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Abstract
Combination of several anticancer treatments has typically been presumed to
have enhanced drug activity. Motivated by a real clinical trial, this paper con-
siders phase I–II dose finding designs for dual-agent combinations, where one
main objective is to characterize both the toxicity and efficacy profiles. We
propose a two-stage Bayesian adaptive design that accommodates a change of
patient population in-between. In stage I, we estimate a maximum tolerated
dose combination using the escalation with overdose control (EWOC) princi-
ple. This is followed by a stage II, conducted in a new yet relevant patient
population, to find the most efficacious dose combination. We implement a
robust Bayesian hierarchical random-effects model to allow sharing of infor-
mation on the efficacy across stages, assuming that the related parameters are
either exchangeable or nonexchangeable. Under the assumption of exchange-
ability, a random-effects distribution is specified for the main effects parameters
to capture uncertainty about the between-stage differences. The inclusion of
nonexchangeability assumption further enables that the stage-specific efficacy
parameters have their own priors. The proposed methodology is assessed with
an extensive simulation study. Our results suggest a general improvement of
the operating characteristics for the efficacy assessment, under a conservative
assumption about the exchangeability of the parameters a priori.

KEYWORDS
drug combination, information borrowing, meta-analytic-combined, phase I–II, seamless
designs

1 INTRODUCTION

The primary objective of early-phase clinical trials is to identify a dose that is safe and efficacious. Seamless phase I–II
clinical trial designs are efficient approaches to study these two aspects in a single protocol. In the literature, we find two
types of seamless phase I–II designs: one-stage and two-stage. The former usually estimates the joint probability of toxicity
and efficacy using the accumulating data to recommend a best-suited dose to patients in the next cohort (Ivanova, 2003;
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Liu et al., 2018; Thall & Cook, 2004; Yuan & Yin, 2009). This setting is favored when the efficacy outcome can be observed
relatively soon after administration of the dose, for example, after one or two cycles of therapy. By contrast, two-stage
phase I–II designs come into play when efficacy cannot be ascertained in a short period of time. Specifically, stage I would
commonly focus on toxicity considerations alone for dose (de-)escalation, despite that efficacy data are collected. This is
then followed by stage II, where the evaluation of efficacy is the priority. A considerable amount of statistical literature has
been written for the two-stage type (Jiménez et al., 2020; Jiménez & Tighiouart, 2022; Le Tourneau et al., 2009; Rogatko
et al., 2008; Tighiouart, 2019).
Our work is motivated by the cisplatin–cabazitaxel clinical trial design proposed by Tighiouart (2019). In their proposed

phase I–II study design, stage I was inspired by a conducted phase I trial Lockhart et al. (2014) in patients with advanced
solid tumors, where a single maximum tolerated dose (MTD) of cisplatin/cabazitaxel 15/75 mg/m2 was recommended.
Based on the available results and other preliminary efficacy data, it was hypothesized by the clinical team that there
could be a series of tolerable and efficacious dose combinations for prostate cancer. Over the last years, clinical trials with
drug combinations have received a fair amount of attention. This interest is motivated by the fact that drug combina-
tions are able to induce synergistic treatment effects by simultaneously inhibiting resistance mechanisms and targeting
multiple pathways. In stage II of the cisplatin–cabazitaxel trial (Tighiouart, 2019), 30 additional patients were enrolled
to identify the dose combinations with high probability of efficacy, along the MTD curve estimated from stage I data.
Another characteristic of the cisplatin–cabazitaxel trial (Tighiouart, 2019) was that each stage has a different patient pop-
ulation, being the population in stage II the one of interest for the clinical team. Then, since the patient populations were
not exactly the same in stages I and II, it was hypothesized that the dose-efficacy profiles could differ. Consequently, the
dose-efficacy relationship was estimated using stage II data alone. The cisplatin–cabazitaxel trial (Tighiouart, 2019) can
further be improved in two ways: (i) uncertainty about the estimated MTD curve should better be taken into account in
stage II (i.e., the MTD curve may further be updated during stage II) and (ii) efficacy data from stage I could be used for
the final analysis by the end of stage II. The first limitation was recently addressed (Jiménez & Tighiouart, 2022), allowing
for a continuous update of the MTD curve throughout the entire phase I–II design. The novelty of the present article lies
in addressing the second aspect; that is, we aim to integrate the efficacy information from both stages without neglecting
the potential heterogeneity caused by the change of patient population across stages.
A robust Bayesian hierarchical model is fitted to allow combining the efficacy data across stages. The associated param-

eters are assumed to be either exchangeable or nonexchangeable. In our specific application, the benefit of borrowing is
expected to lead to a precision improvement of the model parameter estimates and a reduction number of patients treated
at subtherapeutic dose combinations when there is a consistency between the efficacy profiles across stages. For cases of
data inconsistency, the stage I efficacy data need to be discounted effectively.
The manuscript is organized as follows. In Section 2, we review the cisplatin–cabazitaxel trial, which serves as a moti-

vating example for the present work, as well as the proposed marginal dose-toxicity and dose-efficacy models to fit the
trial. In Section 3, we introduce the proposed dose-finding algorithm for stages I and II, whereas in Section 4, we present
a simulation study to evaluate the operating characteristics of the design, with focus on stage II. We provide concluding
remarks in Section 5.

