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Summary

Recent years have seen an explosion of availability of protein sequence data. However,
the vast majority of these data are unlabeled, that is, the sequences are not accompa-
nied by supplementary information about their functional or structural properties. In
this perspective, the development of statistical methods which are able to leverage this
huge availability of sequence data to try to unveil the sequence function/structure rela-
tion represents an interesting chance for scientists, and especially for biophysicists and
computational biologists.

Among the statistical methods developed to tackle sequence data, a relevant role
has been played by statistical physics inspired strategies, such as the generalized Potts
model, where protein sequences are interpreted as vectors of 𝑞-states spin variables,
to which a scalar energy function is associated. In this framework, the general idea
is to use the sequence data to determine the model constituent parameters, as in an
inverse-problem of statistical physics. Such techniques have proven to be particularly
effective in the context ofmultiple sequence alignments (MSA), for the determination of
structural properties and in predicting mutational effects. A fundamental requirement
for these models to be highly predictive is that they have to be global, or alternatively
stated, epistatic. The minimal choice to achieve such feature is considering pairwise in-
teractions between the protein residues, as it happens in the case of the Direct Coupling
Analysis approach.

In this thesis, we present some novel unsupervised inference methods which are
inspired by the DCA approach, but with the aim to extend them to protein sequence
data which are produced by laboratory experiments. Considering the short time scales
that characterize these experiments, especially when compared to the natural evolu-
tion process, such data turn out to be inherently out of equilibrium. We believe that
incorporating (at the least effectively) this dynamical information into the statistical
model might be beneficial to infer more efficiently and accurately the fine-grain struc-
ture of the fitness landscape, i.e. the functional (and structural) properties of the protein
sequences in the vicinity of the ones tested experimentally.

The thesis outline goes as follows. In Ch. 1 we give a general biological introduction,
describing what proteins are and why they are so important for living organisms. Then,
we will introduce what an MSA is, and what information we can extract from this data
structure. Finally, we will review the experimental techniques on which we will apply
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the proposed inference methods.
These are treated in Ch. 3 and 4, and go under the names of Annealed Mutational ap-

proximated Landscape (AMaLa) and betaDCA respectively. The former was specifically
conceived to be applied to sequence data generated from Directed Evolution experi-
ments, whereas the second was meant as a more general model that could be applied to
a wide variety of experimental settings. The distinctive feature of both methods is that
they do not require accurate population information to infer meaningful models.

Another statistical physics inspired model which has recently sparked attention in
the context of protein sequence data is represented by Restricted Boltzmann machines
(RBM). In Ch. 5 of this thesis, we investigate the chance to employ Expectation Prop-
agation, an iterative algorithm for approximating intractable probability distributions,
to infer the constituent parameters of an RBM. The work related to this problem is still
ongoing, and we present here the results obtained so far, postponing further analysis
to future manuscripts.
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Chapter 1

Biological Introduction

In this chapter we give a general biological introduction, focusing in particular on pro-
teins. In Sec. 1.1 we present what proteins are and why they are considered a funda-
mental building block for the biological processes of living organisms. In Sec. 1.2, we
introduce multiple sequence alignments (MSA), that are the typical data structure used
to perform statistical inference based on protein sequences. Finally, in Sec. 1.3, we de-
scribe two kinds of protein evolution experiments, and we briefly present the adaptive
immune system.

1.1 Proteins
In this section we introduce proteins, which are one of the most fundamental elements
for the functioning of living beings. From a chemical perspective, a protein is amolecule
made of specific fundamental building blocks, the amino acids (or peptides). Amino
acids are organic compounds containing two chemical groups, the amino group (-NH2)
and the acidic carboxyl group (-COOH). On top of these two, a side chain group R dif-
ferentiate twenty different amino acids, each with its peculiar chemico-physical prop-
erties, e.g.: polarity, charge, hydrophilicity or hydrophobicity. In Fig. 1.1, a list of the
different amino acids divided according to their properties is shown.

Amino acids can bind together by means of the so called peptide bond, a covalent
bond taking place between the nitrogen of the amino and the carbon of the carboxyl
group, yielding a molecule of water as a byproduct. When multiple peptides bind to-
gether they produce a linear chain of peptide bonds, also called polypeptide backbone.
The specific R groups are displayed on the sides of this chain-like structure, defining
the protein sequence. Indeed, the very sequence of amino acids along the backbone is
the simplest representation of a protein. Typical lengths in terms of peptide units span
from 10 up to 1000.

Usually, proteins in living organisms are not found in a simple linear conformation,
but are rather organized in a complex three-dimensional folded structure thatminimizes
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Biological Introduction

Figure 1.1: Schematic table classifying the twenty natural occurring amino acids ac-
cording to their chemico-physical properties. Image taken from [158].

the Gibbs free energy. This originates from the chemical interactions among amino
acids, e.g. ionic or hydrogen bonds and disulfide bridges. In particular, since proteins
are usually found in aqueous environments, they tend to bury the hydrophobic amino
acids into a stable core, and to expose the hydrophilic ones to the surface.

The three dimensional configuration that emerges as a consequence of this process
is tightly related to the functional properties of the protein. More specifically, we can
distinguish among several levels of structural organization.

• Primary: the very sequence of amino acids along the chain.

• Secondary: short range interactions between amino acids can create local struc-
tures that assume two possible shapes: 𝛼-helix and 𝛽-sheets.

• Tertiary: the actual three dimensional folded conformation of a protein. Long
range interactions between amino acids play a crucial role in determining such
structure.

10



1.1 – Proteins

• Quaternary: structure arising in inter-protein interactions defining protein com-
plexes.

In Fig. 1.2 examples of all the organizational levels are reported.
Proteins perform a variety of different tasks in living beings. As enzymes, they have

catalytic effects accelerating reactions. They also perform (or are involved into) sig-
naling process, or are suited to bind to specific target (e.g. antibodies). Furthermore,
proteins can be structural elements in tissues and cells, therein being static components
or performing dynamical functions as for molecular motors (e.g. kinesin, myosin).

Due to the close relationship between structure and function, begin able to deter-
mine the protein folded configuration is a fundamental biological problem. However,
determining experimentally the structure is a highly non-trivial and expensive task.
Standard techniques rely on crystallized proteins, and employ X-ray diffraction in or-
der to determine a representation of the structure in Fourier space. Consequently, being
able to predict protein structure from the mere sequence of amino acids assumes a cru-
cial role. Yet, directly simulating the folding process in a molecular dynamics fashion
is a hard computational task. In this perspective, statistical-based methods represent
an alternative approach to either impose some constraint to the folding simulation, or
to predict the three dimensional structure altogether. In the recent years, astonishing
progresses have been achieved thanks to machine learning approaches. In particular,
AlphaFold2 [85], developed by Google during the 2020 Critical Assessment of Pro-
tein Structure Prediction (CASP), represents a powerful computational tool which is
able to predict the protein structure from sequence information only.

1.1.1 Protein domains
Before going on, it is worth mentioning the concept of protein domains. Earlier, we
discussed the different hierarchical organizations of a protein structure, and pointed out
that the tertiary structure is the one playing a key role in determining the functional
properties of a protein. However, it is not always necessary to focus on how the whole
protein chain folds. Indeed, it is often possible to leverage the modular organization
of proteins, which is based on protein domains, which are functional subunits that are
found almost unchanged in a large variety of different proteins. Since these domains are
tailored to perform specific tasks, they tend tomaintain the same structure across differ-
ent species. Then, one can think of a protein as a mixture of organized and structurally
ordered regions (the protein domains), interspersed by relatively disordered ones.

In Fig. 1.3, we reported an example of a multi-domain protein.
In the following Sec. 1.2 we will focus on how to build useful data structures for the

protein domains, pointing out the biological mechanisms that make this data so suitable
for the application of statistical analysis.
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Biological Introduction

Figure 1.2: Schematic representation of the different level of organization of protein
structure. From top to bottom: primary structure, the very sequence of amino acids
along the chain; secondary structure, local 𝛽-sheet and 𝛼-helix conformations; tertiary
structure, actual spatial organization in the three dimensional space; quaternary struc-
ture, inter-protein organization. Figure taken from National Human Genome Research
Institute: https://www.genome.gov/genetics-glossary/Protein.
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1.2 – Multiple Sequence Alignments

Figure 1.3: The figure displays the protein domain architecture of the protein c-Src
Kinase, i.e. how the different domains within the protein are organized. In this specific
case, it is possible to recognize the domain SH2 and SH3, and the peculiar position of
the latter determines a down-regulation of kinase activity. Picture taken from [109].

1.2 Multiple Sequence Alignments
At the end of the Sec. 1.1 we mentioned how statistical-based methods might represent
an appealing way to analyze protein data. Here, we discuss the specific data structure
that allowed for an outbreak of applications of statistical approaches, namely, the so
called multiple sequence alignment (MSA). In order to do so, we first need to intro-
duce the concept of protein family.

1.2.1 Protein families
Proteins and protein domains evolve over time due to random mutations and selective
pressure. In this perspective, a protein family is a collection of proteins (or domains)
that share a common evolutionary history, starting from a common ancestral sequence.
Such a set of sequences is said to be homologous, and what it is observed nowadays as
the result of the evolution process coincides with the leaves of a phylogenetic tree.

As alreadymentioned in Sec. 1.1.1, a very interesting feature of homologous proteins
is that, even if they became different from one another due to mutations, they still
share the same function, and consequently tend to maintain the same structure. Thus,
homologous sequences can be thought as different realizations of a same protein, from
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Biological Introduction

which statistical information can be extracted.
Diversity among homologous sequences is introduced by means of several mecha-

nisms: substitution, insertion and deletion. The accumulation of such mutations over
very long time scales eventually produces sequences that, even if still maintain some
similarities, possess an average sequence identity as low as 30%. Moreover, since both
deletions and insertions alter the length of the sequences, an aligning process is re-
quired. This might introduce an additional symbol on top of the 20 naturally occurring
amino acids, which is usually referred to as the gap, being indicated as ′−′. The details
of how such alignment is obtained are described in subsection 1.2.3, and the result of
the process is the aforementioned MSA.

An MSA can be modeled as a matrix whose rows are the homologous sequences.
Then, each row of the matrix is a vector of 𝐿 components S = (𝜎1, 𝜎2,… , 𝜎𝐿), with 𝐿 the
common length of the aligned sequences. The variables 𝜎’s, live over a discrete alphabet
of symbols {𝜎} = {𝐴, 𝐶,𝐺,… , 𝑌}, with each letter uniquely identifying one amino acid,
with the addition of the gap symbol. Eventually, the set of symbols can be mapped over
the integer numbers from 1 to 𝑞, with 𝑞 the size of the set, that in the case of MSA’s
usually coincide with 𝑞 = 21. The number of unique sequences in the alignment is
labeled with 𝑀.

MSA of protein families are collected into the PFAM database, where approximately
16000 alignments are available. These alignments contain a number of (non-unique)
sequences that span between 102 and 105, with aligned sequences length 𝐿 that goes
from order 10 up to 500 residues.

1.2.2 Statistical features and biological signals
The relatively large number of sequences appearing in an MSA of a protein family al-
lows to perform meaningful statistical analysis. In particular, we might ask ourselves
which are the relevant biological information that is possible to extract from the sta-
tistical features of an MSA. We will specifically focus on two quantities: the single and
two-site frequencies 𝑓𝑖(𝑎) and 𝑓𝑖𝑗(𝑎, 𝑏):

{
𝑓𝑖(𝑎) =

1
𝑀 ∑𝑀

𝑚=1 𝛿 (𝜎𝑖, 𝑎) ,
𝑓𝑖𝑗(𝑎, 𝑏) =

1
𝑀 ∑𝑀

𝑚=1 𝛿 (𝜎𝑖, 𝑎) 𝛿(𝜎𝑗, 𝑏).
(1.1)

In Eq. (1.1) we introduced the Kronecker delta function:

𝛿 (𝑎, 𝑏) = {
1 𝑎 = 𝑏,
0 𝑎 ≠ 𝑏.

(1.2)

The single site frequency 𝑓𝑖(𝑎) is the normalized count of how many times amino
acid 𝑎 appears in column 𝑖, whereas the two-site frequency 𝑓𝑖𝑗(𝑎, 𝑏) is the normalized
occurrence of both amino acids 𝑎 and 𝑏 at column 𝑖 and 𝑗. They are related to two im-
portant biological concepts: conservation and coevolution. If a residue has a key
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1.2 – Multiple Sequence Alignments

role for the function the protein has to carry out, e.g. if it is an active site, one expects
the 𝑓𝑖(𝑎) to be polarized only on the amino acids suitable for the associated task. Con-
sequently, in that position one expects one or few amino acids to be highly conserved
across sequences. The two-site frequencies, are instead able to unveil correlation be-
tween pairs of residues. If two sites are independent, one expects the joint frequency to
factorize 𝑓𝑖𝑗(𝑎, 𝑏) = 𝑓𝑖(𝑎)𝑓𝑗(𝑏). If it is not the case, this might be an indicator of interac-
tion between the two residues. Indeed, it is known that causation generates correlation.
The converse however is not true, because correlations can be spurious, that is, they
might arise frommediated indirect interactions. If two residues are directly interacting,
they are said to be co-evolving. This may happen either if the two sites are collectively
crucial to the protein functionality, or if they are in spatial proximity in the three di-
mensional structure. In this scenario, if a mutation alters one of the two interacting
amino acids, the function or even the folding capability of the protein can be damaged.
Then, the contact (or the correct functionality) can be restored in two ways. Either the
mutated site gets back to the original amino acid, or a compensatory mutation happens
for the other one. This process leaves a footprint as correlations in the MSA. However,
as previously mentioned, correlations might not be a good proxy for interaction, and so
statistical methods that are able to disentangle direct and indirect ones are necessary.
Another common expression to refer to interacting effects among residues is epistasis.
An epistatic model should at least include pairwise interaction, but higher order con-
tributions are also possible. However, the peculiar feature of epistatic models is that
they are global, or alternatively, context dependent. This ultimately indicates that the
various protein sites are not independent.

