performed to evaluate the built SBST
program to compute a final, accurate fault coverage.

A. VCM Architecture
To support a fast adaptation of the SBST generation to new

processors a VCM architecture that abstracts from processor
implementation details was devised. This architecture is shown
in Figure 2 where the processor is depicted on the left
side. On the right side is the VCM which consists of a
mapping layer (orange) that is connected to the processor’s
essential components (yellow). The mapping layer connects
the processor’s signals to a well-defined interface that interacts
with the generic constraints that are shown in red on the
right. The generic constraints encode the valid SBST and
processor behaviour, including the valid RISC-V instructions.
For decoding and validating the executed RISC-V instructions
an embedded decoding module is included. This decoder
module’s source code is automatically generated from the
formal specification used by the MINRES DBT-RISE-RISC-V
instruction set simulator [7] and is adjusted to the supported
instruction set of the processor core at hand. The instruction
set extensions A, M, F, and D are directly available through
the formal specification. For custom extensions, the decoding
module can be extended by specifying opcodes of supported
RISC-V instructions in JSON format.

The mapping layer is responsible for translating the pro-
cessor’s signal lines to the generic interface. By applying
constraints to the generic side of the interface the constraints
are propagated to the processor at hand. For the different
steps of SBST generation, the processor signal mappings listed
below are implemented:

• Processor control (reset, halt, run)
• Processor state (resetting, halted, running)
• Pipeline state (bubble, flush, halted)
• Program counter
• Architecture register file (x1 to x31)
• Instruction bus transactions
• Data bus transactions

The instruction and data bus interfaces are both mapped
using a bus mapping module written in Verilog. It is ex-
changed according to the processor bus at hand to reduce
adaption efforts. Currently, the bus protocols Advanced High-
performance Bus (AHB), Open Bus Interface (OBI), Pi-
coRV32, and DarkRISCV protocols are implemented. Each

bus interface is mapped to a set of nine generic signals that
monitor transactions. These are a transaction active signal,
a transaction commit signal that signals that the transaction
was acknowledged, an address signal, a read enable and write
enable signal, a read and write byte mask that signals the size
of a transaction, and a signal for the read and written value.

For SBST generation the signals listed above are mapped in
five variants corresponding to the miter-related inputs available
in the VCM. This includes the fault-free and faulty signal,
the DON’T CARE input for the fault-free and faulty signal,
and a difference signal that observes fault propagations for
the processor signal. This enables the VCM to implement
many different constraints including checking for signals to
be well-defined (not DON’T CARE), checking for expected
signal values and behaviours, and constraining and enforcing
fault propagation.

Figure 2. Interaction of processor (left) and VCM (right) with mapping layer
in between (middle)

B. Constraint Set

Building on top of the VCM architecture a configurable,
generic constraint set is implemented. The constraints are
translated through the mapping layer and are applied to the
processor. Depending on the SBST generation step different
subsets of constraints are enabled to enforce a desired be-
haviour of the processor. We will now give a more detailed
overview of the constraint subsets:

Step 3) The first subset of constraints is used to generate a
reset sequence for the processor. The reset processor control
signal is forced to be activated for at least one timeframe.
Once the reset signal has been deactivated it is disallowed
to be enabled again. Only ADDI instructions are allowed by
enforcing the opcode on instruction bus read transactions.
The data bus is constrained to not allow transactions during
the reset sequence. As the BMC target, a defined program
counter and a fully defined register file are enforced through
constraining the DON’T CARE signals.

Step 4) The second subset is used for testability checking.
This step finds untestable faults that are not relevant in a
functional scenario. Table I shows the four stages that apply
increasingly complex constraints to the processor. During each
stage, a BMC problem is solved for each fault. If for a fault
no solution exists, the fault is marked untestable and excluded
from further processing. If a timeout occurs or the maximum
unrolling depth is reached, the next step is executed and no
change to the fault status is done.

Constraints marked with a star are enforced via the VCM
while the rest are enforced through FreiTest directly. The
first constraint subset is equivalent to a classical full-scan
ATPG that only enforces a fault activation and propagation
but no functional constraints. This step finds untestable faults
caused by signal reconvergences. The next step additionally
constraints the processor to be running via the processor
state signals and allows only valid RISC-V opcodes on read
transactions of the instruction bus. This step finds untestable
faults that are only relevant for disallowed situations, e.g.
when illegal instructions are executed or the processor resets.
The third step additionally enforces the SBST initial state
(reset sequence end) to be applied. This step finds faults
requiring unreachable states via unbounded model checking
features of the BMC solver. These faults are untestable due to
unreachable states of the processor like for example unused
encodings of pipeline registers. The fourth and last step applies
all the previous constraints combined with a directed fault
propagation. The fault propagation is enforced by enforcing
a difference signal for either the data bus, the instruction bus,
or the register file.