2 MOTIVATING EXAMPLE AND STATISTICALMODELS

2.1 The cisplatin–cabazitaxel trial and data collection

The original cisplatin–cabazitaxel trial enrolled patients with metastatic, castration resistant prostate cancer. A combi-
nation of continuous doses ranging from 10 to 25 mg/m2 for cisplatin and from 50 to 100 mg/m2 for cabazitaxel were
administered intravenously every 3 weeks. As informed by a precedent study (Lockhart et al., 2014), three specific com-
binations of cisplatin/cabazitaxel, 15/75, 20/75, and 25/75 mg/m2 were evaluated. In stage I, the study enrolls 30 patients
using conditional escalation with overdose control (EWOC) algorithm (Tighiouart et al., 2017) to estimate theMTD curve.
In stage II, the study enrolls another 30 patients from the same population of patients but with visceral metastasis to
identify dose combinations with high probability of efficacy along the MTD curve estimated at the end of stage I. These
patients are allocated to dose combinations along the MTD curve using a Bayesian adaptive design after modeling the
dose-efficacy curve with cubic splines.
The recommended MTD was 15/75 mg/m2 on the basis of data from 24 patients (i.e., nine evaluable patients in phase

I and 15 patients in the expansion cohort) where only 2 out of 18 patients treated at the recommended MTD had dose
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limiting toxicity (DLT). Considering the low toxicity rate at the MTD reported (Lockhart et al., 2014), as well as other
(unpublished) preliminary efficacy data, the clinicians who contributed to the design of the cisplatin–cabazitaxel trial
hypothesized that a series of tolerable dose combinations that could be efficacious in prostate cancer could exist.
In this article, we regard the potential differences between stage I and stage II efficacy profiles from a different per-

spective. More specifically, we are motivated to establish a robust model formally accounting for such uncertainty, so
that we can enhance the conduct and analysis of the stage II when there is a certain level of similarity between the
efficacy profiles across the patient populations (the stages), as well as to discount the stage I efficacy data in case
of dissimilarity.

2.2 Problem formulation

Let 𝑥 and 𝑦 be the respective dose levels, on their original continuous scales, of two compounds (labeled 𝑋 and 𝑌) of
interest, and further, {𝑋min, 𝑌min, 𝑋max, 𝑌max} be the lower and upper bounds. The measurement scales of 𝑥 and 𝑦 might
differ from each other substantially. To avoid one variable being overly influential in the risk of toxicity, we standardize
the doses using the transformations ℎ1(𝑥) = (𝑥 − 𝑋min)∕(𝑋max − 𝑋min) and ℎ2(𝑦) = (𝑦 − 𝑌min)∕(𝑌max − 𝑌min), so that
the standardized doses fall within the interval of [0, 1]. Thus, the dose combination (0,0) corresponds to the lowest dose
combination available in the trial and not to a lack of dose combination administration. For ease of notation, we retain
the notation of 𝑥 and 𝑦 to denote the standardized dose levels.
Let 𝑍 ∈ {0, 1} be the binary indicator of DLT where 𝑍 = 1 represents the presence of a DLT and 𝑍 = 0 otherwise. Like-

wise, let 𝐸 ∈ {0, 1} be the binary indicator of treatment response where 𝐸 = 1 represents a positive response, and 𝐸 = 0

otherwise. In this article, following the motivating trial, we assume that only the DLT can be observed rapidly after drug
administration (e.g., after one cycle of therapy), whereas it takes three cycles ormore for the efficacy outcome to be observ-
able. Following Tighiouart (2019), let 𝜃𝑇 = 0.33 be the target probability of DLT and 𝑝0 = 0.15 be the probability of efficacy
of the standard of care treatment. When employing synergistic cytotoxic agents, it is common to assume that both the
dose-toxicity and dose-efficacy relationship are monotonically increasing functions. This implies that the optimal dose
combination (i.e., the dose combination with most desirable benefit-risk trade-off) will lie in the MTD set, defined as
 = {(𝑥, 𝑦) ∶ 𝑃(𝑍 = 1|𝑥, 𝑦) = 𝜃𝑇}, that is, any dose combination (𝑥, 𝑦)with probability of DLT equal to 𝜃𝑇 . A formal def-
inition of the optimal dose combination is given in Section 3. Given the two-stage formulation of this design, let 𝑆 ∈ {1, 2}

be the stage enrollment indicator to stage I and stage II, respectively, and let𝑫𝑆,𝑖 = {(𝑍𝑖, 𝐸𝑖, 𝑥𝑖, 𝑦𝑖)} be the data collected in
stage 𝑆 for the 𝑖th patient.

2.3 A marginal dose-toxicity model

We assume that the binary outcomes of toxicity and efficacy are independent (Cai et al., 2014; Ivanova et al., 2009; Lyu
et al., 2019). Alternatively, one could also account for the relationship between toxicity and efficacy either with the use of
a copula (Thall & Cook, 2004) or with a latent variable approach (Liu et al., 2018; Lin et al., 2020). However, this would
add an additional layer of complexity to the design that is not in the scope of the article. Let the model for the marginal
probability of DLT be

𝜋𝑇(𝑥, 𝑦) = 𝑃(𝑍 = 1|𝑥, 𝑦) = 𝐹(𝛼0 + 𝛼1𝑥 + 𝛼2𝑦 + 𝛼3𝑥𝑦), 𝛼1, 𝛼2, 𝛼3 > 0, (1)

where 𝐹(.) is the cumulative distribution function of the logistic distribution, that is, 𝐹(𝑢) = 1∕(1 + 𝑒−𝑢). The parameters
in this model can be interpreted as follows: (i) 𝛼0 determines the probability of DLT at the lowest dose combination
available in the trial, that is, (𝑥 = 0, 𝑦 = 0), (ii) 𝛼1 and 𝛼2 determine the contribution of compounds𝑋 and𝑌 to the overall
probability of DLT, and (iii) 𝛼3 captures the potential increase in the probability of DLT due to drug–drug interaction.
Note that in Model (1), because the number of attributable DLTs is expected to be very low given the cytotoxic nature

of cisplatin and cabazitaxel, we do not take into account toxicity attributions (Jimenez et al., 2019).
We reparameterize the marginal probability of DLT defined in Model (1) in terms of parameters that clinicians can

easily interpret (Tighiouart et al., 2017). Let 𝜌𝑢𝑣 denote the joint probability of DLT when the levels of agents 𝑋 = 𝑢 and
𝑌 = 𝑣, with 𝑢 ∈ {0, 1}, and 𝑣 ∈ {0, 1}, so that 𝛼0 = 𝐹−1(𝜌00), 𝛼1 = (𝐹−1(𝜌10) − 𝐹−1(𝜌00)), and 𝛼2 = (𝐹−1(𝜌01) − 𝐹−1(𝜌00)).
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The MTD thus has the form of