1.2.3 Hidden Markov Models
MSA’s are the fundamental data structure on which statistical methods for analyzing
protein sequences are based. As previously mentioned, framing homologous sequences
in a common alignment is not straightforward, for the evolution process might alter the
sequence length with respect to the ancestor. Profile Hidden Markov Models (HMM)
[41, 40] are a common statistical tool employed to align protein sequences belonging
to the same family. Furthermore, they can be used to determine wether a specific se-
quence belongs or not to a family, or to find a matching family for a sequence whose
membership is not known.

The word profile preceding HMM, indicates the fact that only single site frequencies
are used to build the statistical model, which is consequently site-independent, i.e. ne-
glecting correlations between different residues. HMM are based on a generalization of
Markov chains, in which there is a distinction between emitted symbols and the state
of the chain, namely, it is not possible to reconstruct the state that has emitted a symbol
by mere observation of the latter. Consequently, a HMM is characterized by two sets
of probabilities: transition and emission ones. If we label with 𝑘 a possible state of the
chain, 𝑎𝑘(𝑙)would be the transition probability to state 𝑙. On the other hand, 𝑒𝑘(𝑎)would
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Biological Introduction

be the emission probability of the symbol 𝑎 from the state 𝑘.
In the case of MSA, a representation of the employed HMM as a directed graph is

reported in Fig. 1.4. We can identify three type of states: match 𝑀𝑗, insertion 𝐼𝑗 and
deletion 𝐷𝑗. The index 𝑗 is associated to residues in the reference MSA. This means
that when scanning an unaligned sequence, different sites can be assigned to the same
consensus residue as either insertion or deletion following a matched state. Moreover,
match and insert states are the only one to which emission probabilities are assigned,
deletion one being silent, in the sense that they can just produce the gap symbol. It is
worth mentioning that insert states can go into themselves, allowing for multiple inser-
tions. Moreover, whereas these self-transitions are position independent, the same is
not true for transition between deletion states. Two special match states exist, the begin
and end one, that are used to indicate the starting and ending point of the sequence.1.2 Multiple Sequence Alignments 8

Figure 1.3: A profile HMM. Squares correspond to match states, diamonds to insert
states and circles to delete states, Figure taken from [24]

Insertions and deletion states emit amino acid with a probability depending on the
amino acids and the position on the chain, while deletion states emit no residue (a gap
symbol can be inserted instead). Therefore protein sequences generated from such a
model can have di↵erent lengths.

The transition probabilities to go from one state to the other define the probability
distribution, e.g.

P (s5 = M3 | s4 = D2), (1.2)

which is the probability to go to a match state for consensus residue 3 if the last state
was a delete state corresponding to consensus residue 2. In fact, files defining HMMs as
for example the pre-calculated HMMs that Pfam [36] makes available for their protein
families are not much more than a table with probabilities to jump between di↵erent
states and the amino acid emission probabilities for the di↵erent states (dependent on
the consensus residue). We summarize from now on all these probabilities defining the
HMM by the capital letter H.

An pictorial representation of a profile HMM, found in [24] can be found in Figure
1.3. Here, squares correspond to match states, diamonds to insert states and circles
to delete states.

The procedure to arrive at a MSA is to estimate the transition probabilities from
the seed alignment and then to search for sequences in the database that have a
large probability given the parameters H. Emission probabilities for amino acids
and transition probabilities for the states can be estimated directly from the multiple
sequence alignment when the state sequence is known. Some care has to be taken
to avoid overfitting, like not assigning a zero probability to amino acids never seen
at a residue, especially when dealing with seed alignments that consist of only a few
sequences.

Given a new and unaligned sequence we do not know its possible state sequence, but
only the emitted symbols. Technically, one would like to calculate the probability of
the sequence given the model H,

DISAT, Politecnico di Torino Christoph Feinauer

Figure 1.4: Representation of a HMM as a directed graph made of three kind of states:
match (squares), insert (diamonds), deletion (circles). Figure taken from [40].

In order to learn the statistical features of a protein family, HMM’s parameters are
inferred over a seed of manually curated alignments. Once the parameters are fixed,
one can look for homologous sequences so to build up a larger alignment. However,
when novel unaligned sequences are taken into account, the state series is not known, as
only the emitted symbols are available. To reconstruct the states sequence, it is possible
to use the Viterbi algorithm, providing the most probable path in the state space. This
might be useful also the compute the probability of a sequence given the model, defined
as:

𝑃(S|𝜽) = ∑
𝜋
𝑃(S|𝝅, 𝜽)𝑃(𝜋|𝜽). (1.3)

Eq. (1.3) can indeed be estimated by retaining only the most probable path 𝝅∗ =
argmax𝝅𝑃(S,𝝅) in the summation. Alternatively, the so called forward algorithm can
be used to directly estimate the marginal 𝑃(S|𝜽). Once this probability is known, it can
be used to compute log-odds ratios with respect to background distribution, in order to
estimate how likely is for the sequence to belong to the family.
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1.3 – Experimental evolution

The HMMer suite [50] is the most common tool used to both infer HMM models
from seed alignments and to create MSA from unaligned sequences once the model
is inferred. MSA present on the PFAM database are in fact constructed via this tool.
Although profile models are typically employed to construct protein family alignments,
a recent work [111] built up a statistical modeling that was able to include also epistatic
interactions among residues.

1.3 Experimental evolution
This thesis is mainly focused on the development of unsupervised inference methods
on protein sequence data. Specifically we are interested in the case in which such data
are produced by laboratory experiments of protein evolution. The natural Darwinian
evolution process [31] takes place on incredibly long time scales, and it is driven by two
fundamental mechanisms:

• Mutagenesis: it is the process that introduces diversity by modifying the genome
of an organism. Point mutations alter just a single base of the genome, whereas
multiple mutations modify multiple bases at one time. Since the genetic code is de-
generate, mutations can be synonymous, i.e. the coded protein remains unaltered,
or non-synonymous when the protein sequence is actually changed.

• Selection: it acts on the phenotype, typically at the amino acid level, selecting
only the organisms possessing mutations that provide adequate traits for the en-
vironment they live in. In this perspective, only mutations that are neutral or
beneficial with respect to the specific selective pressure are retained during the
course of evolution.

For multicellular organisms, only mutations taking place in the so called germline
can be transmitted to the offspring. They coincide with sperm and eggs cells, and are
differentiated from somatic cells [114]. This distinction is now considered to be less
sharp, and a germline can be thought of as the lineage of cells that has been transmit-
ted among individuals along the course of evolution from the last universal common
ancestor (LUCA) [173], which is the last progenitor of all organisms present nowadays
on earth.

Simpler unicellular organisms such as bacteria do not need to transmit genetic infor-
mation through sexual reproduction, for they reproduce via binary fission, a process in
which the cell divides in two identical copies. Moreover, bacteria can also possess ad-
ditional genetic material called plasmid. This extrachromosomal DNA molecule can be
directly transmitted between individuals via a process called conjugation. This is of out-
most importance, because it allows bacteria to rapidly exchange genetic information, a
feature that is particularly relevant in the context of antibiotic resistance development.
Furthermore, plasmids can be used as cloning-vectors, a property that will come out
again when describing experimental evolution.
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Even if they are not properly considered as living organisms, viruses provide an-
other example in which the genetic information can vary rapidly over time. A striking
example is provided by Sars-Cov-2, that in the last years showed the emergence of mul-
tiple strains with increasing transmissivity [178, 32], binding to human ACE-2 [3, 95]
and antibody escape [74, 61, 123], as a consequence of mutations and selective pressure
generated by interaction with humans.

In this work, we will be particularly interested to the study of evolution at the pro-
tein level. Our fundamental purpose is the determination of the fitness landscape, which
is a map between the sequence space and the fitness score, or in other words, the func-
tionality of the sequence with respect to a specific selection mechanism. For instance,
in a binding experiment, fitness can be identified with the capability of the sequence
to bind to the target. On the other hand, in an experiment probing bacterial antibiotic
resistance, fitness is defined as the capability of the bacterium equipped with a specific
protein sequence to generate copies of itself in an antibiotic enriched environment.

In the following, we will describe two specific kind of experiments for protein evo-
lution: Deep Mutational Scanning (DMS) and Directed Evolution (DE). The last kind of
experiments is also known as Genetic Drift (GD). Both types of experiments have the
purpose to explore the sequence space whilst probing for a specific selection mecha-
nism, and the main difference between the two lies in how diversity among sequences
is introduced.

1.3.1 Deep Mutational Scanning
Deep mutational scanning (DMS) represents a prominent example of high-throughput
screening experiments [54, 55]. The main purpose of these experiments is to assess
the effect of mutations on an original protein named wild-type, from which an initial
combinatorial library is generated. Such library systematically contains all the single
and possibly part of the multiple mutations, and in some cases it is even possible to
probe the whole mutational space. The presence of multiple mutations is particularly
relevant for pointing-out epistatic effects.

Mutational effects are quantified by means of a genotype-to-phenotype platform,
probing a specific functional feature. Examples of such platforms are cell-based assays
[71, 174, 170] and phage display experiments [5, 6, 18].

In cell-based experiments the genetic information is often encoded in a plasmid, i.e.
a ring of extrachromosomal genetic material, which is plug into a living organism such
as bacterial or yeast cells. An example of a cell-based DMS experiment is the study of
the fitness landscape of TEM-1 𝛽-lactamase [51, 81]. In these experiments, the genetic
information is plug into bacterial cells, which represent the natural host environment,
since 𝛽-lactamases provide them with antibiotic resistance. Then bacteria are put into
an antibiotic enriched environment, so to test the functionality of the different variants.
In this context, fitness can be estimated a minimum inhibitory concentration (MIC) or
more involved functions of the antibiotic concentration.
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If one aims at studying viral proteins, these can be directly displayed on the sur-
face of yeast cells, where they can be subsequently probed for a phenotypic character,
e.g. binding affinity onto a target [157]. A possible strategy to extract quantitative
phenotypic information from this yeast-display platform, is to rely on flow-cytometry
techniques such as fluorescence-activated cell sorting (FACS). The different variants are
indeed fluorescently labeled, and FACS proceeds by sorting each yeast cell into a bin
according to its fluorescence. Then, the variants in each bin are sequenced, and the
phenotypic measurement is computed as an average over the bins of the fluorescence
distribution.

A drawback of cell-based scanning approaches, is that they often require to couple
the quantitative trait that is aimed to be selected with cell growth [136], limiting the
total number of phenotypes that can be actually tested.

In the case of phage display experiments, the genetic information is plug into a vector
phage virus, which is able to display the protein of interest on its surface as a result of
fusion with its coat protein. A prominent example of phage display is phage binding
experiment, in which the displayed protein is probed for binding onto an immobilized
target. In Fig 1.5 an example of a phage binding pipeline is reported.

Figure 1.5: A sketch representation of a DMS experiment. Genes coding for the proteins
of interest are inserted into the phages in order to be displayed and screened against
binding on immobilized targets. Then, non-binders are eliminated from the experi-
ment through a washing procedure, isolating the high-affinity ones. Afterwards, the
surviving phages are inserted into bacteria to be multiplied thanks to bacterial growth.
Finally, the amplified genes are extracted and the cycle can be repeated again. Image
taken from https://en.wikipedia.org/wiki/Phage_display.

For all the kinds of platforms, a DMS experiment is characterized by two funda-
mental mechanisms: selection and amplification. The first allows to isolate the most
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fitting variants, whereas the second generate libraries with a very large number of mu-
tant sequences (up to order 1 million). Indeed, modern technologies allow DMS to be
high-throughput experiments, so that a very large number of non-unique clones can
be screened at the same time. These two steps can be either performed once or can be
repeated over multiple rounds.

It is worth underlying that the variability in a DMS experiment is entirely introduced
at the beginning, with the generation of the combinatorial library. If the experiment is
high-throughput and the sequencing is realized in a not severe under-sampling regime,
it is possible to estimate the fitness of a variant as the ratio between the associated abun-
dances at neighboring rounds. These quantities are usually referred to as enrichment
or depletion ratios. More precisely, it is common choice to rely on log-selectivities to
estimate a sequence fitness:

Θ𝑚 = 1
𝑡𝑓 − 1

𝑡𝑓−1

∑
𝑡=𝑡1

log
𝑁 𝑡+1
𝑚
𝑁 𝑡
𝑚

, (1.4)

where 𝑚 identifies a specific sequence, 𝑁 𝑡
𝑚 is the number of copies of that sequence

at round 𝑡 = {𝑡1,… , 𝑡𝑓}. A more refined definition of log-selectivity that include the
effect of amplification and noise fluctuation will be given in Sec. 4.4. Therein, we will
also describe a suitable statistical modeling for this kind of experiments.