Table I
CONSTRAINTS FOR TESTABILITY CHECK

Constraint 1 2 3 4

Initial state - - X X
Processor running * - X X X
RISC-V instructions * - X X X
Fault activation and propagation X X X X
Directed fault propagation * - - - X
1 Combinational full-scan 2 Combinational partial SBST
3 Sequential partial SBST 4 Sequential SBST

Step 5) The most sophisticated constraint subset is used
for the instruction sequence generation since each instruction
sequence has to be constructed in a way that it tests its targeted
fault but also allows for concatenation to build the final SBST
program. The here presented example subset is meant to be run
in between firmware idle times to check for degradation and
makes minimal assumptions regarding the firmware including
the instruction memory, data memory, and the register file.

The final SBST program in Figure 3 is built from multiple
instruction sequences. It is executed by the firmware which
first saves the register file to the data memory, then jumps to
the SBST program. The SBST program computes a checksum
in the architecture register x1 and then jumps back to the
firmware which does a state restore excluding the checksum
register x1. The checksum is verified by the firmware and
appropriate action is taken if the verification fails.

Figure 4 shows the structure of an instruction sequence gen-
eration. The initial state is set to the reset sequence end state to
start with a valid pipeline state. Then, a scramble sequence is
generated that permutates register x1 to reduce the likelihood
of fault effect cancellations. Then, arbitrary instructions follow
for fault activation and propagation. Finally, the fault effect is
propagated to the x1 register to update the checksum.

Figure 3. SBST execution from left to right: Firmware starts SBST, firmware
context is saved, instruction sequences are run, firmware context is restored,
firmware evaluates SBST result

Figure 4. Instruction sequence BMC problem with initial state (yellow),
scrambling (red) and final propagation to the register x1 (purple)

The scramble sequence enforces pre-defined instructions for
four time frames rotating register x1 by one bit and then
clearing the temporarily used register x2. This results in the
fault propagation spreading evenly to all bits of the register and
reduces fault effect cancellations. The instruction sequence is
enforced by directly constraining the first four instruction fetch
transactions on the instruction bus.

A fault propagation to register x1 is enforced via the
difference signals for register x1 in the BMC target. To be
independent of previous checksum values only a limited set
of interactions with register x1 are allowed. This requires
constraining instruction fetch transactions that interact with
register x1. First, only XOR and XORI instructions are allowed
to interact with register x1 while the destination and exactly
one source register is register x1, ensuring that the register is
updated like a checksum.

Further constraints are applied to ensure a functional SBST
program and the independence of instruction sequences. This
includes enforcing the processor to be running without in-
terrupts. All transactions on the data bus are forbidden by
constraining data transactions. A read or write on the data
bus would either make the SBST dependent on or change
the firmware state which is disallowed. Instruction fetches
are constrained to allow only valid RISC-V opcodes. The
program counter is constrained to increase linearly creating
a single, linear instruction stream. The SBST program is later
extracted by monitoring instruction fetches. Further, jump and
branch instructions, as well as instructions that are dependent
on the value of the program counter, e.g. AUIPC are forbidden
making the SBST’s memory location irrelevant. Registers have
to be initialized before they are used to further aid starting state
independence. This is enforced by keeping a list of initialized
architecture registers. Uninitialized registers are forbidden to
be used as a source operand. Once a register is written to by an
executed instruction, the register is marked as initialized and
can be used as a source operand for following instructions.

With that multiple measures are made for instruction se-
quence independence from the program memory position,
the firmware state, and the start state of the processor. The
constraint set is summarized in the following:

• Processor is running without interrupts
• Data bus is neither read nor written
• Program counter increases linearly
• Only supported RISC-V instructions
• No control flow instructions
• Registers are initialized before being read
• Scramble sequence applied to register x1
• Only XOR and XORI instructions using register x1
• Test result is propagated to x1

Steps 7) and 8) After all instruction sequences are generated
they are concatenated to a single SBST program and evaluated
via a fault simulation. During fault simulation, the VCM is
monitoring the processor and its environment and extracts
instructions and fault propagations to the register x1 and the
program counter. The results are obtained from the VCM’s
result outputs and evaluated for fault coverage. A difference
in register x1 at the SBST end marks the fault as detected.

IV. EVALUATION

The SBST generation has been evaluated for two processor
families with four configurations in total. The DarkRISCV
(3-stage pipeline) and a proprietary, industrial core (5-stage
pipeline) have been chosen to show the effectiveness but
also the limitations of the presented constraint set and were
synthesized for the Nangate 45nm PDK [8]. The BMC depth
has been set to 15 timeframes and the timeout to 5 minutes. All
experiments have been conducted using an AMD Threadripper
3970X system (32 cores, 64 threads) with 256 GB of RAM.

