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Abstract—In the domain of high reliability applications, Burn-
In testing (BI) is always present since it is one of the prime
countermeasures against the infant mortality phenomenon. Tra-
ditional static BI testing proves to be inefficient for modern
circuit designs. As the devices’ feature size scales down and
their structural and architectural complexity increases, so does
the complexity and cost of the BI test. Different BI methods
are employed by the industry where stimuli are also applied to
the devices under test (DUTs) in order to effectively stress and
stimulate all nets of the design. One known industry practice
resorts to Design for Testability (DfT) infrastructures (e.g., scan)
and is based on the application of test vectors at low frequency
to excite the DUT as much as possible with the goal of switching
each net of the design at least once. In this paper we consider the
case where the layout of the circuit is known and propose two
novel methods able to automatically produce functional stimuli
to switch pairs of neighboring nodes (i.e., nodes that are placed
within a specified distance in the DUT) in short periods of time.
This solution has been shown to be able to trigger some latent
defects in a circuit better than other methods. As a case study,
we target functional units within a RISC-V processor (RI5CY).
We show that the functional stimuli generated by the exact
method described in the paper are able to achieve optimal results
(i.e., the maximum functional switching of neighboring pairs),
thus maximizing the chance that their at-speed application can
activate weak points in the circuit.

Index Terms—Burn-In Test, Safety, Functional Test, Micropro-
cessor, RISC-V

I. INTRODUCTION

With the continuous growth of technology that characterizes
our times, the semiconductor industry has an ever-growing
need for producing robust and reliable circuits. This issue
becomes even more evident in the domain of the safety-critical
applications (e.g., automotive, robotics, avionics, biomedical).
In that case, the manufacturer must also guarantee that a sys-
tem is safe. Hence, the test engineers are tasked with the non-
trivial identification and development of the most appropriate
test procedures, able to meet the imposed reliability standards
while also maintaining a viable cost. The whole set of test
routines that is usually adopted by the industry at the end of
the manufacturing phase may include Burn In (BI) test. In the
domain of the safety-critical applications BI testing is always
present.

BI test greatly contributes to the reliability of the final
product since it is the main countermeasure against the Infant-
Mortality [1] phenomenon. During BI testing the DUT is
exercised in elevated thermal and voltage load as it is subjected
to different types of external and internal stress in order

to artificially age it. Up until recently, the most commonly
applied BI procedure was static BI, during which the DUTs
are exposed to a fixed and elevated temperature for an extended
period of time without any application or stimulus during the
test. This is achieved by placing the circuits into a climatic
chamber that is able to heat the DUTs according to their
specification limits. A drawback of static BI is that the circuit
is not exercised. As the circuits’ feature size continues to
scale down and their structural and architectural complexity
increases, so does the complexity and the cost of the BI test,
rendering it unaffordable. BI test can be very time consuming,
since its duration can be in the order of hours (especially for
new technologies) and thus it can become a bottleneck for the
whole manufacturing process.

To overcome these obstacles, new forms of BI testing are
employed by the industry [2]. Dynamic stress is also applied
to the DUT in a controllable manner. This form of stress is
produced by activating the available functionalities of the DUT
[3] and when induced in combination to its static counterpart,
it can effectively accelerate aging in a controlled manner and
thus detect the highest percentage of potential latent defects.
A common approach to stress-inducing stimuli generation is
based on DfT infrastructures, such as scan. Test patterns are
uploaded to the tester machine and then, in an iterative fashion,
they are fed to the DUTs through the scan chains at low speed
with the goal of switching every net of the design at least
once [4]. Regarding functional stimuli used as a stress factor
during BI testing [5, 6], it has been proven that the at-speed
application of stress-inducing load can in fact cause higher
heat gradients in the DUT than a scan-based approach [7].
Another benefit of the purely functional stimulus is the fact
that it is not possible to cause damage on the devices unless
there exists a fatal design flaw. Furthermore, it has also been
proven that functional stimuli can be beneficial for detecting
delay faults when the DUT is under high thermal load [8].