 =

{
(𝑥, 𝑦) ∶ 𝑦 =

(𝐹−1(𝜃𝑇) − 𝐹−1(𝜌00)) − (𝐹−1(𝜌10) − 𝐹−1(𝜌00))𝑥

(𝐹−1(𝜌01) − 𝐹−1(𝜌00)) + 𝛼3𝑥

}
. (2)

Following Tighiouart (2019), we use informative prior distributions based on the results of Lockhart et al. (2014) so
that 𝜌10, 𝜌01, and 𝛼3 are independent a priori with 𝜌01 ∼ Beta(1.4, 5.6), 𝜌10 ∼ Beta(1.4, 5.6), and conditional on (𝜌01, 𝜌10),
𝜌00∕ min(𝜌01, 𝜌10) ∼ Beta(0.8, 7.2). Also, let the interaction parameter 𝛼3 ∼ Gamma(0.8, 0.0384), that is, a shape of 0.8
and a rate of 0.0384. These prior distributions imply that the combination of cisplatin/cabazitaxel 15/75 mg/m2 has a
probability of DLT approximately equal to 0.33. The posterior distribution of the dose-toxicitymodel parameters is defined
as 𝑝(𝝆, 𝛼3|𝑫1) ∝ 𝑝(𝝆, 𝛼3) × (𝑫1|𝝆, 𝛼3), where 𝝆 = {𝜌00, 𝜌01, 𝜌10} and where 𝑫1 corresponds to the data from stage 1.

2.4 A marginal dose-efficacy model

We now shift our focus to estimate the dose-efficacy relationship in a dual-dimensional plane; for stage 𝑆 = {1, 2}, we
stipulate the stagewise dose-efficacy data model as

𝜋𝑆
𝐸(𝑥, 𝑦) = 𝑃(𝐸 = 1|𝑥, 𝑦, 𝑆) = 𝐹(𝛽0𝑆 + exp(𝛽1𝑆)𝑥 + exp(𝛽2𝑆)𝑦 + 𝛽3𝑆𝑥𝑦), (3)

where 𝐹(.) remains to be the cumulative distribution function of the logistic distribution. Because the motivating trial
employs cytotoxic agents, we assume that the probability of efficacy does not decrease with the dose of any agent when
the other agent is held constant. To ensure this property, we apply the exponential function to 𝛽1𝑆 and 𝛽2𝑆 since exp(𝑢) > 0.
We also assume that 𝛽3𝑆 > 0, which means that there is a synergistic effect due to the interaction of the two compounds
(Gasparini, 2013). The parameters in this model can be interpreted as follows: (i) 𝛽0 determines the probability of efficacy
at the lowest dose combination available in the trial, that is, (𝑥 = 0, 𝑦 = 0), (ii) 𝛽1 and 𝛽2 determine the contribution of
compounds 𝑋 and 𝑌 to the overall probability of efficacy, and (iii) 𝛽3 captures the potential increase in the probability of
efficacy due to drug–drug interaction.
Let 𝚿𝑆 = (𝛽1𝑆, 𝛽2𝑆) denote the main effects of the treatment specific to stage. We consider a meta-analytic-combined

(MAC) approach (Neuenschwander et al., 2016) to establish a Bayesian predictive distribution for𝚿2 ∣ 𝑫1, 𝑫2. This would
allow the investigator to estimate main effects of drugs X and Y, using the efficacy data from both stages.
We assume a normal-normal hierarchical model to relate the stagewise main effects of efficacy for the dual agent.

Specifically, at stage 𝑆 = 1,

𝚿1 ∣ 𝝁, 𝚽 ∼ BVN(𝝁, 𝚽).

Continuing the phase I–II trial to stage 𝑆 = 2 in a new population, we introduce a nonexchangeability distribution and
stipulate that

𝚿2 ∣ 𝝁, 𝚽 ∼ BVN(𝝁, 𝚽) with probability 𝜔,

𝚿2 ∼ BVN(𝒎0, 𝑅0) with probability 1 − 𝜔,
(4)

with

𝝁 =

(
𝜇1

𝜇2

)
, 𝚽 =

(
𝜏2

1 𝜉𝜏1𝜏2

𝜉𝜏1𝜏2 𝜏2
2

)
, (5)

and

𝐦0 =

(
0

0

)
, 𝐑0 =

(
102 𝜁100

𝜁100 102

)
. (6)

The variance terms in 𝚽 represent between-stage heterogeneity. Mind that in each stage of the cisplatin–cabazitaxel
trial, we have two distinct and well-designated populations. Consequently, between-stage heterogeneity and between-
population heterogeneity cannot be disentangled. If our trial would involve multiple populations in each stage, we would
need additional random-effects distributions to account for the between-population differences (Zheng et al., 2020, 2021).
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The values ofm0 and R0 are selected so that they induce weakly informative prior distributions over the parameters in
𝚿2. This Bayesian hierarchical random-effects model is completed by the following hyperpriors:

𝜇1 ∼ 𝑁(𝜂1, 𝑠2
1), 𝜇2 ∼ 𝑁(𝜂2, 𝑠2

2), 𝜏1 ∼ HN(𝑧1), 𝜏2 ∼ HN(𝑧2), 𝜉 ∼ 𝑈(0, 0.5), 𝜁 ∼ 𝑈(0, 0.5),

where HN(𝑧) denotes a half-normal distribution formed by truncating a 𝑁(0, 𝑧2), so it covers the interval (0, ∞). We
select HN(0.5) anticipating for substantial between-stage heterogeneity in the main effects model parameters. Other
viable choices of HN(𝑧) and the indication have been noted (Roychoudhury & Neuenschwander, 2020; Zheng et al.,
2020). The value 𝑧 = 0.5 serves as a weakly informative prior distribution, although the values of 𝑧1 and 𝑧2 can be jus-
tified appropriately for the user’s own case, with evidence suggesting the similarity or dissimilarity of efficacy in such
two-patient populations.
The specification of 𝜔 requires, in practice, the input of subject-matter experts and needs to be fixed a priori. We place

weakly informative prior distributions over the dose-efficacy model parameters:

𝛽01 ∼ 𝑁(−1.8, 3.162), 𝛽02 ∼ 𝑁(−1.8, 3.162),

𝛽31 ∼ Gamma(0.1, 0.1), 𝛽32 ∼ Gamma(0.1, 0.1).