1.3.2 Directed Evolution
Directed Evolution (DE) 1 experiments share several features with DMS. They also start
from a unique original wild-type sequence, from which diversity is generated with the
introduction of randommutations. Moreover, the generated sequences are subjected to
a selective pressure, so to retain only the functional ones. The main difference lies in
how and when mutations are introduced. If typically in DMS a combinatorial library
containing all the single and eventually higher order mutations is used, in a DE ex-
periment variants are introduced randomly, by means of error-prone polymerase chain
reaction (epPCR) [28]. Themutation rate can be tuned by choosing the number of cycles
of epPCR to be performed. Furthermore, mutagenesis is not solely carried out at the
beginning of the experiment, but it is repeated before every round of selection. Con-
sequently, it is reasonable to consider the mutation and the selection step (eventually
together with amplification) as the fundamental building block of the experiment, and
the wild-type sequence as the initial library. It is then evident how diversity is intro-
duced in the entire course of the experiment, as opposed to what happens in DMS. This

1Depending on the specific intensity of the selective pressure exerted on protein variants, experiments
with multiple introduction of mutations can also be referred to as Genetic Drift (GD). In particular, a GD
experiment is meant to be realized in a relatively weak selective pressure regime, so that the constraint
on sequence functionality is still imposed, but allowing for a broader exploration of the sequence space.
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allows for a broader exploration of the sequence space around the wild-type, but on the
other hand makes attempting to develop a dynamical modeling more difficult.

As for DMS, DE experiments require a genotype-to-phenotype platform, such as cell-
based or phage display. In the recent years, cell-based approach for DE has proved to be
particularly effective to study experimental evolution of 𝛽-lactamase protein in E. Coli
[44, 160]. These experiments can be considered as being partially in-vivo, because the
proteins are put in its natural living organism, though bacteria are subsequently grown
in a culture medium. Such a strategy turned out to reproduce data sharing some fea-
tures with correspondent homologous family, also allowing to partially assess contact
prediction.

However, since DE provides only a local exploration of the sequence space around
thewild-type, it would be in principlemore suited to infer local fitness landscapes rather
than global properties such as structural constraints. We will come back to this topic
by giving a thorough discussion in Sec. 3.4. Moreover, DE experiments provide an
interesting benchmark to test the relationship between fitness-landscape andmolecular
evolution [17, 130, 179] and for designing novel optimally functioning proteins [135,
177].

In Fig. 1.6 a pictorial representation of a DE experiment realized on a cell-based
platform is reported.

1.4 Immune system: antibody evolution
Since in Ch. 4 we will deal with experimental data related to antibody sequences, we
give here a brief and general description of the fundamental elements and concepts
regarding the immune system.

The immune system is an ensemble of different molecules and sophisticated mech-
anisms allowing vertebrate organisms to protect themselves from external pathogens.
One of its fundamental building blocks is represented by antibodies, on which we will
focus in the present discussion. Antibodies are biomolecules made by two pairs of two
kind of proteins, referred to as heavy and light chain. In Fig. 1.7, we show an example
of an IgG antibody. The antibody molecule can be divided in two subparts: a variable
region called Fab, which is responsible for binding onto antigens, and a constant region
referred to as Fc, allowing the antibody to bind to B-cells or other kind of molecules
such as macrophages. Indeed, antibodies are actually produced by B-cells, which are in
turn generated in the marrow. Once B-cells have matured, they expose B-cell receptors
(BCR), i.e. the antibodies, on their surface.

The main task of antibodies is to recognize antigens, which can be seen as signalers
of the pathogen presence. An antigen can coincide for instance with protein fragments
of the pathogen, as it is the case for surface proteins of viruses, e.g. the spike protein
of Sars-Cov-2. Once the antibody binds to the antigen, it acts as a tag for the organism,
signaling that the molecule it has bound needs to be destroyed. Alternatively, it might
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1.DNA mutants are inserted in bacteria.

2.Bacteria are posed in antibiotics 

enriched environment.

3.The DNA of surviving sequences is 

sequenced.

4.Further mutations are introduced.

WILD-TYPE
1

2

3

4

Figure 1.6: Pictorial representation of a DE experiment based on a cell platform, specif-
ically bacterial cells. The initial configuration is a library made of identical wild type
DNA sequences. Then, random mutations are introduced, so to generate brand-new
variants. Suchmutant genomes are subsequently inserted into the bacterial cells, where
they will encode for the corresponding protein sequences. The bacteria are then posed
in an antibiotic enriched environment, where their reproductive capacity depends on
the functionality of the encoded amino acidic sequence. The surviving bacteria are then
extracted, and their DNA is sequenced. Finally the process starts again introducing fur-
ther mutations among the extracted DNA sequences.

avoid the pathogen to penetrate into the host cells, by binding onto its proteins which
are responsible for entering the cells.

It is possible to distinguish between two different kinds of response of the immune
system, an innate and an adaptive one. The first is a consequence of the so called naïve
immune repertoire, i.e. the collection of antibody which is produced from the genet-
ically inherited materials. The possible ensemble of antibodies of such repertoire is
already huge, thanks to a phenomenon known as genetic recombination [112, 79], con-
cerning how antibody chains are generated. In particular, the genetic material encod-
ing for the heavy chains possesses a modular organization defined by four units: V, D,
J and C. Each of these units can be found in a certain number of different copies, so
that several modules can be combined together in many different ways. On top of this,
further diversity is introduced by adding or deleting bases at the junction between the
units. The light chains are generated in a similar modular way, even if the D segment
is lacking.
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Figure 1.7: Schematic representation of a monomeric antibody. The Fab region co-
incides with the upper part, defined by the union between light and heavy chains.
Therein, the binding active site is highlighted with a circle. The variable regions V𝐻,𝐿
are found in the Fab part of the antibody. On the other hand, the Fc region is defined by
constant parts of the heavy chain. Image taken from https://en.wikipedia.org/
wiki/Antibody.

Even if the potential diversity of the naïve repertoire is already very large, it is still
not able to protect the organism against never encountered pathogens, which are dealt
with by the adaptive immune system. The general idea is that, when a novel pathogen
enters the organism, new antibodies which are tailored for the specific antigen need
to be produced. This process is achieved by affinity maturation, which is composed
by two mechanisms: somatic hypermutation (SHM) [37] and clonal selection. Affinity
maturation takes place in the germinal centers [169], which are found in lymph nodes.
Germinal centers can be divided in two regions, namely a light and a dark zone. In
the latter, B-cell that migrated into the germinal centers undergo SHM, increasing their
genetic diversity in their variable regions known as complementarity determining re-
gion (CDR). Then, they move to the light zone, where the different antibodies compete
with respect to antigen binding, so that only high-affinity binders are isolated. SHM
and clonal selection can be repeated over multiple rounds, eventually leading to the
production of plasma B-cells and memory B-cells. The former cannot switch their im-
munoglobulin type, and are highly specific for a single antigen. Thus, they serve as an
immediate protection again re-exposition to the antigen. On the other hand, memory
B-cells can undergo again SHM, so that they can also protect against mutants of the
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original antigen [126].
In light of this discussion, we can interpret organism exposition to antigens as an

in-vivo experiment, in which the initial library is given by the naïve repertoire and the
antibody repertoire after the exposition coincides with the sequence distribution after
the action of the selection process. In Ch. 4 we will use a novel inference method to
characterize the statistical difference between the unimmunized/immunized antibody
repertoires of mice.
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Chapter 2

Statistical analysis of protein
sequence

In this chapter we will give an overview of the statistical methods that have been devel-
oped to study protein sequence data, focusing in particular on Direct Coupling Analysis
(DCA) methods. DCA methods have proved themselves to be able to tackle a variety of
different tasks, among which we can mention contact prediction, sampling in sequence
space, generation of new sequences, mutational effects prediction, family assignment
and fitness landscape reconstruction. In Sec. 2.1 we described the maximum-entropy
principle as a valuable tool to define statistical models. In Sec. 2.2 we introduce the
generalized Potts model (GPM), which is the basis of the DCA approach. Afterwards,
Sec.2.3 gives an overview of possible strategies to infer the GPM. Finally, in Sec. 2.4 we
give an overview of the possible application of the GPM.

2.1 Maximum-entropy principle
In this section we discuss themaximum-entropy principle [82], which provide us a solid
theoretical background for choosing an appropriate statistical model. This approach
proved to be successful for a wide range of biological applications [143, 107, 14]. We
first need to introduce the Shannon entropy of a probability (density):

{
𝑆 (𝑃 ) = −∑𝑦∈𝑌 𝑃(𝑦) log 𝑃(𝑦),

𝑆[𝑝] = − ∫+∞−∞ d𝑥𝑝(𝑥) log 𝑝(𝑥).
(2.1)

The two different definitions correspond to whether the random variable is discrete
or continuous. In the first case, the possible values 𝑦 are defined over a discrete alpha-
bet, that can be mapped over the integers 𝑌 = {1,… ,𝑁}, 𝑁 being the total number of
symbols. If the variables are discrete, it is possible to associate a probability to each
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outcome 𝑃(𝑦). On the other hand, if the variable is defined over a continuous domain,
the Shannon entropy is defined as a functional of the probability density function 𝑝(𝑥).

In this thesis, we will mainly deal with discrete random variables, for which the
Shannon entropy fulfills the inequality 0 ≤ 𝑆 (𝑃 ) ≤ log𝑁, that is, it is positive definite
and bounded above by the logarithm of the number of symbols. These two limiting
values coincide with two specific choices of the probability, i.e. the deterministic and
the uniform one. Only one possible outcome is allowed for the former 𝑃(𝑦) = 𝛿(𝑦, 𝑛),
whereas all the outcomes have the same probability 𝑃(𝑦) = 1/𝑁 for the latter. In-
deed, the entropy can be thought of as missing information or amount of surprise. If
the process is deterministic, you already possess all the information and you are never
surprised by the outcome of the drawing process. On the other hand, the uniform dis-
tribution is the one characterized by the maximum unpredictability, and consequently
surprise.

The maximum-entropy principle provides a recipe to define a probability function
𝑃(𝑦) given a set of constraints, which are observables over the data. In doing so, maxi-
mizing the entropy entails having the least possible information and assumptions made
about how the data should be distributed. Analogously, this coincides with taking the
least constrained distribution, and reflects our ignorance about the underlying mecha-
nism that generated the data. To formalize this idea, imagine we have a dataset of 𝑀
discrete outcomes �̂� = { ̂𝑦1,… , ̂𝑦𝑀}. Associated to it, we have a set of 𝐾 + 1 constraints
𝒞 = {𝑐0,… , 𝑐𝐾}, defined for a set of functions {𝑓0(𝑦),… , 𝑓𝐾(𝑦)}. The constraints read:

⟨𝑓𝑘⟩ = ∑
𝑦∈𝑌

𝑓𝑘(𝑦)𝑃(𝑦) = ̄𝑓𝑘 =
1
𝑀

𝑀
∑
𝑚=1

𝑓𝑘( ̂𝑦𝑚), (2.2)

for each 𝑘 = 1,… ,𝐾. In practice, we impose that each average value over the dataset
of the function 𝑓’s must be equal to the corresponding ensemble average over 𝑃. In order
to find the probability function 𝑃, we need to maximize the corresponding Shannon
entropy given the set of constraints, and to do so we rely on the Lagrange multipliers
formalism, defining the objective:

ℱ(𝑃, 𝝁) = 𝑆 (𝑃 ) −
𝐾
∑
𝑘=0

𝜇𝑘 (∑
𝑦∈𝑌

𝑓𝑘(𝑦)𝑃(𝑦) − ̄𝑓𝑘) . (2.3)

In order to maximize Eq. (2.3) we need to compute the derivative with respect to
𝑃(𝑥):

𝜕ℱ (𝑃, 𝝁)
𝜕𝑃(𝑥)

= −∑
𝑦∈𝑌

𝛿(𝑥, 𝑦) log 𝑃(𝑦) −∑
𝑦∈𝑌

𝛿(𝑥, 𝑦) −
𝐾
∑
𝑘=0

𝜇𝑘∑
𝑦∈𝑌

𝑓𝑘(𝑦)𝛿(𝑥, 𝑦)

= − log 𝑃(𝑥) − 1 −
𝐾
∑
𝑘=0

𝜇𝑘𝑓𝑘(𝑥) = 0 (2.4)
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where we used the identity 𝜕𝑃(𝑦)/𝜕𝑃(𝑥) = 𝛿(𝑥, 𝑦). The normalization condition
∑𝑦∈𝑌 𝑃(𝑦) = 1 is a constraint that must be always imposed to probability functions. We
can choose the zeroth constraint 𝑐0 to carry it out, calling the corresponding Lagrangian
multiplier 𝛼 = 𝜇0. We can then rewrite Eq. (2.4) as:

− log 𝑃(𝑥) − 1 + 𝛼 −
𝐾
∑
𝑘=1

𝜇𝑘𝑓𝑘(𝑥) = 0

𝑃(𝑥) = e𝛼−1e−∑𝐾
𝑘=1 𝜇𝑘𝑓𝑘(𝑥),

(2.5)

and determine 𝛼 by enforcing normalization∑𝑦∈𝑌 𝑃(𝑦) = 1 = e𝛼−1∑𝑦∈𝑌 e
−∑𝐾

𝑘=1 𝜇𝑘𝑓𝑘(𝑦)

⇒ e1−𝛼 = ∑𝑦∈𝑌 e
−∑𝐾

𝑘=1 𝜇𝑘𝑓𝑘(𝑦), so that the maximum-entropy functional form for the
probability reads:

𝑃(𝑦) = e−∑𝐾
𝑘=1 𝜇𝑘𝑓𝑘(𝑦)

∑𝑦 ′∈𝑌 e
−∑𝐾

𝑘=1 𝜇𝑘𝑓𝑘(𝑦 ′)
. (2.6)

Each 𝜇𝑘 is meant to impose the constraint associated to the function 𝑓𝑘(𝑦). If the
variables 𝑦 are numerical, a common choice for 𝑓 is the identity function, i.e. 𝑓 (𝑦) = 𝑦,
so that the constraint becomes the mean of the variable. If the 𝑦’s are instead categorical
variables, which is the case for protein sequences, it is usual to impose the single and
two-sites frequencies as constraints, as they were defined in Eq. (1.1).