In this paper, inspired by the concept of the multi-point
stress metric proposed in [9], we propose two novel method-
ologies (formal methods-based and evolutionary-based) to
automate the process of functional stimuli generation, aiming
at the maximization of the metric for a functional unit of a
scalar, single-issue, pipelined processor. The two methods can
be seen as a trade-off between their implementation effort and
the optimality of the generated solutions. As benchmark, the
two methods are compared with a stuck-at software-based self-
test (SBST) [10] program that achieves 95% of functional



stuck-at fault coverage on the whole processor. We targeted
two functional units within the processor, namely the adder
and the decoder. For the former, both methods identified the
optimal stress sequence, while for the decoder the formal
method (i.e., the method that yields the optimal results) was
proven to be more efficient than the evolutionary solution,
while the latter converged to a result close to the case of the
SBST program.

The rest of the paper is organized as follows; in Section II
we define the problem and elaborate on the employed stress
metric; in Section III we present the first of the two methods,
based on the evolutionary paradigm and in Section IV we
present the second method, based on formal methods. Lastly,
in Section V we present the results we gathered on the RISC-V
processor we used as a case study and in Section VI we draw
some conclusions.

II. BACKGROUND

Given the gate-level description of a processor and assuming
that the layout L of the target processor’s sub-module M
is available, then it is possible to know the pairs of nodes
which are neighboring, i.e., they are placed within a minimum
specified distance from one another. Given a list that contains
pairs, with each pair consisting of two neighboring nodes, our
goal is to generate functional stimuli (i.e., snippets of assembly
code) that can maximize the total number of pairs switching
within the targeted unit. In other words, for every pair of
two nodes, we aim to generate a sequence of instructions
that is able to induce both transitions to each pair starting
from an initial state. Furthermore, given that during BI test
the resources (e.g., tester memory) are limited, we consider
the case where the generated instruction sequence length is
minimal. This means, the transitions of the nodes must happen
over a short period of clock cycles.
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Figure 1. Abstract concept of the pair switching maximization within the
DUT

Figure 1 depicts the concept of multi-point switching (MPS)
for a pair of nodes in the DUT. We start from a well-
defined initial state (i) where both nodes are assigned an initial
logic value α, β ∈ B. These values may correspond to those
produced by the activation of the system’s reset signal or after
the execution of an initialization sequence. After the execution
of a specific instruction, or combination of instructions (ii.1)
the node β performs a transition and is assigned the opposite
value from the initial state. The same happens later for the
node α (ii.2). It is of course possible that the transition for
both nodes can occur in the same clock cycle, i.e., via the
execution of the same instruction. Lastly, for both nodes (iii.1,

iii.2) another switch is induced that forces the nodes to the
opposite logic value than the one they previously reached,
i.e., they are assigned the initial values. Also, as mentioned
previously, the aforementioned sequence of events must take
place in a small time window (W). Our goal is to generate
sequences of instructions that induce the maximum number
of transitions, as shown in fig. 1, for every pair of nodes in
the DUT. Clearly, it is not given that this switching pattern
will be possible for every pair of nodes, due for example to
uncontrollable lines or to the inability of both nodes of a pair
to perform both transitions from their initial states as shown
in fig. 1. Hence, we define the stress efficiency (SE) metric for
a generated instruction sequence (seq) of a given pair (α, β)
of nodes as:

SE(seq) :=
∑

i∈{α,β}

T (i, seq) |init (1)

where T is a function that computes the number of states
(transitions) reached from the initial init state of node i during
the application of the sequence seq. Thus, the range of values
that can be held by the function T used to compute eq. (1)
is {0, 1, 2, 3, 4}. For every pair of nodes, we are interested
in generating functional sequences for which the SE function
gives the maximum value (4), meaning that both nodes were
forced to perform both transitions. Note that our metric differs
from the MPS metric introduced in [9]. Namely, we do not
only consider the case where the nodes of each pair hold
opposite initial values. Instead, we generalize by considering
whichever initial value for both nodes. By considering eq. (1)
as an objective function, we can formally define our goal as
an optimization problem:

∀ pair ∈ L : max
seqpair

{SE(seqpair)}|#seq ≤ W

In this paper we present two methods for solving this prob-
lem. The first method is based on an evolutionary algorithm.
It provides an elegant way of describing and solving the
problem while abstracting from implementation details and
architectural information of the DUT. Due to the intrinsic char-
acteristics of evolutionary algorithms, there is no guarantee
that the generated result is the optimal. The second method
is based on formal methods. Although this method, when
compared to the former, does require a better understanding
of the DUT’s architecture, it does guarantee that the generated
result is optimal in terms of stress efficiency, but also in terms
of optimal sequence length for the achieved stress efficiency.