For illustration purposes, we set

𝜂1 = 0, 𝑠1 = 3.16, 𝜂2 = 0, 𝑠2 = 3.16, 𝑧1 = 0.5, 𝑧2 = 0.5,

to implement the model. Overall, the weakly informative prior distributions we select in this article translate into the
median probability of efficacy estimates with 95% credible intervals displayed in Table S1 of the Supporting Information.

3 AN INTEGRATED PHASE I–II DESIGN FOR DOSE FINDING

Stage I will enroll a total of 𝑁1 = 𝐶1 × 𝑚1 patients, where 𝐶1 denotes the total number of cohorts in phase I with each of
the size𝑚1. Stage II will enroll a total of𝑁2 = 𝑛2 + 𝐶2 × 𝑚2 patients, where 𝑛2 is the number of patients in the first cohort
of stage II, 𝐶2 the additional number of cohorts, and 𝑚2 its size.
In the original cisplatin–cabazitaxel trial, stage I efficacy data were entirely discarded, and therefore, at the beginning of

stage II, an initial cohort 𝑛2 was used to collect efficacy data homogeneously across the entire MTD curve. In this article,
we choose to keep 𝑛2 as a short run-in period that can inform the data (in)consistency, and thus, determine the degree of
information sharing.
Let 𝑁 = 𝑁1 + 𝑁2 be the total number of patients that the entire study will enroll and ̂𝑫1

be the estimated MTD set
based on data from stage I. We select 𝑚1 = 2, 𝑚2 = 5, and 𝑛2 = 10. At the end of stage II, we test the following null and
alternative hypotheses

𝐻0 ∶ 𝜋𝑆=2
𝐸 (𝑥, 𝑦) ≤ 𝑝0 for all (𝑥, 𝑦) ∈ ̂𝑫1

versus

𝐻1 ∶ 𝜋𝑆=2
𝐸 (𝑥, 𝑦) > 𝑝0 for some (𝑥, 𝑦) ∈ ̂𝑫1

,
(7)

and we reject the null hypothesis if

arg max
(𝑥,𝑦)∈̂𝑫1

(
𝑃(𝜋𝑆=2

𝐸 (𝑥, 𝑦) > 𝑝0|𝑫1, 𝑫2)
)

> 𝛿𝑢, (8)

where 𝛿𝑢 = 0.4 is a prespecified design parameter. Moreover, the dose combination

(𝑥, 𝑦)𝑜𝑝𝑡 = argmax
(𝑥,𝑦)∈̂𝑫1

𝑃(𝜋𝑆=2
𝐸 (𝑥, 𝑦) > 𝑝0|𝑫1, 𝑫2), (9)

is recommended as the optimal dose combination and is selected for further phase IIb or III studies.
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ALGORITHM 1 Stage I and stage II algorithms

STAGE I
- In the first cohort (𝑐1 = 1) patients 1 an 2 receive the dose combination (𝑥1, 𝑦1) = (𝑥2, 𝑦2) = (0.33, 0.5)

- In the second cohort (𝑐1 = 2) patients 3 and 4 receive doses (𝑥3, 𝑦3) and (𝑥4, 𝑦4), respectively, where 𝑦3 = 𝑦1, 𝑥4 = 𝑥2, 𝑥3 is the 𝛼th
percentile of 𝜆(Γ𝑋|𝑌=𝑦1

|𝑫1,2), 𝑦4 is the 𝛼th percentile of 𝜆(Γ𝑌|𝑋=𝑥2
|𝑫1,2).

for 𝑐1 = 3 ∶ 𝐶1 do
if 𝑐1 is an even number then
- Patient 2𝑐1 − 1 receives the dose combination (𝑥2𝑐1−1, 𝑦2𝑐1−3) where 𝑥2𝑐1−1 = Λ−1

Γ𝑋|𝑌=𝑦2𝑐1−3
(𝛼|𝑫1,2𝑐1−2)

- Patient 2𝑐1 the dose combination (𝑥2𝑐1−2, 𝑦2𝑐1
), where 𝑦2𝑐1

= Λ−1
Γ𝑌|𝑋=𝑥2𝑐1−2

(𝛼|𝑫1,2𝑐1−2)

else
- Patient 2𝑐1 − 1 receives the dose combination (𝑥2𝑐1−3, 𝑦2𝑐1−1) where 𝑦2𝑐1−1 = Λ−1

Γ𝑌|𝑋=𝑥2𝑐1−3
(𝛼|𝑫1,2𝑐1−2)

- Patient 2𝑐1 receives the dose combination (𝑥2𝑐1
, 𝑦2𝑐1−2) where 𝑥2𝑐1

= Λ−1
Γ𝑋|𝑌=𝑦2𝑐1−2

(𝛼|𝑫1,2𝑐1−2)

end if
end for
STAGE II
- Calculate the posterior median of the parameters 𝜌00, 𝜌10, 𝜌01 and 𝛼3 given data 𝑫1, that is, (𝜌00, 𝜌10, 𝜌01, �̂�3).
- Calculate estimated MTD set ̂𝑫1

= {(𝑥, 𝑦) ∶ 𝑦 = (
𝐹−1(𝜃𝑍 )−𝐹−1(𝜌00)−(𝐹−1(𝜌10)−𝐹−1(𝜌00))𝑥

(𝐹−1(𝜌01)−𝐹−1(𝜌00))+�̂�3𝑥
)}

- Allocate 𝑛2 patients to dose combinations equally spaced along the estimated MTD curve ̂𝑫1
.