The probability function provided by the maximum-entropy principle (Eq. (2.6))
can be thought as a Boltzmann distribution, which describes the statistical weight of
configurations in a canonical ensemble. This is especially evident if we take the average
value of the energy 𝐸(𝑦) as our sole constraint, indeed 𝑃(𝑦) ∝ exp [−𝜇𝐸(𝑦)], which is
exactly in the canonical form if we interpret the Lagrangian multiplier 𝜇 as the inverse
temperature of the system 𝜇 = 𝛽 = 1/𝑘𝐵𝑇.

2.2 Generalized Potts Model
In the previous section we introduced the maximum-entropy principle as a tool to de-
fine reasonable statistical models. Here we derive a global epistatic model for protein
sequences, following the maximum-entropy recipe, which is usually referred to as the
Generalized Potts Model (GPM). We mentioned that the constraints that we need to im-
pose are the one and two-site frequencies. In principle, one could impose statistical
constraints of increasing order, as for instance the three-sites statistics. However, the
higher is the order, the more data are needed in order to fix the model parameters with
sufficient precision.

For clarity, let’s write explicitly the expression of the constraints for the MSA:
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{
𝑓𝑖(𝑎) = 𝑃𝑖(𝑎) = ∑{S} 𝑃(S)𝛿(𝜎𝑖, 𝑎) = ⟨𝛿(𝜎𝑖, 𝑎)⟩,

𝑓𝑖𝑗(𝑎, 𝑏) = 𝑃𝑖𝑗(𝑎, 𝑏) = ∑{S} 𝑃(S)𝛿(𝜎𝑖, 𝑎)𝛿(𝜎𝑗, 𝑏) = ⟨𝛿(𝜎𝑖, 𝑎)𝛿(𝜎𝑗, 𝑏)⟩,
(2.7)

where 𝑃(S) is the probability of observing a sequence S, and represents the function
we want to determine. The functional to be optimized given the constraints in Eq. (2.7)
reads:

ℱ[𝑃,h, J] = −∑
{S}

{𝑃(S) log 𝑃(S) +
𝐿
∑
𝑖=1

ℎ𝑖(𝜎𝑖) [𝑃𝑖(𝜎𝑖) − 𝑓𝑖(𝜎𝑖)]

+
𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝐽𝑖𝑗(𝜎𝑖, 𝜎𝑗) [𝑃𝑖𝑗(𝜎𝑖, 𝜎𝑗) − 𝑓𝑖𝑗(𝜎𝑖, 𝜎𝑗)] + [𝑃(S) − 1]} . (2.8)

We introduced a novel notation for the Lagrangian multipliers, which is more suit-
able for the protein sequence modeling. In order to enforce the single site frequencies
we introduced a set of fields h = {h1,… ,h𝐿}. Each h𝑖 is a 𝑞 components vector, result-
ing in a number of 𝐿 × 𝑞 fields parameters, with 𝐿 the length of the protein and 𝑞 the
number of amino acids (eventually including the gap symbol). To impose the two-site
frequencies instead, we introduce the set of couplings J, yielding a number of param-
eters (𝐿2) × 𝑞 × 𝑞. Actually, the overall number of parameters is not (𝐿2)𝑞

2 + 𝐿𝑞 but it
is smaller, since the normalization and two site frequencies constraints automatically
enforce some of the the single site frequencies, so that the actual number of parameters
is (𝐿2)(𝑞 − 1)2 + 𝐿(𝑞 − 1).

The sought probability function 𝑃 is determined by the stationary point of Eq. (2.8):

𝜕ℱ
𝜕𝑃(S′)

= − log 𝑃(S′) − 1 −
𝐿
∑
𝑖=1

ℎ𝑖(𝜎 ′𝑖 ) −
𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝐽𝑖𝑗(𝜎 ′𝑖 , 𝜎 ′𝑗 ) = 0, (2.9)

from which we derive:

𝑃(S) = 1
𝑍
exp{

𝐿
∑
𝑖=1

ℎ𝑖(𝜎𝑖) +
𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝐽𝑖𝑗(𝜎𝑖, 𝜎𝑗)}. (2.10)

The normalization 𝑍 is also referred to as the partition function of the system, and
it contains all the relevant statistical properties of the system. It is defined as:

𝑍 = ∑
{S}

exp{
𝐿
∑
𝑖=1

ℎ𝑖(𝜎𝑖) +
𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝐽𝑖𝑗(𝜎𝑖, 𝜎𝑗)}, (2.11)

and it is a summation over 𝑞𝐿 possible configuration, a computation which is already
unfeasible for relatively short protein (L ∼ 50). Interestingly, the statistical model de-
fined in Eq. (2.10) can be interpreted as an equilibrium Boltzmann probability function,
that is, 𝑃(S) = exp (−𝐻(S)) /𝑍 in which we define an Hamiltonian energy function:
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𝐻(S) = −
𝐿
∑
𝑖=1

ℎ𝑖(𝜎𝑖) −
𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝐽𝑖𝑗(𝜎𝑖, 𝜎𝑗). (2.12)

Such an energy function is the aforementioned GPM, that can be interpreted as a
generalization of the standard Ising model, which corresponds to the special case 𝑞 =
2. Let’s comment the meaning of the parameters appearing in Eq. (2.12). From the
perspective of the maximum principle, they are thought only as the free parameters
that allow the probability function in Eq. (2.10) to reproduce the one and two sites
frequencies. However, one could also write down Eq. (2.12) from scratch, relying on
the physical interpretation of the parameters appearing therein. In this perspective, the
maximum-entropy principle provide a principled way to justify the choice of such a
model.

Furthermore, Eq. (2.12) can be thought of as a minimal model allowing to take into
account global epistatic effects, thanks to the couplings J. Indeed, a model in which
these parameters are absent is also called an independent site or profile model, for the
probability distribution factorizes over the different sites. This is the case of the HMM’s
traditionally used to align protein sequences. From a microscopic point of view, the
fields are local functions acting on the single residues: the higher is the value of ℎ𝑖(𝑎),
the more conserved amino acid 𝑎would be in position 𝑖. On the other hand, the coupling
parameters are meant to model interactions between pairs of residues, and in particular
for each pair of sites 𝑖−𝑗, it is possible to define a 𝑞×𝑞matrix 𝐽𝑖𝑗, having an entry for each
possible combination of two amino acids. The “larger” these entries are, the stronger is
the interaction between the residues, as it might result from the fact that the two sites
are coevolving. The interesting feature of the coupling is that they quantify a direct
interaction between residues, from which the name Direct Coupling Analysis (DCA),
to indicate statistical models as in Eq. (2.10). In this way, we are able to take into
account correlations between different positions of an MSA, at the same disentangling
the spurious ones. In Sec. 2.4 wewill see how to precisely employ the couplings in order
to quantify the interaction between two residues, an information that is fundamental
for the contact prediction problem.

2.2.1 Gauge invariance
To conclude this section about the GPM, we discuss an interesting property known
as gauge invariance, for which the GPM is invariant under a class of gauge transfor-
mations. These transformations are characterized by the following property. If we
identify with 𝜽 the set of parameters defining the Potts Hamiltonian, i.e. the fields and
couplings, a gauge transformation 𝑓 (𝜽) turns the parameters into 𝜽′ = 𝑓 (𝜽) so that
𝐻𝜽′ (S) − 𝐻𝜽 (S) = 𝑐, with 𝑐 constant. Since adding a constant to Eq. (2.12) leaves the
probability in Eq. (2.10) unchanged, all the models parametrized by 𝜽 and 𝜽′ are equiv-
alent, because they produce the same single and two sites marginals. The explicit form
of a gauge transformation is:

29



Statistical analysis of protein sequence

𝐽 ′𝑖𝑗(𝑎, 𝑏) = 𝐽𝑖𝑗(𝑎, 𝑏) + 𝑉𝑖𝑗(𝑎) + 𝑈𝑖𝑗(𝑏)

ℎ′𝑖 (𝑎) = ℎ𝑖(𝑎) −∑
𝑗<𝑖

𝑈𝑗𝑖(𝑎) −∑
𝑗>𝑖

𝑉𝑖𝑗(𝑎) + 𝐶𝑖 (2.13)

and it can be explicitly checked that it fulfills the required properties by direct sub-
stitution in Eq. (2.12). The redundancy of possible parameters defining the same proba-
bility function can be ascribed to the fact that conditions in Eq. (2.7), used to impose the
constraints and defining the model structure, are in fact not independent, as mentioned
in Sec. 2.1.

There are several possible ways to fix the gauge of the model. Here we present two
possibilities: the lattice gauge [108] and the zero-sum-gauge [43]. The first is the one
that is employed in the derivation of the mean field (MF) approximation of the GPM
(see Sec. 2.3.1), and it entails:

∀𝑎, 𝑏 ∈ 𝒬, 𝐽𝑖𝑗(𝑎, 𝑞) = 𝐽𝑖𝑗(𝑞, 𝑏) = ℎ𝑖(𝑞) = 0. (2.14)

The zero-sum-gauge is another common choice in the inference of the GPM. In order
to achieve it, the gauging functions 𝑈, 𝑉 and 𝐶 are to be chosen as:

𝑉𝑖𝑗(𝑎) = −1
𝑞

𝑞
∑
𝑏=1

𝐽𝑖𝑗(𝑎, 𝑏) +
1
2𝑞2

𝑞
∑
𝑎,𝑏=1

𝐽𝑖𝑗(𝑎, 𝑏),

𝑈𝑖𝑗(𝑏) = −1
𝑞

𝑞
∑
𝑎=1

𝐽𝑖𝑗(𝑎, 𝑏) +
1
2𝑞2

𝑞
∑
𝑎,𝑏=1

𝐽𝑖𝑗(𝑎, 𝑏),

𝐶𝑖 = −1
𝑞

𝑞
∑
𝑎=1

ℎ𝑖(𝑎), (2.15)

which leads to the following parameters transformation:

𝐽𝑖𝑗(𝑎, 𝑏) → 𝐽𝑖𝑗(𝑎, 𝑏) −
1
𝑞

𝑞
∑
𝑏=1

𝐽𝑖𝑗(𝑎, 𝑏) −
1
𝑞

𝑞
∑
𝑎=1

𝐽𝑖𝑗(𝑎, 𝑏) +
1
𝑞2

𝑞
∑
𝑎,𝑏=1

𝐽𝑖𝑗(𝑎, 𝑏),

ℎ𝑖(𝑎) → ℎ𝑖(𝑎) −
1
𝑞

𝑞
∑
𝑏=1

ℎ𝑖(𝑏) +∑
𝑗≠𝑖

[1
𝑞

𝑞
∑
𝑏=1

𝐽𝑖𝑗(𝑎, 𝑏) −
1
𝑞2

𝑞
∑
𝑎,𝑏=1

𝐽𝑖𝑗(𝑎, 𝑏)] . (2.16)

With this choice the parameters also fulfill the condition:

𝑞
∑
𝑎=1

𝐽𝑖𝑗(𝑎, 𝑏) =
𝑞
∑
𝑏=1

𝐽𝑖𝑗(𝑎, 𝑏) =
𝑞
∑
𝑎=1

ℎ𝑖(𝑎) = 0. (2.17)

This implies that the zero-sum-gauge is the one that minimizes the Frobenius norm
of the coupling matrix, a property which turns out to be useful in the context of contact
prediction.
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2.3 Inference of the Generalized Potts Model
We have derived a functional form for the probability of observing a sequence in an
MSA, theoretically justified by the maximum-entropy principle. However, we have
not yet stated how the inference should be performed, that is, how to fix the value of
the parameters J and h. In principle, they should be chosen in such a way that the
constraints in Eq. (2.7) are fulfilled. In a Bayesian framework, we can write down the
log-likelihood associated to an MSA {S(𝑚)}𝑀𝑚=1:

ℒ(h, J) = 1
𝑀

𝑀
∑
𝑚=1

log 𝑃 (S(𝑚)) = 1
𝑀

𝑀
∑
𝑚=1

[
𝐿
∑
𝑖=1

ℎ𝑖(𝜎
(𝑚)
𝑖 ) +

𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝐽𝑖𝑗(𝜎
(𝑚)
𝑖 , 𝜎 (𝑚)𝑗 )]−log𝑍 (h, J) .

(2.18)
Maximization of Eq. (2.18) provides the maximum-likelihood estimate of the GPM

parameters. However, the computation of the partition function 𝑍 is exponential in the
length of the protein sequence, since it scales as 𝑞𝐿. Such number becomes enormous
even for relatively short protein sequences, e.g. for 𝐿 = 20 we have 𝑞𝐿 = 10𝐿 log10 𝑞 ≃
1021. In the following sections we will present several possible approximation schemes.