III. METHOD A: EVOLUTIONARY ALGORITHM

Given a well defined problem, the evolutionary algorithms
generate solutions in a manner inspired by nature. The algo-
rithm initially generates solutions to the problem i.e., individ-
uals in a random manner. The generated individuals compose
a generation. Every individual of the population is assigned a
fitness value. The fitness is a function which takes as input the
individual and returns a value according to how “good” this
individual is with respect to the problem consideration.

After the assignment of the fitness values a ranking of
the population takes place in order to distinguish between
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Figure 2. Concept of Method A

the “good” and the “bad” solutions. The individuals with the
better fitness values are undergoing a selection process to
become parent individuals and to produce offsprings, which
will be part of the next generation. The generation of new
individuals is primarily the result of the application of the
genetic operators on the parent individuals. One of the most
common genetic operator is the cross-over, during which, the
new individuals are generated from the splicing of the parents
characteristics. Finally, the mutation procedure takes place,
which is a probabilistic alternation on the characteristics of
the individuals.

The proposed algorithm, depicted in Figure 2 takes the gate-
level description of the core along with the layout-derived
pairs of two nodes for a functional unit (our stress target) as
input. For every node pair, an instance of the evolutionary
algorithm is launched with a goal of generating a stress-
efficient individual for that particular pair. The evolution
process is composed by two components:

The evolutionary core is responsible of orchestrating the
whole generation process. It is tuned by two user-defined
sets: the settings (S) and constraints (C). The former regards
the population settings and it is a collection of parameters
that are linked directly to the genetic algorithm such as the
population size, the number of genetic operators to be applied
on each iteration, and so on. The latter regards the set of
rules and formats the tool has to consider in order to generate
valid individuals. For example, it mandates that the generated
instructions are compliant to the processor’s instruction set
architecture (ISA).

The fitness evaluator is responsible for assessing a batch
of individuals (generated by the evolutionary core in each
iteration) by assigning to them a fitness value. The imple-
mented fitness function is eq. (1). In order to compute this
metric, a logic simulation of each individual on the gate-level
description of the core is launched. After each individual is
assigned a fitness value, the evaluator reports the ranking of the
individuals back to the evolutionary core and the generation
process begins anew.

The optimization process is halted when the optimal in-
dividual has been generated for the current node pair i.e.,
the test program for which the fitness function is assigned a
maximal value for a certain amount continuous generations
(steady-state generations) i.e., the best fitness value of the
population was not further improved. An advantage of this
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Figure 3. Concept of Method B

method is that it does not require an in-depth knowledge of
the underlying architecture but solely a good understanding
of the processor’s ISA. Furthermore, the algorithm supports
parallelization. Namely, during the fitness computation phase
for a batch of generated individuals for a specific pair, their
evaluation can be done in a concurrent manner. Also, the
whole optimization process that is invoked for each pair of
nodes can in fact be done in parallel manner since there are
no dependencies from one optimization process to another.

IV. METHOD B: FORMAL METHOD

The second method is using Bounded Model Checking
(BMC) as an underlying tool. This approach runs an opti-
mization loop for each targeted node pair that maximizes the
number of transitions in the pre-defined number of timeframes
W by repeatedly solving BMC problems that are constrained
to enforce a maximum SE. The maximum SE is decreased
until either a solution is found or a SE of 0, being equivalent
to the pair being uncontrollable, is found.