- Calculate the posterior median of the parameters (𝛽02, 𝛽12, 𝛽22, 𝛽32) using the MAC approach given data 𝑫1, 𝑫2.
for 𝑐2 = 1 ∶ 𝐶2 do
- Generate a sample of dose combinations of size 𝑚2 that belong to ̂𝑫1

from the (estimated) standardized density 𝜋𝑆=2
𝐸 (𝑥, 𝑦), and

assign it to the subsequent cohort of 𝑚2 patients.
- Calculate the posterior median of the parameters (𝛽02, 𝛽12, 𝛽22, 𝛽32) using the MAC approach given data 𝑫1, 𝑫2.

end for

As previously mentioned, stage I is based on the EWOC principle (Babb et al., 1998; Shi & Yin, 2013; Tighiouart et al.,
2005, 2010, 2017; Tighiouart & Rogatko, 2012) where the posterior probability of overdosing the next cohort of patients is
bounded by a feasibility bound 𝛼. For the definition of the algorithm, let 𝜆(Γ𝑋|𝑌=𝑦|𝑫1) represent the posterior distribution
of the MTD of drug 𝑋, given that the level of drug 𝑌 is equal to 𝑦 (i.e., given that 𝑌 is fixed) based on stage I data 𝑫1 (see
Equation (2) for the definition of the MTD). Also, letΛ−1

Γ𝑋|𝑌=𝑦
(𝛼|𝑫1) denote the 𝛼th percentile of 𝜆(Γ𝑋|𝑌=𝑦|𝑫1). In a cohort

with two patients, the first one would receive a new dose of compound 𝑋 given that the dose 𝑦 of compound 𝑌 that was
previously assigned. The other patient would receive a new dose of compound 𝑌, given that dose 𝑥 of compound 𝑋 was
previously assigned. These steps are described in Stage I of Algorithm 1. Using EWOC, these new doses are at the 𝛼th
percentile of the conditional posterior distribution of the MTD combinations. The feasibility bound 𝛼 increases from 0.25
up to 0.5 in increments of 0.05 (see Wheeler et al., 2017). Accrual continues until the maximum sample size in stage I is
reached or the trial is stopped early for safety.
Stage II follows the response-adaptive randomization principle. This type of Monte Carlo algorithm uses the current

parameter estimates to sample a cohort of 𝑚2 dose combinations from the estimated dose-efficacy standardized density
of 𝜋𝑆=2

𝐸 (𝑥, 𝑦) along the estimated MTD curve. Note that 𝜋𝑆=2
𝐸 (𝑥, 𝑦) uses the Bayes estimates of the dose-efficacy model

parameters. As explained in Jiménez and Tighiouart (2022), because stage II selects doses on the estimated MTD curve
̂𝑫1

, and there is a one-to-one correspondence between (𝑥, 𝑦) ∈ ̂𝑫1
, we may write 𝜋𝑆=2

𝐸 (𝑥, 𝑦) = 𝜋𝑆=2
𝐸 (𝑥) for (𝑥, 𝑦) ∈

̂𝑫1
. In other words, by having the value of 𝑥, using the definition of the MTD in Equation (2), we can easily obtain the

corresponding value of 𝑦. Thus, to facilitate the definition of the standardize density function, instead ofwriting𝜋𝑆=2
𝐸 (𝑥, 𝑦),

we simply write 𝜋𝑆=2
𝐸 (𝑥). The standardized density of the estimated efficacy curve is �̃�𝑆=2

𝐸 (𝑥) =
𝜋𝑆=2

𝐸
(𝑥)

∫
𝑥∈𝑋′𝜋𝑆=2

𝐸
(𝑥)𝑑𝑥

. A rejection

sampling algorithm is then used to sample 𝑚2 dose combinations from this density. These steps are described in Stage II
of Algorithm 1.
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JIMÉNEZ and ZHENG 7 of 15

The dose finding algorithm contains the following stopping rules for safety and futility:

∙ Futility stopping rule
For ethical considerations and to avoid exposing patients to subtherapeutic dose combinations, we would stop the

trial for futility if

arg max
(𝑥,𝑦)∈̂𝑫1

(
𝜋𝑆=2

𝐸 (𝑥, 𝑦) > 𝑝0|𝑫1, 𝑫2)
)

< 𝛿0,

where 𝛿0 is a prespecified threshold. For the purposes of illustration in this article, we choose 𝛿0 = 0.1. Mind that this
stopping rule applies only after the run-in cohort of 𝑛2 patients in stage II.

∙ Safety stopping rule
The design contains two stopping rules for safety, one for stage I and a less stringent one for stage II. During stage I,

we would stop the trial if

𝑃(𝜋𝑇(𝑥 = 0, 𝑦 = 0) > (𝜃𝑇 + 0.1) | 𝑫1) > 𝛿𝜃1
, (10)

where 𝛿𝜃1
= 0.5. In contrast, during stage II, we would stop the trial if

𝑃(Θ > (𝜃𝑇 + 0.1) | 𝑫2) > 𝛿𝜃2
, (11)

where Θ represents the rate of DLTs for both stages of the design regardless of dose and 𝛿𝜃2
= 0.9 represents the

confidence level (i.e., 90%) that a prospective trial results in an excessive DLT rate. A noninformative Jeffrey’s prior
Beta(0.5,0.5) is placed on the parameter Θ.

4 SIMULATION STUDY

4.1 Operating characteristics

In this section, we present a simulation study that will assess the operating characteristics of our design. Since we apply an
already established dose-escalation procedure in stage I, we concentrate on evaluating the design’s operating characteris-
tics for the stage II, which leverages efficacy data from stage I. We report the simulation results according to the following
metrics:

∙ Distribution of the recommended optimal dose combinations.
∙ Proportion of recommended optimal dose combinations with true probability of efficacy above 𝑝0. For simplicity, this
metric is referred as the percentage of correct recommendation.

∙ (Approximated) Bayesian power (or type-I error probability under 𝐻0):

Power ≈
1

𝐽

𝐽∑
𝑗=1

𝟏

{
max

(𝑥,𝑦)∈̂𝑫1

(
𝑃
(

𝜋𝑆=2
𝐸,𝑗

(𝑥, 𝑦) > 𝑝0|𝑫1, 𝑫2

))
> 𝛿𝑢

}
, (12)

where “𝟏(.)” represents an indicator function and 𝐽 represents the total number of simulated trials, and 𝜋𝑆=2
𝐸,𝑗

=

𝐹(𝛽
(𝑗)
02 + exp(𝛽

(𝑗)
12 )𝑥 + exp(𝛽

(𝑗)
22 )𝑦 + 𝛽

(𝑗)
32 𝑥𝑦). Under null scenarios as defined in (7), the above formula represents the

(approximated) Bayesian type-I error probability.
∙ Average posterior probability of early stopping for futility and safety.
∙ Proportion of patients in stage II allocated to dose combinations with true probability of efficacy above 𝑝0.