If we were able to compute the partition function, we could alternatively solve the
inference problem by direct computation of the single and two sites marginals. Indeed:

𝜕 log𝑍
𝜕ℎ𝑗(𝑎)

= 1
𝑍
∑
S
𝛿(𝜎𝑗, 𝑎) exp {

𝐿
∑
𝑖=1

ℎ𝑖(𝜎𝑖) +
𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝐽𝑖𝑗(𝜎𝑖, 𝜎𝑗)} = 𝑃𝑗(𝑎), (2.19)

𝜕2 log𝑍
𝜕ℎ𝑗(𝑎)ℎ𝑘(𝑏)

= − 1
𝑍 2 (∑

S
𝛿(𝜎𝑗, 𝑎)e−𝐻(S)) (∑

S
𝛿(𝜎𝑘, 𝑏)e−𝐻(S)) + 1

𝑍
∑
S
𝛿(𝜎𝑗, 𝑎)𝛿(𝜎𝑘, 𝑏)e−𝐻(S)

= 𝑃𝑗𝑘(𝑎, 𝑏) − 𝑃𝑗(𝑎)𝑃𝑘(𝑏) ≡ 𝐶𝑗𝑘(𝑎, 𝑏), (2.20)

where we introduced the connected correlation function 𝐶𝑖𝑗(𝑎, 𝑏). Eqs. (2.19) and
(2.20), together with the empirical frequencies, contain all the necessary information
to solve the problem. Since it will be soon necessary, we point out that we could
rewrite Eqs. (2.19) and (2.20) in terms of the Helmholtz free energy 𝐹 = − log𝑍, i.e.
−𝜕𝐹/𝜕ℎ𝑗(𝑎) = 𝑃𝑗(𝑎) and −𝜕2𝐹/(𝜕ℎ𝑗(𝑎)𝜕ℎ𝑘(𝑏)) = 𝐶𝑗𝑘(𝑎, 𝑏).

2.3.1 Mean Field approximation
The expression Mean Field (MF), identifies a broad class of techniques that are used to
approximate intractable probability functions [116]. Generally speaking, if the system
is made of units labeled by an index 𝑖, the MF approximation considers the probability
function of the system to be factorized over these units, i.e. 𝑃 = ∏𝑖 𝑃𝑖. Here, we
rather present a generalization of the standard MF approach, which is known in the
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literature as the Plefka [124, 65] or small coupling expansion. The method is based on
the introduction of a perturbative parameter 𝛼, so that Eq. (2.12) is modified to:

𝐻(S; 𝛼) = −
𝐿
∑
𝑖=1

ℎ𝑖(𝜎𝑖) − 𝛼
𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝐽𝑖𝑗(𝜎𝑖, 𝜎𝑗). (2.21)

Such parameter is meant to be small, that is 𝛼 ≪ 1. Moreover, we notice that the
original model is recovered for 𝛼 = 1, whereas if 𝛼 = 0 it becomes a site-independent
(profile) model. We subsequently need to introduce the Gibbs potential, which is de-
fined as the Legendre transform of the Helmholtz free energy [162] 𝐹 = − log𝑍. Dif-
ferent conventions for such transformation can be chosen, but we will stick to the one
which is more common in statistical physics. According to this definition, the Legendre
transform turns convex functions into concave ones (rather than preserving convexity
as the standard Legendre transform does). The relations connecting the two thermo-
dynamical potentials are:

𝐹 (𝛼,h) = min
Q

[𝐺 (𝛼,Q) −
𝐿
∑
𝑖=1

𝑞−1
∑
𝑎=1

ℎ𝑖(𝑎)𝑄𝑖(𝑎)] , (2.22)

𝐺 (𝛼,Q) = sup
h

[𝐹 (𝛼,h) +
𝐿
∑
𝑖=1

𝑞−1
∑
𝑎=1

ℎ𝑖(𝑎)𝑄𝑖(𝑎)] . (2.23)

With the vector Q, we are labeling the single site marginal probabilities, which are
the conjugate variables of the fields. If 𝐹 is a differentiable function, the extremum
condition can be rewritten as 𝜕ℎ𝑗(𝑎) [𝐹 (𝛼,h) + h ⋅ Q] = 0, from which we recover Eq.
(2.19). This condition should be used to express h as a function of Q, via the inverse
function of 𝜕𝐹/𝜕ℎ𝑗(𝑎). In other words, given a specific value of the single site probability
𝑄𝑖(𝑎), the compatible value of the field ℎ𝑖(𝑎) is fixed via the derivative of the free energy
𝐹. From this, we can derive the following useful relation:

𝜕𝐺(𝛼)
𝜕𝑄𝑗(𝑏)

= 𝜕
𝜕𝑄𝑗(𝑏)

[𝐹(𝛼,h(Q)) +
𝐿
∑
𝑖=1

𝑞−1
∑
𝑎=1

ℎ𝑖(𝑎) (Q) 𝑄𝑖(𝑎)]

=
𝜕𝐹(𝛼,h(Q))

𝜕ℎ𝑗(𝑏)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
−𝑄𝑗(𝑏)

𝜕ℎ𝑗(𝑏)
𝜕𝑄𝑗(𝑏)

+ ℎ𝑗(𝑏) + 𝑄𝑗(𝑏)
𝜕ℎ𝑗(𝑏)
𝜕𝑄𝑗(𝑏)

= ℎ𝑗(𝑏), (2.24)

and since we have shown earlier that 𝜕𝑃𝑖(𝑎)/𝜕ℎ𝑗(𝑏) = 𝐶𝑖𝑗(𝑎, 𝑏), we also obtain:

𝜕ℎ𝑗(𝑏)
𝜕𝑄𝑖(𝑎)

= (𝐶)−1𝑖𝑗 (𝑎, 𝑏) =
𝜕2𝐺(𝛼,Q)
𝜕𝑄𝑖(𝑎)𝑄𝑗(𝑏)

, (2.25)
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which can be understood as a fluctuation-dissipation relation.
We now want to perform the expansion of the Gibbs potential with respect to the

parameter 𝛼:

𝐺(𝛼) = 𝐺(0) + 𝛼
d𝐺(𝛼)
d𝛼

|
𝛼=0

+ 𝒪(𝛼2). (2.26)

In order to perform the expansion, it is handier not to consider directly Eq. (2.23), but
rather the not extremized potential 𝒢(𝛼) = − log𝑍(𝛼) +h ⋅Q. At the zeroth order in 𝛼,
we have 𝒢(0) = − log∑S exp

∑𝐿
𝑖=1 ℎ𝑖(𝜎𝑖) +∑𝐿

𝑖=1∑
𝑞
𝑎=1 ℎ𝑖(𝑎)𝑄𝑖(𝑎). Extremization coincides

with expressing the fields as a function of the marginals, by relying on −𝜕𝐹/𝜕ℎ𝑗(𝑏) =
𝑄𝑗(𝑏). If we do so we obtain:

𝑄𝑗(𝑏) =
eℎ𝑗(𝑏)

∑𝑞
𝑎=1 e

ℎ𝑗(𝑎)
, (2.27)

which finally yields:

𝐺(0) =
𝐿
∑
𝑖=1

𝑞
∑
𝑎=1

𝑄𝑖(𝑎) log𝑄𝑖(𝑎). (2.28)

When computing the derivative with respect to 𝛼, it must be recalled that the com-
plete equation for determining the fields is:

−
𝜕𝐹(𝛼,h)
𝜕ℎ𝑗(𝑏)

= 𝜕
𝜕ℎ𝑗(𝑏)

log {∑
S
exp [𝛼

𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝐽𝑖𝑗(𝜎𝑖, 𝜎𝑗) +
𝐿
∑
𝑖=1

ℎ𝑖(𝜎𝑖)]}

= 1
𝑍
∑
S
𝛿(𝜎𝑗, 𝑏) exp [𝛼

𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝐽𝑖𝑗(𝜎𝑖, 𝜎𝑗) +
𝐿
∑
𝑖=1

ℎ𝑖(𝜎𝑖)] = 𝑄𝑗(𝑏). (2.29)

Since the field is determined by the inversion of Eq. (2.29), we see that it can be
generically expressed as ℎ𝑗(𝑏) ≡ ℎ𝑗(𝑏) (𝛼,𝑄𝑗(𝑏)), which explicitly depends on 𝛼. The
derivative of the pseudo Gibbs potential reads:

𝜕𝒢 (𝛼)
𝜕𝛼

= −
d log 𝑍(𝛼)

d𝛼
+

𝐿
∑
𝑖=1

𝑞
∑
𝑎=1

dℎ𝑖(𝑎)
d𝛼

𝑄𝑖(𝑎)

= 1
𝑍(𝛼)

∑
S
[
𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝐽𝑖𝑗(𝜎𝑖, 𝜎𝑗) +
𝐿
∑
𝑖=1

dℎ𝑖(𝜎𝑖)
d𝛼

] e−𝐻(𝛼)+

+
𝐿
∑
𝑖=1

𝑞
∑
𝑎=1

dℎ𝑖(𝑎)
d𝛼

𝑄𝑖(𝑎). (2.30)
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When computing the derivative at 𝛼 = 0, extremization is still obtained by means
of Eq. (2.27), and the ensemble average appearing in equation Eq. (2.30) are meant to
be computed with respect to the profile model. We consequently obtain for the actual
Gibbs potential:

d𝐺(𝛼)
d𝛼

|
𝛼=0

= −
𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

⟨𝐽𝑖𝑗⟩0 = −
𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝑞
∑
𝑎,𝑏=1

𝐽𝑖𝑗(𝑎, 𝑏)𝑄𝑖(𝑎)𝑄𝑗(𝑏). (2.31)

Finally, we can put together Eqs. (2.28) (2.31) to express the approximation of the
Gibbs potential at the first order:

𝐺(𝛼,Q) =
𝐿
∑
𝑖=1

𝑞
∑
𝑎=1

𝑄𝑖(𝑎) log𝑄𝑖(𝑎) − 𝛼
𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝑞
∑
𝑎,𝑏=1

𝐽𝑖𝑗(𝑎, 𝑏)𝑄𝑖(𝑎)𝑄𝑗(𝑏) + 𝒪(𝛼2). (2.32)

The original model is recovered by setting 𝛼 = 1. As previously mentioned, the
number of parameters in the model is redundant, as it is evident from the degeneracy
of the connected correlation function:

𝑞
∑
𝑏=1

𝐶𝑖𝑗(𝑎, 𝑏) =
𝑞
∑
𝑏=1

𝑃𝑖𝑗(𝑎, 𝑏) − 𝑃𝑖(𝑎)
𝑞
∑
𝑏=1

𝑃𝑗(𝑏) = 𝑃𝑖(𝑎) − 𝑃𝑖(𝑎) = 0, (2.33)

making thematrix not invertible. Such feature can be related to the gauge invariance
of the GPM. A possible strategy to avoid this inconvenient is then to fix a gauge, and
we choose here the so called lattice-gas gauge 2.2.1. The lattice-gas gauge amounts to
express the single site marginals for the 𝑞-th amino acid as: 𝑄𝑖(𝑞) = 1 − ∑𝑞−1

𝑎=1 𝑄𝑖(𝑎).
Then, we need to compute the derivative of the Gibbs potential so as to obtain a set
of equations for the fields and couplings. By doing so, we get a set of auto-consistent
equations:

𝜕𝐺(Q)
𝜕𝑄𝑘(𝑐)

= ℎ𝑘(𝑐) = log [
𝑄𝑘(𝑐)
𝑄𝑘(𝑞)

] −∑
𝑗≠𝑘

𝑞−1
∑
𝑎=1

𝐽𝑘𝑗(𝑐, 𝑎)𝑄𝑗(𝑎). (2.34)

𝜕2𝐺(𝛼,Q)
𝜕𝑄𝑘(𝑐)𝜕𝑄𝑙(𝑑)

= (𝐶)−1𝑘𝑙 (𝑐, 𝑑) = {
−𝐽𝑘𝑙(𝑐, 𝑑) 𝑘 ≠ 𝑙

𝛿(𝑐,𝑑)
𝑄𝑘(𝑐)

+ 1
𝑄𝑘(𝑞)

𝑘 = 𝑙
(2.35)

If we plug the empirical values of the frequencies and connected correlations 𝑓𝑖(𝑎),
𝐶EMP
𝑖𝑗 (𝑎, 𝑏) = 𝑓𝑖𝑗(𝑎, 𝑏) − 𝑓𝑖(𝑎)𝑓𝑗(𝑏), into Eqs. (2.34) and (2.35), we are eventually able to

determine the fields and couplings compatible with the observed dataset. The most
expensive operation in this process is the inversion of the 𝐿(𝑞 −1) ×𝐿(𝑞 −1) correlation
matrix, though the operation has to be performed only once. The MF approach proved
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to be successful for the contact prediction problem [108] and it was one of the first
methods to be applied to the inference of the GPM. However, it suffers some limitations.
It is for instance not able to satisfy Eq. (2.7), i.e. to accurately reproduce the empirical
statistics. Moreover, since the inferred couplings are usually very large, it is difficult to
sample in sequence space via Markov chain Monte Carlo (MCMC) because this leads to
a glassy-like energy landscape.