The proposed algorithm (shown in Figure 3) takes the gate-
level description of the core, the layout derived pairs of nodes
for a functional unit and also the gate-level description of
a Validity Checker Module (VCM) as input. The processor
and VCM gate-level descriptions are transformed into a Con-
junctive Normal Form (CNF) for which a valid assignment
is sought via a BMC solver. The VCM is specific to the
functional unit. It is used to enforce a valid behavior, i.e., func-
tional constraints during the stimuli generation process. The
concept of a VCM that is employed in the BMC process has
been introduced in [11, 12] and allows specifying functional
constraints in a hardware description language. The VCM is
connected to the processor via its inputs and observes it. Based
on those inputs a validation result is signaled via its so-called
constraint outputs. These outputs are constrained to a constant
logic value of 1 during the BMC process which forces the
BMC solver to apply the functional constraints encoded in
the VCM and excluding all non-valid behavior according to
the VCM.

The optimization loop starts by constructing a CNF con-
sisting of the processor and VCM gate-level circuit. It starts
by assuming the maximum possible SE of 4. If a solution is
found it is returned and the optimization loop ends. Should
there be a timeout the loop is exited and the pair marked
as unknown as no conclusion about the maximum reachable



number of transitions can be made. In the case that the BMC
solver determines that there can be no solution that satisfies
the number of transitions the SE is decreased by one and the
loop is repeated.

After the solver yields a solution for each optimization
problem performed for every pair, the values assigned to the
bits of the instruction register of the decode stage are decoded
to binary values in order to generate the instructions that
compose the stress inducing sequence.

V. RESULTS

Method A was implemented using µGP [13] as an un-
derlying framework. The external fitness evaluator module
was written in Python and for the logic simulation uses
QuestaSim by Siemens. Method B was implemented using
a rewritten version of PHAETON [14] framework. We imple-
mented a prototypical tool inside the framework (accounting
for approximately 1,500 lines of C++ code) for the algorithm
described in fig. 3. Our experiments for both methods were
performed on a system using two Intel(R) Xeon(R) Gold
6238R CPUs (56 cores, 112 threads) running at 2.20 GHz
with 256 GB of RAM.

The processor we used in our experiments is RI5CY
[15]. RI5CY is a 4-stage in-order 32-bit RISC-V processor
core. The processor’s RTL SystemVerilog description was
synthesized using the Silvaco 45nm Open Cell Library [16]
using Design Compiler by Synopsys. Since we did not
have the actual layout of the processor available, instead we
generated an artificial layout-derived mapping of the nets of
the functional unit to be stressed. Without loss of generality,
for every unit, we grouped the internal nets and divided them
into unique pairs by using a uniform distribution.

As stress target modules within the RI5CY core we used:
• the 32-bit adder, consisting of 538 internal nets that were

grouped into 538
2 = 269 node pairs

• the decoding unit, consisting of 616 internal nets that
were grouped into 616

2 = 308 node pairs.
These functional units were strategically selected in order

to showcase the efficiency of the proposed methods. The size
of the search space for the optimal sequence required to stress
a pair of the modules can be approximated by the Cartesian
product:

Sseq ≤
W∏
i=1

Sinstructioni

The reader should note that the set Sinstructioni differs ac-
cording to the functional unit we target. It holds that
Sadder

instructioni ≪ Sdecoder
instructioni since the decoder is responsible of

handling every instruction of the processor’s ISA, which
means that the search space for the case of the decoder is
much larger than the search space for the case of the adder.

The results of our experiments are shown in Table I. The
table shows, for both methods, the percentage of pair of
nodes that achieve a given stress efficiency (from 0 to 4).
All sequences generated by Method A had a fixed length of
W = 10, whereas for the case of the sequences generated by
Method B they had a length W ≤ 10. The ideal window size W
is dependent on the underlying micro-architecture. In our case,

we experimentally verified that the optimal stress efficiency
achieved by both methods does not increase if the window
size is bigger than the aforementioned value. The results of
both methods were compared with those produced by an SBST
program achieving 95% of functional stuck-at fault coverage
on the whole processor with a duration of approximately 130k
clock cycles. In order to accurately compare our results with
the SBST program we performed a coverage profiling logic
simulation. Namely, we calculated the number of transitions
for all pairs for both units every W=10 clock cycles. The chunk
of instructions achieving the maximum value of eq. (1) is used
for comparing with our results.