As a benchmark, a stuck-at fault model was used. The inte-
gration of advanced fault models (delay / cell-aware faults) is
not completed yet but will be evaluated in future publications.

The need for in-field testing and reaching a minimum fault
coverage is mandated by safety standards, e.g. ISO 26262.
Therefore, the fault coverage FC and test coverage TC are
evaluated for the built SBST programs. These metrics are
defined as follows:

FC = Ntestable/Nfaults (1)
TC = Ntestable/(Nfaults −Nuntestable) (2)

Table II contains the resulting fault and SBST statistics,
and test generation times. It can be seen that fault coverages
of roughly 80% are achieved for the DarkRISCV processor
with a program size of 16 kB to 26 kB. Even though the SBST
program has been constructed to target mainly units that can
be tested with arithmetic instructions it can be seen from the
test coverage that only roughly 20% of the processor remains
untested.

However, the evaluation of the proprietary core paints a
different picture. Here, only the ALU and register file show
a fault coverage over 93% while the test coverage surpasses
99.5%. Other units require an extended constraint set to test.
Through the strict constraint set multiple components are not
testable, e.g. the exception unit in the instruction fetch (IF)
stage, the decoding, bypassing, and hazard detection logic in

the instruction decode (ID) stage, the CSRs in the execute (EX)
stage and the memory (MEM) stage as no data transactions
are allowed.

The SBST generation ranges from 16 h to 100 h. However,
15% to 50% (not shown in table) of the time was spent
on fault simulation of the final SBST program in FreiTest
and can be optimized. Additionally, by moving the scramble
sequence out of the BMC problem and prepending it manually
the runtime of the BMC could be significantly reduced. This
shows that the overall generation runtime has the potential to
be optimized.

Comparing the program sizes with existing STLs [9] shows
that the generated SBST programs require optimizations to
reach the compactness of company-provided STLs (46 kB our
approach vs 5.8 kB company-provided). However, regarding
that each instruction sequence currently only uses 4-byte
instructions and contains a scrambling sequence that might not
be required in most cases shows the room for optimizations.

The SBST programs have been additionally evaluated with
Z01X by Synopsys and a custom testbench containing an
accurate memory model. This allows simulating advanced
fault propagations, e.g. propagation chains from the program
counter to the instruction memory to the register file. A custom
strobing module evaluates the behaviour of the SBST program
and evaluates the contents of register x1 after the SBST
program has reached its end. The faults in Table III are either
classified as Detected if the content of the register is fully
known at the program end and it differs from the golden
value, or Maybe Detected if the register is dependent on an
unknown state like unspecified instruction memory regions or
uninitialized (CSR) registers, or Undetected if no difference
from the golden signature emerges. Custom fault statuses were
used to signal exceptions during the SBST execution under
fault influence. This includes cases where the end of the
SBST is not reached (End Not Reached), the firmware state is
modified or the fault detection is dependent on the firmware
state (Data Bus Used), or the processor raises an exception or
traps (Exception Occured). Structurally untestable faults are
shown in the Untestable column. All remaining behaviours
that are not classified are put into the Unknown category.

The evaluation using Z01X shows that the detected faults
for the DarkRISCV processors are roughly 5% below the
fault coverage of our tool FreiTest. However, roughly 6% of
faults have shown to be dependent on uncontrolled factors
like the firmware state and could potentially be detected.
No exceptions occur since the processor has no exception
handling. Two to four percent of faults do not fall into any
described behaviour (Unknown).

The proprietary, industrial core shows that a 3.3% of the
faults create an exception. This reduces the percentage of
detected faults. However, the number of undetected faults for
the ALU and register file show that almost all detectable
faults are detected by the built SBST program, validating the
assumption of the SBST being able to make hard-to-detect
faults visible and propagate them to the checksum register.
To detect faults in other modules (exception unit, CSRs, IF,

Table II
FREITEST RESULTS FOR RISC-V PROCESSOR CORES

Fault Test Generated Program Generation Testable Untestable Aborted Solver
Processor and ISA Coverage Coverage Sequences Instructions Time Faults Faults Faults Timeouts

DarkRISCV RV32E 75.85% 79.10% 587 4,112 16.78h 17,301 933 4,576 2
RV32I 82.42% 84.96% 934 6,526 46.80h 28,056 1,015 4,968 3
RV32I Zicsr 79.18% 82.17% 811 5,645 54.18h 28,222 1,299 6,124 7

Proprietary IF Stage 6.54% 14.01% 13 76 15.59h 749 1,688 9,018 6,242
RV32I ID Stage 40.29% 45.26% 58 479 4.08h 1,546 421 1,870 1,417
Xunknown