2.3.2 Gaussian DCA
An alternative approach for inferring the GPM parameters is the Gaussian DCAmethod
[9]. Within its framework, sequences in an MSA are probabilistically modeled as in-
dependently drawn Gaussian vectors. The representation used to express protein se-
quences as vectors of real components is known as one-hot encoding. This is a standard
technique used in machine learning to transform categorical data into numerical ones.
For the case of protein sequences, we have usually 𝑞 = 21 symbols (including the gap).
Each symbol is mapped onto a 𝑞 −1 components vector, which has all entries equal to 0
but one that is equal to 1, in such a way that every amino acid has a different represen-
tation. The 𝑞-th amino acid is instead associated to the null vector. A protein sequence
can be identified with a 𝑁 = 𝐿(𝑞 − 1) vector:

S = (2, 𝑞 − 3,… , 𝑞)→x = (0,1,0,… ,0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑞−1

, 0,… ,1,0,0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑞−1

,…0,0,… ,0⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑞−1

) . (2.36)

The MSA is made of 𝑀 sequences, so that the dataset can be globally modeled as
a 𝑀 × 𝑁 matrix 𝑋, whose rows are the protein sequences x(𝑚), for 𝑚 = 1,… ,𝑀. A
multivariate Gaussian distribution is defined by the mean vector 𝝁 and the covariance
matrix Σ, which are the parameters we want to infer in a Bayesian framework. Given
such parameters, the likelihood function associated to the data sample X is given by:

𝑃(𝑋 |𝜇,Σ) = 1

(2𝜋)
𝑀𝑁
2 det (Σ)

𝑀
2

exp{−1
2

𝑀
∑
𝑚=1

(x(𝑚) − 𝝁)
𝑇
(Σ)−1 (x(𝑚) − 𝝁)} (2.37)

It is also possible to define the empirical observables corresponding to the distribu-
tion parameters:

x = 1
𝑀

𝑀
∑
𝑚=1

x(𝑚), (2.38)

𝐶(𝑋) = 1
𝑀

𝑀
∑
𝑚=1

x(𝑚)
𝑇
x(𝑚) − x𝑇x. (2.39)
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If we were to infer the distribution parameters in a maximum-likelihood fashion,
their best estimate would coincide with Eq. (2.38) and (2.39) for 𝝁 and Σ respectively.
However, the empirical correlation matrix is usually rank deficient and consequently,
not invertible. This would lead to an ill-defined Gaussian distribution, and an alter-
native approach is demanded. The Bayesian framework allows to include information
about the prior distribution of parameters (see section 2.3.6), in such a way that the pos-
terior distribution does not coincide with the likelihood. Then, the parameter estimates
can be computed as an average over such posterior distribution. A suitable choice for
the prior is the Normal inverseWishart (NIW) distribution, which is the conjugate prior
of the multivariate Gaussian. Such prior can be written as 𝑝(𝝁,Σ) = 𝑝(𝝁|Σ)𝑝(Σ), where:

𝑝(𝝁|Σ) = (2𝜋)−
𝑁
2 𝜅

𝑁
2 det (Σ)−

1
2 −1

2
exp{−𝜅

2
(𝝁 − 𝜼)𝑇(Σ)−1(𝝁 − 𝜼)}, (2.40)

which is a multivariate Gaussian over the mean vector 𝝁, characterized by a prior
mean 𝜼 and covariance Σ/𝜅. The prior over Σ instead reads:

𝑝(Σ) = 𝒩det(Σ)−
−𝜈+𝑁+1

2 exp{−1
2
Tr (ΛΣ−1)}, (2.41)

with 𝒩 a normalization factor. The average values of 𝝁 and Σ over the prior are
⟨𝝁⟩𝑝(𝝁,Σ) = 𝜼, ⟨Σ⟩𝑝(𝝁,Σ) = Λ/ (𝜈 − 𝑁 − 1). Since the NIW is the conjugate prior of the
multivariate Gaussian, also the posterior 𝑝(𝝁,Σ|𝑋) ∝ 𝑝(𝑋 |𝝁,Σ)𝑝(𝝁,Σ) is a NIW, with
parameters updated according to the observed data:

⎧
⎪

⎨
⎪
⎩

𝜅′ = 𝜅 + 𝑀
𝜼′ = 𝜅

𝜅+𝑀𝜼 + 𝑀
𝜅+𝑀x

𝜈′ = 𝜈 + 𝑀
Λ′ = Λ + 𝑀𝐶 + 𝜅𝑀

𝜅+𝑀 (x − 𝜼)𝑇 (x − 𝜼)

(2.42)

We notice how the number of prior observations 𝜅 is augmented by the number
of observed data points 𝑀, and the same happens for the parameter 𝜈. Finally, the
maximum a posteriori value of the parameters 𝝁 and Σ becomes:

⟨𝝁⟩𝑝(𝝁,Σ|𝑋) = 𝜼′ = 𝜅
𝜅 + 𝑀

𝜼 + 𝑀
𝜅 + 𝑀

x, (2.43)

⟨Σ⟩𝑝(𝜇,Σ|𝑋) =
Λ′

𝜈′ − 𝑁 − 1
=

Λ + 𝑀𝐶 + 𝜅𝑀
𝜅+𝑀 (x − 𝜼)𝑇 (x − 𝜼)

𝜈 + 𝑀 − 𝑁 − 1
. (2.44)

We notice that the posterior mean is made of two contributions, the prior mean 𝜼
and the empirical one x, which are weighted according to the correspondent number
of observations 𝜅 and 𝑀. We now need to make some assumption about the prior pa-
rameters. If we consider them to be as uninformative as possible, it is conceivable to
choose the parameters so that the prior describes a uniformly distributed sample. This
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2.3 – Inference of the Generalized Potts Model

entails ⟨𝜇𝑖⟩𝑝(𝜇,Σ) = 𝜂𝑖 = 1/𝑞 for 𝑖 = 1,… ,𝑁 for the mean vector. The expected value
of the covariance matrix 𝑈 = Λ/(𝜈 − 𝑁 − 1) will have all entries equal to 0 apart for

(𝑞 − 1) × (𝑞 − 1) blocks having expression 1
𝑞 [𝛿(𝑎, 𝑏) −

1
𝑞], for 𝑎, 𝑏 = {1,… , 𝑞 − 1}. Then,

if we set 𝜈 = 𝜅 + 𝑁 + 1, we are able to interpret the ratio 𝜅/ (𝜅 + 𝑀) as the normalized
pseudocount 𝛼 (see section 2.3.6), that is, the statistical weight given to the prior uniform
sample. We can then rewrite the posterior parameters estimate as:

{
⟨𝝁⟩𝑝(𝝁,Σ|𝑋) = 𝛼𝜼 + (1 − 𝛼)x,

⟨Σ⟩𝑝(𝝁,Σ|𝑋) = 𝛼𝑈 + (1 − 𝛼)𝐶 + 𝛼(1 − 𝛼) (x − 𝜼)𝑇 (x − 𝜼) .
(2.45)

In the multivariate Gaussian framework, the couplings matrix is defined as the in-
verse of the covariance Σ, as it is expressed in Eq. (2.45). This is actually very similar
to what happens in the MF scheme.

An objection that can be moved against this modeling is that considering protein
sequences to be real valued vector is a very crude approximation. However, even if the
x components can assume any value on the real axis, the data themselves are highly
structured, as it is evident from the empirical correlation function between amino acids
at a same site 𝑙:

𝐶(𝑙−1)(𝑞−1)+𝑎,(𝑙−1)(𝑞−1)+𝑏 = −𝑥(𝑙−1)(𝑞−1)+𝑎𝑥(𝑙−1)(𝑞−1)+𝑏 < 0, (2.46)

as it should be, because the occurrence of different amino acids at a certain site
should be anti-correlated. If the pseudocount is small, the main contribution in Eq.
(2.45) is indeed given by 𝐶, so that the peculiar data structure is included in Σ.

2.3.3 Pseudo-likelihood
The pseudo-likelihood inference strategy has been first introduced in [8]with the acronym
GREMLIN, and then revised in [43]. It represents an efficient method to approximate
the global likelihood function by means of single site conditional probabilities:

𝑃𝑟 (𝜎𝑟|𝜎\𝑟) =
eℎ𝑟(𝜎𝑟)+∑𝑗≠𝑟 𝐽𝑟 𝑗(𝜎𝑟,𝜎𝑗)

∑𝑞
𝑎=1 e

ℎ𝑟(𝑎)+∑𝑗≠𝑟 𝐽𝑟 𝑗(𝑎,𝜎𝑗)
, (2.47)

where the notation 𝜎\𝑟 = (𝜎1,… , 𝜎𝑟−1, 𝜎𝑟+1,… , 𝜎𝐿) stands for the amino acids at
all residues but 𝑟. The great advantage of Eq. (2.48) is that it is possible to compute
the normalization factor 𝑍𝑟, since the summation is performed over 𝑞 configurations
only. The pseudo-likelihood is defined as the product over all the sites of the single
conditional probabilities ∏𝐿

𝑟=1 𝑃𝑟 (𝜎𝑟|𝜎\𝑟). Then, the log-pseudo-likelihood associated

to an MSA {S(𝑚)}
𝑀
𝑚=1 will become:
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ℒpseudo =
1
𝑀

𝑀
∑
𝑚=1

𝐿
∑
𝑟=1

log 𝑃(𝜎 (𝑚)𝑟 |𝜎 (𝑚)\𝑟 ). (2.48)

An interesting feature of Eq. (2.48) is that it provides an asymptotic approximation
of the global likelihood function, that is, it approaches the correct result for 𝑀 → ∞.
Furthermore, rather than optimizing Eq. (2.48) altogether, it is possible to break the log-
pseudo-likelihood in 𝐿 independent contributions which can be optimized in parallel
[42], because they depend on different sets of parameters h𝑟, J𝑟 = {𝐽𝑟 𝑖}𝑖≠𝑟:

𝑔𝑟 (h𝑟, J𝑟) =
1
𝑀

𝑀
∑
𝑚=1

log 𝑃(𝜎 (𝑚)𝑟 |𝜎 (𝑚)\𝑟 ), (2.49)

providing a consistent speed up of the inference process. The drawback of this
asymmetric approach is that it provides two different estimates for the couplings 𝐽 𝑖𝑖𝑗 and
𝐽 𝑗𝑗𝑖, where the apices indicate from which specific 𝑔𝑟 the parameter has been inferred. A

possible solution is to define a symmetrized version of the coupling as 𝐽𝑖𝑗 = (𝐽 𝑖𝑖𝑗 + 𝐽 𝑗𝑗𝑖) /2.
The pseudo-likelihood has demonstrated to be particularly effective for the contact

prediction problem [43] over a wide range of different of protein families. It must be
noted that the inference procedure is conceptually different to what is prescribed by the
maximum-entropy principle, even though the functional form of the distribution is the
same. However, one can check a-posteriori that the inferred probability distribution
is able to reproduce the empirical frequencies, even if these constraints have not been
explicitly imposed during the learning.

In the following we will refer to pseudo-likelihood inference of the GPM as the
PlmDCA approach.

In section 3.3 we will treat again the pseudo-likelihood approximation, since it is
the inference method we will rely on for our novel statistical models of experimental
sequence data.

2.3.4 Boltzmann Machine Learning
Boltzmann machine learning (BML) [2] is an inference scheme that allows to determine
the model parameters by optimization of the global likelihood function, and it was first
applied to infer the GPM in [92]. In the following, we will refer to BML in che context
of the GPM as bmDCA. As wementioned at the beginning of Sec. 2.3, the inherent issue
of optimizing Eq. (2.18) is the necessity to compute the partition function 𝑍. bmDCA
circumvents this limitation by exploiting MCMC sampling. Indeed, the derivatives of
the log-likelihood with respect to the GPM parameters read:
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⎧

⎨
⎩

𝜕ℒ
𝜕ℎ𝑘(𝑎)

= 1
𝑀 ∑𝑀

𝑚=1 𝛿(𝜎
(𝑚)
𝑘 , 𝑎) − ⟨𝛿(𝜎𝑘, 𝑎)⟩ = 𝑓𝑘(𝑎) − ⟨𝛿(𝜎𝑘, 𝑎)⟩ ,

𝜕ℒ
𝜕𝐽𝑘𝑙(𝑎,𝑏)

= 1
𝑀 ∑𝑀

𝑚=1 𝛿(𝜎
(𝑚)
𝑘 , 𝑎)𝛿(𝜎 (𝑚)𝑙 , 𝑏) − ⟨𝛿(𝜎𝑘, 𝑎)𝛿(𝜎𝑙, 𝑏)⟩ = 𝑓𝑘𝑙(𝑎, 𝑏) − ⟨𝛿(𝜎𝑘, 𝑎)𝛿(𝜎𝑙, 𝑏)⟩ .

(2.50)
We recall that with the brackets ⟨⋅⟩we indicate ensemble averages with respect to the

probability function in Eq. (2.10). MCMC sampling allows to determine these average
valueswithout computing the normalization factor 𝑍. Then, a gradient ascent algorithm
can be implemented for the determination of the model parameters, according to the
update equations:

{
ℎ(𝑡+1)𝑘 (𝑎) = ℎ(𝑡)𝑘 (𝑎) + 𝜂 [𝑓𝑘(𝑎) − ⟨𝛿(𝜎𝑘, 𝑎)⟩] ,

𝐽 (𝑡+1)𝑘𝑙 (𝑎, 𝑏) = 𝐽 (𝑡)𝑘𝑙 (𝑎, 𝑏) + 𝜂 [𝑓𝑘𝑙(𝑎, 𝑏) − ⟨𝛿(𝜎𝑘, 𝑎)𝛿(𝜎𝑙, 𝑏)⟩] ,
(2.51)

which depend on the hyperparameter 𝜂, usually referred to as the learning rate. The
choice of an adequate value of 𝜂 is fundamental for a successful learning of the parame-
ters. Too small a value leads to a slow exploration of the likelihood landscape, whereas
a too large one generates back and forth oscillation preventing convergence. Unless
one relies on Newton-like methods that automatically set the learning rate [69], a gen-
eral strategy for determining the appropriate learning rate is lacking, and the specific
optimal value changes from case to case.