4.2 Scenarios

In stage I, we construct two dose-toxicity scenarios considered as highly plausible by the principal investigator of the
motivating trial (Jiménez & Tighiouart, 2022; Tighiouart, 2019). The true dose-toxicity model parameters are presented
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8 of 15 JIMÉNEZ and ZHENG

F IGURE 1 MTD curves obtained with
the dose-toxicity model parameter values
presented in Table S2 in the Supporting
Information. The point at the
cisplatin/cabazitaxel 15/75 mg/m2

combination represents the MTD found by
Lockhart et al. (2014).

in Table S2 in the Supporting Information, and displayed in Figure 1. Furthermore, we assume that stage II has the same
dose-toxicity profile as stage I (i.e., the dose-toxicity profiles do not vary across patient populations) (Jiang et al., 2021;
Jiménez et al., 2020; Tighiouart, 2019). The target probability of DLT is 𝜃𝑇 = 0.33.
For each of the dose-toxicity scenarios, we consider two different stage II dose-efficacy profiles that place the dose

combination with the highest efficacy in opposite locations. In terms of the stage I dose-efficacy profiles, we consider the
following three hypothetical situations:

1. The stage I and stage II dose-efficacy profiles are perfectly consistent. For reading purposes, we refer to this profile
as “complete agreement between stage I and stage II dose-efficacy profiles” or simply as “CA,” which is short for
“Complete Agreement.”

2. The stage I and stage II dose-efficacy profiles point to the same dose combinationwith highest efficacy, but the probabil-
ities of efficacy are different across stages. For reading purposes, we refer to this profile as “partial agreement between
stage I and stage II dose-efficacy profiles” or simply as “PA,” which is short for “Partial Agreement.”

3. The stage I and stage II dose-efficacy profiles are completely different, and place the dose combination with the highest
efficacy in different locations. For reading purposes, we refer to this profile as “complete disagreement between stage
I and stage II dose-efficacy profiles” or simply as “CD,” which is short for “Complete Disagreement.”

To reflect low to high levels of prior confidence in the efficacy data consistency across stages, we run the simulations per
scenario with the prior probability of exchangeability𝜔 = 0, 0.25, 0.5, 0.75, 1. For scenarios under the alternative hypothe-
sis𝐻1, we assume an effect size of 0.25 (i.e., in all stage II dose-efficacy profiles, the highest probability of efficacy is equal
to 𝑝0 + 0.25 = 0.4, with 𝑝0 = 0.15). For scenarios under 𝐻0, the highest probability of efficacy in stage II is equal to 𝑝0.
Overall, we have a large number of comparisons, given that for each dose-toxicity profile, there are two different stage

II dose-efficacy profiles, each coupled with three different stage I dose-efficacy profiles (i.e., CA, PA, and CD). We have
scenarios under𝐻1 and𝐻0, and furthermore, five different values of 𝜔. To facilitate the communication of the simulation
results over a large number of scenarios, we label the configuration of dose-toxicity and dose-efficacy profiles by scenarios
A–H as follows:

∙ Dose-toxicity profile 1 + stage II dose-efficacy profile 1 under 𝐻1 = scenario A,
∙ Dose-toxicity profile 1 + stage II dose-efficacy profile 2 under 𝐻1 = scenario B,
∙ Dose-toxicity profile 2 + stage II dose-efficacy profile 1 under 𝐻1 = scenario C,
∙ Dose-toxicity profile 2 + stage II dose-efficacy profile 2 under 𝐻1 = scenario D,
∙ Dose-toxicity profile 1 + stage II dose-efficacy profile 1 under 𝐻0 = scenario E,
∙ Dose-toxicity profile 1 + stage II dose-efficacy profile 2 under 𝐻0 = scenario F,
∙ Dose-toxicity profile 2 + stage II dose-efficacy profile 1 under 𝐻0 = scenario G,
∙ Dose-toxicity profile 2 + stage II dose-efficacy profile 2 under 𝐻0 = scenario H.
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JIMÉNEZ and ZHENG 9 of 15

F IGURE 2 True dose-efficacy profiles favoring the alternative hypothesis 𝐻1 under each dose-toxicity scenarios varying with the dose of
cisplatin. In each efficacy scenario, we have the true stage II efficacy profile (red), and three-stage I efficacy scenarios: (i) one that is exactly
like the stage II dose-efficacy profile (in red), (ii) one in which the optimal dose combination is the same but the efficacy profile is slightly
different (green), and (iii) one that is completely different to the stage II dose-efficacy profile (blue). The gray line represents the threshold
𝑝0 = 0.15.

The true dose-efficacy profile per scenario, with specification ofmodel parameters, is given in Table S3 in the Supporting
Information, and displayed graphically in Figure 2.
The sample sizes for Stages I and II are 𝑁1 = 𝑁2 = 30 and we simulated 𝐽 = 1000 trials using Algorithm 1. The DLT

and efficacy responses were generated from models (1) and (3), respectively.

4.3 Results

As discussed in Section 2.4, the value 𝜔 = 0 implements no borrowing of information. In other words, the treatment
efficacy in Equation (4) would be estimated using data from one stage solely, leading to a complete discard of stage I
efficacy data. It is of interest to quantify the improvement achieved by allowing the combination of efficacy data based on
the assumption of full exchangeability (with 𝜔 = 1) or partial exchangeability (with 0 < 𝜔 < 1).
In Figure 3, we display the power and type-I error values obtained at different values of 𝜔 > 0 with respect to 𝜔 = 0.