For the case of the adder we can see that both methods
converged to the same results by achieving to force 84.75%
of the unit’s pairs to all 4 combinations of values in the target
time window. Both methods were found to slightly outperform
the stuck-at SBST program. For the case of the decoder,
Method B outperformed Method A and the SBST program
by achieving a notable stress efficiency of 82.14% while
the rest achieved 72.07% and 77.60% of optimal switching,
respectively. Furthermore, the pair switching is also achieved
in a notably shorter period of time than the case of the SBST.
For instance, if we concatenate the generated sequences by
method A for a given unit into a test program the final size
would be 10× total pairs in terms of instructions whereas for
method B this would be ≤ 10× total pairs. It is also clear that
Method B dominates Method A in terms of CPU runtime. For
both test generation procedures Method B converged faster
by orders of magnitude than Method A, most notably for
the case of the decoder. The justification is the following.
Firstly, the way the two methods approach the problem and
generate solutions is different. Method A, i.e., the evolutionary
algorithm, starts from a completely random (yet valid) set
of sequences that are refined in every iteration. Thus, the
initial solutions may in fact be far off from the optimal point
and hence longer times are required for the algorithm to
converge. On the other hand, Method B, i.e., the BMC-based
algorithm, starts by searching a solution sensitizing both nodes
at the same time. As most node pairs are shown to be fully
sensitizable, it is rare that multiple BMC problems need to
be solved and a fast reasoning is achieved. Additionally, the
BMC algorithm increases the number of timeframes gradually
starting by searching for short, easy to compute sequences
aiding in reducing the runtime. In theory, through the k-
induction and craig interpolation implemented in the BMC
solver, unsensitizable node pairs can be found before reaching
the maximum depth W , which increases the convergence
speed of the optimization loop.

As a reference, we performed a further comparison with
DfT-based stimuli. After converting the processor to its scan
equivalent, we launched an ATPG process, using TestMAX
by Synopsys, and considered the generated vectors. By using
a test-bench written in SystemVerilog we applied the
patterns and computed the maximum stress efficiency they
induced to the DUTs in a manner identical to the SBST
program (i.e., by using a window of W = 10 capture cycles).
For the case of the adder, we can see that with scan it is
possible to optimally stress pairs of nodes that no functional



Table I
RESULTS

Adder Decoder
Stimulus Method Runtime Stress Efficiency Runtime Stress Efficiency

0 1 2 3 4 0 1 2 3 4

Functional
A 6h 0.74% 0.00% 14.58% 0.00% 84.75% 171h 0.97% 0.32% 23.70% 2.92% 72.07%
B 8min 0.74% 0.00% 14.58% 0.00% 84.75% 15min 0.65% 0.00% 12.34% 4.87% 82.14%
SBST – 1.12% 0.00% 14.87% 0.00% 84.01% – 0.32% 0.32% 19.16% 2.60% 77.60%

Non

Functional SCAN – 0.37% 0.00% 1.86% 1.86% 95.91% – 0.65% 0.00% 13.27% 3.56% 82.52%

method managed to toggle. The same can be seen for the case
of the decoder. This is expected, since as it has been showcased
in [7], DfT approaches enable a better stress distribution since
they simultaneously exercise many cells in the circuit. Yet, for
both cases, we can see that the stress efficiency of the proposed
methods is not that far off than the case of scan-induced stress.
On the other side, functional stimuli can be applied at-speed to
the DUTs (in contrast to scan), thus can be better for exciting
possible weak point in the circuit. Moreover, functional stimuli
are guaranteed not to stimulate the circuit differently than in
the operational mode (thus avoiding any form of overtesting).

VI. CONCLUSIONS

Stress inducing stimuli are required as an internal stress
factor during BI test for modern circuit designs in order to
effectively and homogeneously sensitize their internal parts
and thus detect potential latent defects. The generation of
functional stress-inducing stimuli represents a major challenge,
since it requires a lot of manual effort from the perspective of
the test engineer.

In this paper we considered the case where the layout
of the design is known and presented two novel methods
that enable the automatic generation of functional stress-
inducing code snippets able to force pairs of neighboring
nodes to toggle and hold all possible combinations of values.
We applied the two methods to generate such stimuli for
functional units of a pipelined processor. The generated results
show the efficiency of the proposed methods as well as the
difference between them in terms of optimality of the stress
efficiency and computational cost. Further work is currently
being done to consider more functional units and different
processor designs.
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