Since the log-likelihood is a concave function of the model parameters, convergence
to a global maximum is in principle guaranteed. Moreover, model parameters can be
determined with arbitrary accuracy [161], although this requires a likewise elongation
of the learning process. The major limitation is due to the number of samples that need
to be collected in the MCMC simulation in order to obtain a precise estimate of the dis-
tribution averages. This makes bmDCA generally much slower than the previously pre-
sented methods, even though a recent implementation of bmDCA [11] employed a pa-
rameters reduction via sparsification. On the other hand, since the maximum-entropy
conditions for the matching of empirical and ensemble frequencies are directly imposed
into the update equation, these are quite precisely fulfilled by bmDCA, in contrast for
instance to the MF method.

2.3.5 Autoregressive DCA
Recently, an inference method based on autoregressive networks has been applied to
protein sequence data [164]. Differently from previously presented techniques, autore-
gressive DCA (arDCA) is a self-supervised inference method based on a shallow net-
work, allowing for the exact computation of sequence probabilities, in contrast with
bmDCA and PlmDCA that provide unnormalized probabilistic weights.
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The main idea at the basis of arDCA is to use Bayes theorem to break down the joint
probability of a sequence as:

𝑃(𝜎1, 𝜎2,… , 𝜎𝐿) = 𝑃(𝜎1)𝑃(𝜎2|𝜎1)𝑃(𝜎3|𝜎2, 𝜎1) … 𝑃(𝜎𝐿|𝜎𝐿−1,… , 𝜎1). (2.52)

Differently from PlmDCA, where single site probabilities are conditioned over all the
rest of the sequence, here the probability factor related to site 𝑖 is conditioned only over
𝑗 < 𝑖. Yet, inference can be performed similarly to PlmDCA, as the likelihood gradient
can be computed exactly, allowing to avoid expensive computations as it happens in
bmDCA, where it is necessary to estimate ensemble averages via MCMC. The single
site conditional probabilities are parametrized according to:

𝑃(𝜎𝑖|𝜎𝑖−1,… , 𝜎1) =
exp {ℎ𝑖(𝜎𝑖) + ∑𝑖−1

𝑗=1 𝐽𝑖𝑗(𝜎𝑖, 𝜎𝑗)}

∑𝑞
𝑎=1 exp {ℎ𝑖(𝑎) + ∑𝑖−1

𝑗=1 𝐽𝑖𝑗(𝑎, 𝜎𝑗)}
, (2.53)

which is referred to as soft-max regression. Even though the number of parameters
in the model is the same of a generalized Potts Hamiltonian (and then usually much
smaller than deep learning architecture), the two sets do not have the same interpreta-
tion, in particular for the coupling ones. Indeed, they cannot be directly interpreted as
a direct interaction between 𝑖 and 𝑗, but rather, the influence of 𝑗 on 𝑖 for 𝑗 < 𝑖 is taken
into account.

This leads to another subtle point of the method, that is, the lack of site permutation
invariance. The specific order in Eq. (2.52) does matter, yielding different results from
case to case. The strategy chosen in [164] is to start from the less entropic residues,
since this possesses also a biologically motivated interpretation.

arDCA displays performances comparable to bmDCA for both the reproduction of
the empirical frequencies observed in natural alignments and in the prediction of mu-
tational effects (see Sec. 2.4.2).

2.3.6 Regularization
All the inference methods presented previously need some kind of regularization, ei-
ther to avoid overfitting or to make the inference problem feasible. Both the MF and
Gaussian method require the inversion of a covariance matrix for the determination of
the couplings. However, the number of available independent data is usually not large
enough to have an accurate estimate of the two sites frequencies, and consequently,
correlations can be easily under or overestimated. In this perspective, the usage of
pseudocounts is a possible solution to attenuate data scarcity.

The underlying idea is to include a Dirichlet prior for the empirical frequencies [40],
augmenting the observed counts according to the concentration parameters of the prior.
The most unbiased assumption is to consider that a-priori all the amino acids have the
same probability to be observed, and consequently the prior probability is uniform,
i.e. 1/𝑞. Then, the expected number of a-priori observed amino acids is given by the
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product of the total number of pseudocounts 𝜆 and the prior probability, so that the
empirical frequencies are corrected as:

𝑓𝑖(𝑎) =
1

𝑀 + 𝜆
[𝜆
𝑞
+

𝑀
∑
𝑚=1

𝛿(𝜎𝑖, 𝑎)]

𝑓𝑖𝑗(𝑎, 𝑏) =
1

𝑀 + 𝜆
[ 𝜆
𝑞2

+
𝑀
∑
𝑚=1

𝛿(𝜎𝑖, 𝑎)𝛿(𝜎𝑗, 𝑏)] . (2.54)

The previous equation can also be rewritten in terms of the normalized pseudocounts
𝛼 = 𝜆

𝜆+𝑀 , as it was done in the Gaussian DCA approach in Sec. 2.3.2.
On the other hand, gradient based methods such as PlmDCA and bmDCA are often

regularized by adding an 𝑙2 penalty to the gradient. For the GPM, the 𝑙2 regularization
reads:

𝑅 (h, J) = 𝜆𝐽 ‖J‖
2 + 𝜆ℎ ‖h‖

2 = 𝜆𝐽
𝐿
∑
𝑖=1

𝐿
∑
𝑗>𝑖

𝑞
∑
𝑎,𝑏=1

𝐽𝑖𝑗(𝑎, 𝑏)2 + 𝜆ℎ
𝐿
∑
𝑖=1

𝑞
∑
𝑎=1

ℎ𝑖(𝑎)2, (2.55)

where we have introduced the hyperparameters 𝜆𝐽 and 𝜆ℎ, that set the regularization
strength. In a Bayesian framework, Eq. (2.55) can be interpreted as a Gaussian prior
over the parameters, and its inclusion in the objective function also allows to make the
inference process faster and easier. However, too strong a regularization might dis-
tort the inferred parameters. Moreover, even if in principle the regularization strength
should go to zero for a data sample of diverging size, it is a common choice to set 𝜆𝐽
and 𝜆ℎ to a value between 1.0e-3 and 0.01, independently to the sample size.

2.4 Generalized Potts Model applications
In this section, we review themost relevant results related to the application of the GPM
to protein sequence data [30]. In the following, wewill use equivalently the names GPM
and DCA to refer to the maximum-entropy probabilistic model defined by the energy
function Eq. (2.12).

2.4.1 Contact prediction
The problem of folding, i.e. predicting the tertiary structure from the very sequence
of amino acids, has always been a milestone of computational biology. Recently, Al-
phaFold practically solved the problem by relying on a deep learning architecture [85].
However, one of the first significant advances in this direction was provided by the
application of DCA methods [172, 108].
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The experimental determination of a protein three dimensional structure can be re-
alized bymeans of several techniques such as: X-ray crystallography, Nuclear Magnetic
Resonance (NMR) and electron microscopy. All these methods are expensive and not
trivial to be realized, and consequently the amount of accessible structures remained
limited in time. On the other hand, the advances in sequencing technologies yielded an
explosion of sequence data, allowing for the application of statistical-based methods.

Initially, the idea was to use statistical correlations detectable in MSA’s of protein
families [119, 53] as described in Sec. 1.2.2. Specifically, one of the used indicator was
the Mutual Information [39] between residues 𝑖 and 𝑗:

MI𝑖𝑗 =
𝑞
∑
𝑎,𝑏=1

𝑓𝑖𝑗(𝑎, 𝑏) log
𝑓𝑖𝑗(𝑎, 𝑏)
𝑓𝑖(𝑎)𝑓𝑗(𝑏)

. (2.56)

If the two residues are uncorrelated then 𝑓𝑖𝑗(𝑎, 𝑏) = 𝑓𝑖(𝑎)𝑓𝑗(𝑏), yielding a null mutual
information. A high MI𝑖𝑗, indicates that the residues are highly correlated, as a possible
consequence of structural or functional interactions. However, as we discussed in 1.2.2,
such correlations can be spurious, and a tool to disentangle between direct and indirect
interaction is required. Within the GPM approach, the direct interaction is quantified by
the coupling parameters J. Specifically, in order to quantify the amount of interaction
between two residues, it is necessary to trace over all the possible amino acids. This is
achieved by means of the Frobenius norm:

𝐹𝑖𝑗 = ‖𝐽𝑖𝑗‖
2 =

𝑞
∑
𝑎,𝑏=1

𝐽𝑖𝑗(𝑎, 𝑏)2. (2.57)

Then, the possible residue pairs are sorted in a decreasing order of score 𝐹𝑖𝑗, for the
one with the higher score are intended to be more probably interacting. In doing so,
only residue pairs such that |𝑖 − 𝑗| > 4 are retained, so to avoid to consider contacts de-
riving from the secondary structure. In order to assess if the pair of residues is actually
in contact in the tertiary structure a reference coming from the Protein Database Bank is
employed, where the information about the majority of experimentally resolved struc-
tures are collected, and identified by a four symbol alpha-numeric string. A contact is
considered to be so if the corresponding residues are found at a distance smaller of a
certain threshold, which is usually set at 5Å or 8Å.

Before moving on, it is necessary to treat some key technical points. When ap-
plying DCA to MSA’s of homologous proteins, the underlying working hypothesis is
that the sequences are independently sampled from an equilibrium distribution. How-
ever, phylogenetic relations among sequences introduce correlations which are not due
to functional or structural constraints, hindering the determination of the coupling pa-
rameters. It is extremely hard to disentangle phylogenetic and coevolution correlations,
and the research activity in this direction is still ongoing [132, 131, 78]

One of the most common strategies to attenuate the effect of phylogeny is the use
of reweighting procedures, as they were introduced in [172]. The idea is to associate
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to each sequence in the MSA a weight which is inversely proportional to the similarity
with other sequences, according to:

𝑤 (𝑚) = [1 + ∑
𝑛≠𝑚

Θ(𝛼 − 1
𝐿
hD (S(𝑚), S(𝑛)))]

−1
, (2.58)

where Θ(𝑥) is the Heaviside function, hD(S, S′) = ∑𝐿
𝑖=1 [1 − 𝛿(𝜎𝑖, 𝜎 ′𝑖 )] is the Ham-

ming distance between sequences, and 𝛼 is a threshold. For every sequence S(𝑛) having a
fraction of mismatches smaller than 𝛼, the weight of the sequence S(𝑚) is downweighted
by one. Typical values for the threshold parameter are around 𝛼 = 0.2. Then, the one
and two point frequencies can be computed as weighted averages:

𝑓𝑖(𝑎) =
1

𝑀eff

𝑀
∑
𝑚=1

𝑤 (𝑚)𝛿(𝜎 (𝑚)𝑖 , 𝑎),

𝑓𝑖𝑗(𝑎, 𝑏) =
1

𝑀eff

𝑀
∑
𝑚=1

𝑤 (𝑚)𝛿(𝜎 (𝑚)𝑖 , 𝑎)𝛿(𝜎 (𝑚)𝑗 , 𝑏), (2.59)

with 𝑀eff = ∑𝑀
𝑚=1 𝑤 (𝑚) the effective number of unique sequences. The reweighting

procedure consistently improves the result of DCA for contact prediction.
Another common procedure to improve the contact prediction is the so called av-

erage product correction (APC). The idea is to correct the interaction score between
residues 𝑖 and 𝑗 by averaging over the interaction they have with all other residues:

𝐹𝐴𝑃𝐶𝑖𝑗 = 𝐹𝑖𝑗 −
𝐹𝑖.𝐹.𝑗
𝐹..

, (2.60)

where the point stands for averaging over the other residues, e.g. 𝐹𝑖. =
1

𝐿−1 ∑𝑘≠𝑖 𝐹𝑖𝑘
and 𝐹.. =

2
𝐿(𝐿−1) ∑𝑘>𝑙 𝐹𝑘𝑙. A clear interpretation of why the APC works well for the

contact prediction problem is actually missing, even though it has been suggested that
it might be related to entropic or phylogenetic corrections [22, 86].

The DCA method has been tested on a large variety of protein families, proving to
be quite robust both with respect to the choice of the family and the specific infer-
ence method used. Quite notably, the inference method that provides the best result
is PlmDCA 2.3.3, even compared to more accurate algorithms such as bmDCA 2.3.4.
A possible explanation for this outcome, is that what matters the most for the contact
prediction problem is not the specific value of the parameters, but rather, the magni-
tude hierarchy between them. In Fig. 2.1, an example of DCA performance in assessing
contact prediction for the protein family PF00397 (WW-domain) is reported, in the form
of a sensitivity plot. Such plot shows the positively predicted value (PPV) as a function
of the possible residue pairs sorted for decreasing value of the Frobenius norm. The
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Figure 2.1: Example of DCA application to the contact prediction problem. The fig-
ure displays the sensitivity plots obtained for the WW domain using three different
methods: PlmDCA 2.3.3, GaussDCA 2.3.2 and MI. Both direct-coupling methods ex-
hibit superior performances compared to MI.

definition of the PPV is PPV=TP/(TP+FP), i.e. the fraction of true positive with respect
to the total number of prediction, given by both true and false positive.