¬

Register File 93.40% 99.67% 730 7,196 34.19h 16,536 1,112 56 3
EX Stage 11.66% 13.65% 67 514 29.82h 2,060 2,575 13,027 10,260¬

ALU 99.70% 99.89% 428 3,087 5.36h 7,848 15 9 3
MEM Stage 12.88% 18.94% 17 94 2.45h 303 753 1,297 985
WB Stage 25.63% 26.67% 13 59 0.84h 132 20 363 261
Miscellaneous 4.27% 5.21% 15 84 4.06h 135 569 2,455 2,029

Sum 45.40% 51.06% 1,341 11,589 96.39h 29,309 7,153 28,095 21,200

Table III
Z01X RESULTS FOR RISC-V PROCESSOR CORES

Maybe End Not Data Bus Exception
Processor and ISA Detected Detected Undetected Reached Used Occured Unknown Untestable

DarkRISCV RV32E 69.24% 6.32% 12.74% 3.46% 0.05% 0.00% 3.39% 4.80%
RV32I 75.70% 6.62% 8.47% 2.26% 0.03% 0.00% 2.16% 4.76%
RV32I Zicsr 71.23% 6.53% 11.39% 2.35% 0.03% 0.00% 3.63% 4.82%

Proprietary Instruction Fetch Stage 3.43% 0.12% 78.16% 1.46% 0.01% 7.22% 3.40% 6.20%
RV32I Instruction Decode Stage 40.57% 0.05% 70.67% 0.91% 0.09% 7.44% 7.60% 4.30%
Xunknown

¬

Register File 91.23% 0.00% 0.12% 0.00% 0.00% 0.08% 3.33% 5.24%
Execute Stage 11.69% 0.00% 75.24% 0.24% 0.00% 1.13% 6.15% 5.55%¬

Arithmetic Logic Unit 93.75% 0.00% 0.03% 0.00% 0.00% 5.89% 0.20% 0.12%
Memory Stage 14.42% 0.00% 76.57% 1.05% 0.00% 0.12% 2.20% 5.64%
Writeback Stage 23.88% 0.10% 73.69% 0.68% 0.00% 0.05% 1.31% 0.29%
Miscellaneous 4.25% 0.14% 83.03% 0.37% 0.03% 7.65% 0.70% 3.85%

Sum 38.51% 0.04% 48.86% 0.51% 0.01% 3.34% 3.90% 4.83%

ID, and MEM stages) however, the constraint set has to be
extended.

V. CONCLUSION

SBSTs allow at-speed, native online-testing of processors
without requiring DfT infrastructure. Creating SBST programs
is a complex process that - until now - has to be repeated
for every new processor design. In this paper, we presented
a VCM architecture and a constraint set that allows build-
ing SBSTs in particular targeting the ALU and register file
of multiple scalar, in-order RISC-V processor families. We
evaluated the VCM via BMC-based SBST generation for
multiple processor cores. The results were analyzed for fault
coverage, runtimes, and size and showed that high functional
fault coverages are achievable while the program size and
generation time shows potential for future optimizations.

ACKNOWLEDGMENT

This work was supported in part by the German Federal
Ministry of Education and Research (BMBF) within the
project Scale4Edge under contract no. 16ME0132 and by the
Italian ICSC National Research Centre for High Performance
Computing, Big Data and Quantum Computing within the
NextGenerationEU program.

REFERENCES

[1] RISC-V Foundation, The RISC-V Instruction Set Man-
ual, Volume I: Unprivileged ISA, Document Version
20191213, 2019.

[2] Y. Zhang et al., “Automatic test program generation for
out-of-order superscalar processors,” in 2012 IEEE 21st
Asian Test Symposium.

[3] R. Cantoro et al., “Effective techniques for automatically
improving the transition delay fault coverage of self-
test libraries,” in 2022 IEEE European Test Symposium
(ETS), 2022.

[4] A. Ruospo et al., “On-line testing for autonomous sys-
tems driven by risc-v processor design verification,” in
2019 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT),
2019.

[5] P. Bernardi et al., “Software-based self-test techniques
of computational modules in dual issue embedded pro-
cessors,” in 2015 20th IEEE European Test Symposium
(ETS), 2015.

[6] A. Riefert et al., “A flexible framework for the automatic
generation of sbst programs,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 24, 2016.

[7] Minres dbt-rise-riscv, https://github.com/Minres/DBT-
RISE-RISCV.

[8] Silvaco, Open-cell 45nm freepdk, https://si2.org/open-
cell-library/.

[9] A. Ruospo et al., “A suitability analysis of software based
testing strategies for the on-line testing of artificial neural
networks applications in embedded devices,” in 2021
IEEE 27th International Symposium on On-Line Testing
and Robust System Design (IOLTS), 2021.