Under𝐻0 (i.e., scenarios E-H), ifwe choose low tomediumvalues of𝜔 (e.g., 0 < 𝜔 ≤ 0.25), the type-I error varies between0
and0.049with respect to𝜔 = 0, depending on the scenario and the level of agreement. That is, the type-I error remains very
close to its reference value (i.e., with 𝜔 = 0). With larger values of 𝜔 (i.e., 𝜔 > 0.25), the type-I error varies between 0.012
and 0.106 with respect to 𝜔 = 0. Under 𝐻1 (i.e., scenarios A–D), the power increases as the value of 𝜔, with differences,
with respect to 𝜔 = 0, up to 0.121. We notice that for values of 𝜔 ≤ 0.25, the power gain is already notable. The numerical
results of power and type-I error for all values of 𝜔 are presented in the Supporting Information (Figure S1). In scenarios
under 𝐻1 with 𝜔 = 0, the power ranges between 0.66 and 0.93, whereas in scenarios under 𝐻0 with 𝜔 = 0, the type-I
error ranges between 0.11 and 0.21. These power and type-I error results are consistent with those reported in previous
publications (Jiménez et al., 2020; Jiménez & Tighiouart, 2022; Tighiouart, 2019).
In Figure 4, we present the distribution of the recommended optimal dose combinations across all scenarios, agreement

levels, and values of 𝜔. Overall, we see how the design correctly identifies the most efficacious region of the MTD curve
by allocating there the majority of patients. At 𝜔 = 0, we notice that the level of dispersion of the distribution is generally
higher than with 𝜔 > 0. As we increase the value of 𝜔, the dispersion shrinks toward the mode of the distribution. This
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10 of 15 JIMÉNEZ and ZHENG

F IGURE 3 Differences in the probability of rejecting 𝐻0 with respect to 𝜔 = 0 in scenarios under the 𝐻1 (i.e., power) and under the 𝐻0

(i.e., type-I error). Scenarios A–D and E–H correspond to settings under 𝐻1 and 𝐻0, respectively.

behavior is manifested under the levels of CA and PA. These results are as expected: our model effectively discounts
efficacy data from stage I if it is not consistent with the efficacy data observed in stage II.
In Figure 5, we present the difference in the recommended optimal dose combinations with true probability of efficacy

above 𝑝0 (also known as the proportion of correct recommendation), between models with 𝜔 > 0 and 𝜔 = 0. In settings
with 𝜔 = 0, the proportion of correct recommendation ranges between 81% and 100%, which is consistent with the values
reported in previous publications (Jiménez et al., 2020; Jiménez & Tighiouart, 2022; Tighiouart, 2019). For values of𝜔 > 0,
such proportion varies between−0.49% and 7.95%. In scenario D, the proportion of correct recommendation with𝜔 = 0 is
already practically 100%, which remains the same for values of 𝜔 > 0. This explains why the difference in the proportion
of correct recommendation between 𝜔 = 0 and 𝜔 > 0 is approximately 0.
In Figure 6, we show the differences in terms of the probability of early stopping for futility, under both 𝐻1 and 𝐻0. At

𝜔 = 0, the probability of early stopping for futility ranges between 0.012 and 0.126 under𝐻1, and between 0.478 and 0.612
under 𝐻0, depending on the scenario. Under 𝐻1, by increasing 𝜔, we see that the probability of early stopping for futility
varies between −0.058 and 0.008, with respect to 𝜔 = 0. Under 𝐻0, by increasing 𝜔, we see that the probability of early
stopping for futility varies between −0.167 and −0.060, with respect to 𝜔 = 0. It is worth mentioning that in scenarios
under 𝐻1, the probabilities of early stopping for futility with 𝜔 = 0 are already low, and therefore, it is reasonable that
allowing for robust sharing of efficacy data across stages does not have a major impact on the probability of early stopping
for futility. On the other hand, in scenarios under𝐻0, the probability of early stopping for futility with𝜔 = 0 is, as expected,
higher and a big decrease would be problematic. However, we see that by selecting a conservative value of 𝜔, such as
𝜔 = 0.25, the decrease in the probability of early stopping is usually lower than 0.1.
In Table S5 of the Supporting Information, we show the average sample sizes obtained when applying this early

stopping rule. Under 𝐻1, results show that the observed decrease in the probability of early stopping for futility caused
by the increment of 𝜔 translated into an average sample size increase of zero to one patients with respect to 𝜔 = 0.
Under 𝐻0, the increment of 𝜔 translated into an average sample size increase of zero to two patients with respect
to 𝜔 = 0.
In Figure S2 of the Supporting Information, we present the difference in the proportion of patients allocated to dose

combinations with true probability of efficacy above 𝑝0 in stage II, betweenmodels with𝜔 > 0 and𝜔 = 0. With𝜔 = 0, the
proportion of patients allocated to dose combinations with true probability of efficacy above 𝑝0 in stage II ranges between
40% and 95%, which is consistent with the values reported by Jiménez et al. (2020), Jiménez and Tighiouart (2022), and
Tighiouart (2019). As we increase the value of 𝜔, this proportion increases between 0.25% and 6.17%.
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JIMÉNEZ and ZHENG 11 of 15

F IGURE 4 Distribution of the recommended optimal dose combinations in scenarios under the alternative hypothesis (A–D) and levels
of agreement CA, PA, and CD. The black curve represents the MTD curve.

In terms of safety, we observe that scenarios A, B, E, and F (i.e., dose-toxicity scenario 1 in Figure 1) have an overall (i.e.,
stage I + stage II) average DLT rate between 27% and 35%, depending on the scenario, with an average proportion of trials
with DLT rate above 𝜃𝑇 + 0.1 of 0%. Stage II alone in these scenarios has an average DLT rate between 28% and 43%, with
an average proportion of trials with DLT rate above 𝜃𝑇 + 0.1 of 7% and 42%. Scenarios C, D, G, and H (i.e., dose-toxicity
scenario 2 in Figure 1) have an overall (i.e., stage I + stage II) average DLT rate between 26% and 35%, depending on the
scenario, with an average proportion of trials with DLT rate above 𝜃𝑇 + 0.1 of 0%. Stage II alone in these scenarios has an
average DLT rate between 28% and 43%, with an average proportion of trials with DLT rate above 𝜃𝑇 + 0.1 between 7% and
43%. Because toxicity data are not shared across stages, these values are constant across all values of 𝜔. In Figure S3 of the
Supporting Information, we display the probability of early stopping for safety. In scenarios A, B, E, and F, this probability
is close 0.25, whereas in scenarios C, D, G, and H is close to 0.05. These values are consistent with the informative prior
distributions for the dose-toxicity models and the distance between the dose combination 15/75 mg/m2, which has a prior
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12 of 15 JIMÉNEZ and ZHENG

F IGURE 5 Difference in the proportion of correct dose combination recommendation between models with 𝜔 > 0 and 𝜔 = 0 in settings
under 𝐻1.

F IGURE 6 Difference in the proportion of trials with early stopping for futility between models with 𝜔 > 0 and 𝜔 = 0 under 𝐻1 (A–D)
and 𝐻0 (E–H).

probability if DLT of approximately 0.33, and the true MTD curves. Also, because toxicity data are not shared across
stages, we do not present the average sample sizes as they are in line with those reported by Jiménez et al. (2020) in a
similar setting.

5 DISCUSSIONS

Motivated by a real phase I–II trial that combines continuous dose levels of cisplatin and cabazitaxel involving two dif-
ferent populations of patients with advanced prostate cancer, in this paper, we present a phase I–II design in two stages
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JIMÉNEZ and ZHENG 13 of 15

that allows robust integration of efficacy data across relevant patient populations. The main contribution of this article
lies in the formal consideration about the uncertainty around the potentially different dose-efficacy profiles across stages.
We propose to employ a robust Bayesian hierarchical random-effects model to allow sharing of information on the effi-
cacy across stages, assuming that the related parameters are either exchangeable or nonexchangeable. In other words,
the key idea is to exploit any potential similarities between the dose-efficacy profiles so as to borrow information, while
avoiding too optimistic borrowing under the presence of data inconsistency across stages. This proposal requires specifi-
cation of the prior probability that the main effects set of parameters is exchangeable across stages. We denote this prior
probability by 𝜔, which in practice is selected by subject-matter experts. When 𝜔 = 0, the design estimates the stage II
dose-efficacy profile independently from stage I (Tighiouart, 2019; Jiménez et al., 2020). In this article, we focus on ana-
lyzing the operating characteristics of stage II, and we study how these vary, with respect to 𝜔 = 0, as we increase the
prior probability of exchangeability 𝜔 under different stage I dose-efficacy profiles. For a detailed evaluation of the stage
I operating characteristics, we refer the reader to Tighiouart (2019), Jiménez et al. (2020), and Jiménez and Tighiouart
(2022).
The selection of the dose-efficacy data model is closely related to the type of compound investigated in a phase I–II

clinical trial. With cytotoxic agents, the monotonicity assumption is expected to hold also from an efficacy perspective
(i.e., a compound will have greater activity as the dose increases). Thus, a linear model such as the one defined in (3)
will be sufficient to capture the dose-efficacy relationship. However, with other types of compounds such as molecularly
targeted therapies, more flexible modeling approaches may be needed to capture dose-efficacy relationships where the
probability of efficacy may not even increase with the dose.
We have limited the simulations to the two main dose-toxicity scenarios considered by the principal investigator of the

motivating example. In each of these dose-toxicity profiles, we have studied two different stage II dose-efficacy profiles,
each one accompanied with three stage I dose-efficacy profiles that have different levels of similarity with respect to the
stage II dose-efficacy profile. Also, because we allow the main effects set of parameters to be exchangeable across stages,
similarity, or agreement across stages is based only on these two parameters. However, depending on the application and
the definition of the dose-efficacy profile, this work could be extended by tweaking the JAGS code, which we have made
publicly available, so it includes other parameters in the set of parameters that could be exchangeable across stages.
The evaluation we present in this article aims to assess whether the overall operating characteristics of design improve

by allowing robust integration of efficacy data across stages in scenarios under complete agreement, partial agreement,
and complete disagreement between the stage I and stage II dose-efficacy profiles. In other words, we aim to evaluate how
much we can benefit from sharing efficacy data across stages when the efficacy data are completely or partially consistent
across stages based on the main effects set of parameters, but also to what extend we expect to penalize the design’s
operating characteristics when the efficacy data are inconsistent across stages. The assessment is done in the original
setting with continuous dose combination levels under 𝐻0 and 𝐻1 following the case study described in Section 2.
In scenarios favoring the alternative hypothesis and visualized in Figure 2, we observe a generalized improvement of

the operating characteristics by permitting sharing the efficacy data across stages (i.e.,𝜔 > 0). The degree of improvement
would depend, however, on the genuine extent of consistency between the stage-wise efficacy profiles and, of course, on
the value of 𝜔 that we select. We note that with 𝜔 = 0.25, there is already a considerable improvement of the designs
operating characteristics in comparison with higher values of 𝜔.
In scenarios under the null hypothesis, we observed a small inflation in the type-I error and a slight decrease in the prob-

ability of early stopping for futility. Under this hypothesis, having a high value of𝜔 in situations of complete disagreement
across the stage I and stage II efficacy profiles generally yields the worst performance. However, with 𝜔 = 0.25, the dif-
ferences are much smaller with respect to settings in which there is complete or partial agreement across the stage I and
stage II efficacy profiles.
Overall, we believe that allowing for sharing of efficacy data across stages increases the probability of finding an appro-

priate dose combination for further phase III studies. However, this approach requires preliminary knowledge on the drug
combination. We regard this as acceptable, because there is not a unique design configuration that will fit all applications.
For example, in our proposal, we allow the main effects set of parameters to be exchangeable or nonexchangeable across
stages, and thus, our definition of similarity or agreement across stages is based solely on the main effects parameters.
Moreover, we have seen that two dose-efficacy profiles that are similar in terms of the two main effects set of parame-
ters can have completely different intercepts, and can potentially induce either a power loss or a type-I error inflation.
Therefore, a clear understanding of what is considered “similar” is key to decide how we want to synthesize the efficacy
data across stages. A potential solution to this problem could be to include the intercept in the set of parameters for the
assumption of exchangeability or nonexchangeability.
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One potential extension of the methodology presented in this manuscript, which we plan to explore in the future, is to
robustly combine toxicity data across stages in this particular setting. By doing so, wewould eliminate the assumption that
the dose-toxicity profiles are equivalent across different patient population and we would account for population-specific
characteristics with respect to the MTD.
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