In the recent years, deep learning algorithms are progressively gaining more atten-
tion also for the analysis of protein sequence data, and specifically for the contact pre-
diction and folding problem [171, 180]. In particular, the biggest leap has been provided
by the team AlphaFold2 [85] during the CASP14 competition. Thanks to a neural net-
work architecture, they have been able to resolve de-novo structures up to experimental
precision, starting from the very sequence of amino acids. Notably, the neural network
includes within its inputs also an alignment of homologous sequences, thus still lever-
aging coevolution information. This suggests that the integration of statistical-physics
inspired models into deep architectures might be an interesting way to go for future
applications to protein sequence data.
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2.4.2 Mutational effects
Another interesting property of the DCA method, is that the energy function can be
used as a proxy of log-probability, and consequently, as a score for sequences. In par-
ticular, this score can be used to quantify the effect of mutations on natural sequences,
and also to determine how likely it is for that sequence to belong to a certain protein
family.

The scenario we have in mind is that of a laboratory experiment of the kind intro-
duced in Sec. 1.3, in which the sequence space in the vicinity of a wild-type is probed
for a functional feature. Depending on the specific experimental technique employed,
the exploration might be more or less broad, but still local when compared to anMSA of
homologous sequences. Even though DCA is inferred on natural MSA’s, the obtained
landscape nonetheless provides an approximation of the local landscape in the neigh-
borhood of the wild-type. In order to test this hypothesis, the statistical energy can be
used as a proxy of the protein fitness. Specifically, the score of a variant S(𝑚𝑢𝑡) can be
computed as its energy difference with respect to the wild type:

Δ𝐸(S(𝑚𝑢𝑡)) = 𝐻(S(𝑚𝑢𝑡)) − 𝐻(S(𝑤𝑡)), (2.61)

where 𝐻(S) is the GPM of Eq. (2.12). Mutations (single or multiple) can be neutral,
beneficial or deleterious. This reflects in the sign of Eq. (2.61), that becomes respec-
tively null, negative or positive. Significantly, since the GPM is a global function of
the sequence, even single mutations depend on the specific background, as it can be
checked by inspection of Eq. (2.61) for the single site mutation 𝜎𝑖 → 𝜎 ′𝑖 :

Δ𝐸(S′, S) = 𝐻(S′) − 𝐻(S) = ℎ𝑖(𝜎𝑖) − ℎ𝑖(𝜎 ′𝑖 ) +∑
𝑗≠𝑖

[𝐽𝑖𝑗(𝜎𝑖, 𝜎𝑗) − 𝐽𝑖𝑗(𝜎 ′𝑖 , 𝜎𝑗)] , (2.62)

from which the fundamental role of the couplings J emerges.
The DCA approach has been applied to a variety of different experimental and bio-

logical contexts for the prediction of mutational effects. These include viral strains [23,
96, 133], bacterial cells [26, 49, 81], human proteins [45] and an ensemble of different
datasets [75, 164]. One of the fundamental results outlined in these papers, is the ne-
cessity to use epistatic models in order to obtain meaningful predictions of mutational
effects. As an example, in Fig. 2.2 Spearman correlations between mutational scores
in Eq. (2.61) and experimental fitness measurements of the TEM-1 𝛽-lactamase protein
are reported, comparing a profile model with one including coupling parameters. From
the correlation values, it is evident how the epistatic model is able to provide superior
performances.

In Fig. 2.3, a summary of the performances of various DCA models for several
datasets is presented and compared with a deep learning approach [129].

In this thesis, we aim to present some novel DCA-inspired approaches (chapters 3
and 4) for the unsupervised inference of accurate local fitness landscapes. Specifically,
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FIG. S1. Predicted vs. experimentally measured mutational e↵ects for TEM-1: Scatter plot of the data in Fig. 2
(main text). Panel A shows the experimental results of Ostermeier et al. vs. the DCA predictions using the epistatic Potts
model, Panel B vs. the non-epistatic profile model. The Spearman rank correlations between experiments and predictions are
displayed in the figures.

FIG. S2. Statistical energy in dependence of sequence distance from wildtype TEM-1: Panel A shows the statistical
energies of the sequences from generation 12 in Fantini et al., in dependence of the Hamming distance (number of substituted
amino acids) from the wildtype TEM-1. Panel B shows the same quantities for the simulated sequences, where selection
strength T and the number of simulated evolutionary steps are adjusted to reproduce the average distance and the slope from
Panel A. Panel C shows an example of strong selection (T ⌧ 1) leading to optimized sequences having lower statistical energies
/ higher fitness. Panel D shows the case of very weak selection (T � 1) resulting in random, mostly deleterious substitutions
strongly increasing statistical energy.

Figure 2.2: Comparison between profile and epistatic model in terms of mutational ef-
fects prediction. Both panels display the scatter plot between the statistical mutational
score and the experimental fitness measurements of [51], and values of the correpsond-
ing Spearman correlations are reported as inserts. On the left, scatter of the epistatic
scores in Eq. (2.61), having a correlation 𝜌𝑆 = −0.77. On the right, the same scatter
obtained with a profile model, having a lower correlation 𝜌𝑆 = −0.6. Figure taken from
[15].

these methods try to develop an effective dynamical modeling of the underlying exper-
imental process, thus leveraging the information contained in all sequenced rounds, as
opposite to standard DCA approaches, that are usually inferred on homologous align-
ments, and when applied to local mutational datasets such as DMS and DE experiments,
are not able to include the whole experimental information.

2.4.3 Protein-protein interactions
Another interesting open problem in the protein realm is the prediction of interaction
partners, which can eventually fold together to make a protein complex. On top of
predicting if two or more proteins interact with each other, it is interesting to determine
how they will, i.e. the physical contacts among them. Notably, the DCA method can be
employed for both this purposes.

Initially, DCA and other coevolutionary-based methods were used to predict con-
tacts between proteins [172, 122, 76] that were known to be interacting. The problem
of determining if paralogs within a species are interacting was subsequently tackled in
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Extracting epistatic couplings and predicting residue-residue
contacts. The best-known application of DCA is the prediction of
residue-residue contacts via the strongest direct couplings6. As
argued before, the arDCA parameters are not directly inter-
pretable in terms of direct couplings. To predict contacts using
arDCA, we need to go back to the biological interpretation of
DCA couplings: they represent epistatic couplings between pairs
of mutations59. For a double mutation ai→ bi, aj→ bj, epistasis is
defined by comparing the effect of the double mutation with the
sum of the effects of the single mutations, when introduced
individually into the wildtype background:

ΔΔEðbi; bjÞ ¼ ΔEðai ! bi; aj ! bjÞ

$ ΔEðai ! biÞ $ ΔEðaj ! bjÞ;
ð6Þ

where the ΔE in arDCA is defined in analogy to Eq. (5). The
epistatic effect ΔΔE(bi, bj) provides an effective direct coupling
between amino acids bi, bj in sites i, j. In standard DCA,
ΔΔE(bi, bj) is actually given by the direct coupling Jij(bi, bj)−
Jij(bi, aj)− Jij(ai, bj)+ Jij(ai, aj) between sites i and j.

For contact prediction, we can treat these effective couplings in the
standard way (compute the Frobenius norm in zero-sum gauge,
apply the average product correction, cf. Supplementary Note 5 for
details). The results are represented in Fig. 4 (cf. also Supplementary
Figs. 8–10). The contact maps predicted by arDCA and bmDCA are
very similar, and both capture very well the topological structure of
the native contact map. The arDCA method gives in this case a few
more false positives, resulting in a slightly lower positive predictive
value (panel c). However, note that the majority of the false positives
for both predictors are concentrated in the upper right corner of the
contact maps, in a region where the largest subfamily of response-
regulators domains, characterized by the coexistence with a
Trans_reg_C DNA-binding domain (PF00486) in the same protein,
has a homo-dimerization interface.

One difference should be noted: for arDCA, the definition of
effective couplings via epistatic effects depends on the reference
sequence (a1,..., aL), in which the mutations are introduced; this is
not the case in DCA. So, in principle, each sequence might give a
different contact prediction, and accurate contact prediction in

Fig. 3 Prediction of mutational effects by arDCA. Panel a shows the Spearman rank correlation between results of 32 deep-mutational scanning
experiments and various computational predictions. We compare arDCA with profile models, plmDCA (aka evMutation10), DeepSequence33, and
GEMME59, which currently are considered the state of the art. Detailed information about the datasets and the generative properties of arDCA on these
datasets are provided in Supplementary Note 4. Panel b shows a more detailed comparison between arDCA and DeepSequence, the symbol size is
proportional to the sequence number in the training MSA for prokaryotic and eukaryotic datasets (blue dots). Viral datasets are indicated by red squares.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25756-4 ARTICLE

NATURE COMMUNICATIONS | ��������(2021)�12:5800� | https://doi.org/10.1038/s41467-021-25756-4 | www.nature.com/naturecommunications 7

Figure 2.3: Performances comparison in terms of the prediction of mutational effects
for various inference methods. Of particular interest are the results of PlmDCA [43,
42], arDCA [164] and DeepSequence [129], as a benchmark comparison between fully
unsupervised against both shallow and deep architectures supervised learning. The
performance is evaluated in terms of Spearman correlation between the mutational
scores and the available experimental fitness measurements, for both eukaryotic and
prokaryotic organisms, as well as viruses. Figure taken from [164].

[68, 16, 46].
The common idea used to face all these problems, is to define a probability for two

concatenated sequences (S, S′) that may or not interact with each other:

𝑃(S, S′) = 1
𝑍
e−𝐻(S)−𝐻 ′(S′)−𝐻int(S,S′), (2.63)

where 𝐻int(S, S′) is defined as:

𝐻int(S, S′) = − ∑
𝑖∈S,𝑗∈S′

𝐽𝑖𝑗(𝜎𝑖, 𝜎 ′𝑗 ). (2.64)

Such energy contribution is supposed to model the coevolution between protein S
and S′. In principle, it would be possible to consider a higher number of interacting
proteins. However, the number of interacting parameters in the model grows as (𝐿1 +
𝐿2 + 𝐿𝑁)2, with 𝐿𝑘 the length of each protein, 𝑘 = 1,… ,𝑁 and 𝑁 the total number of
possibly interacting partner. Consequently, one usually restricts to the case of pair-wise
interactions.

As in standard DCA, the Frobenius norm of the inter-protein couplings can be used
as a score for assessing how likely it is for the residues to be interacting. On the other
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hand, a possible strategy to determine if two concatenated paralogs are actually inter-
acting, is to use the mean value of the strongest couplings between the sequences as a
score. Alternatively, this can achieved before-hand during the pairing process of MSA’s,
by an iterative reshuffling of the alignments determined according to coevolution sig-
nals [68, 16].

Interestingly, once a pair of proteins is guessed to be interacting (or already known
to be so), the predicted contacts can be used to guide the process of predicting the actual
spatial conformation of the interacting surface [144].

Recently, it has been shown that phylogenetic correlations, that usually hinder co-
evolution information when applying DCA methods, can actually be leveraged in the
context of protein interaction prediction [97, 60, 67].

2.4.4 Sequence generation
Another appealing application of the GPM is the possibility to generate de-novo func-
tional sequences. Indeed, once the probability function in Eq. (2.10) is learnt, it can
be used to sample sequences. The sampling process is realized via a MCMC based on
the energy function of Eq. (2.12), e.g. via the Metropolis-Hastings algorithm. The first
indications that the pairwise maximum-entropy model could be a promising tool for
functional sequence generation came from [140, 150]. In these works, a tool called
statistical coupling analysis was employed to generate artificial sequences of the WW-
domain (𝐿 = 35 residues). The method relies only on the statistical pattern related to
the alignment of natural homologous sequences (PFAM family PF00397), and specifi-
cally, column-wise and column-paired frequencies. In order to generate the artificial
sequences, a curated alignment of 120 natural sequences is taken as a starting point.
Then, brand new alignments are generated in three different ways:

• R (random): sequences in the alignment are randomly reshuffled, consequently
destroying all the statistical patterns, i.e. both conservation and correlations.

• IC (independent conservation): every column in the alignment is reshuffled inde-
pendently, thus conserving the single residue statistics, but destroying the inter-
column correlations.

• CC (coupled conservation): the IC dataset is used as a starting point for perform-
ing a Monte Carlo annealing process that leads the final alignment to possess the
same pairwise statistics of the natural one.

For each set of sequences, a subset is selected for experimental testing for both ther-
modynamic stability [150] and binding affinity onto a cognate ligand [140]. Both the R
and IC groups of sequences were not able to fold. On the other hand, 33% of the CC
sequences folded into a stable structure. This outcome suggests that inter column cor-
relation is a fundamental feature that has to be fulfilled in order to generate functional
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sequences. Since the maximum-entropy modeling is based on the idea that the inferred
model must be able to reproduce the pair-wise statistics, this makes it a good candidate
for the generation of de-novo protein sequences.

Another interesting property of the Potts model, is that it allows to score single
sequences with respect to folding, similarly to what was described in Sec. 2.4.2 for
mutational effects. In this perspective, less accurate inference methods such as MF and
PlmDCA can also be used, as it was shown in [8].

In Fig. 2.4 three different energy spectra are reported. The blue one corresponds to
the energy distribution obtained via MCMC sampling based on an accurate Potts model
inferred on the homologous alignment of the WW domain. The green one is obtained
by sampling from the site-independent model and the red one by randomly extracting
sequences. All the energies are computed with respect to the parameters inferred on
the homology family. A sharp separation between random sequences and the other
two can be observed. Moreover, even though the independent and full Potts energy
spectra are partly overlapping, the folding sequences of datasets [140, 150] mostly fall
in the second spectrum, or in the low energy region of the independent model, once
more witnessing how energy can be used to discriminate between functional and non-
functional sequences.

In order to generate de-novo functional sequences, the model parameters must be
inferred very accurately, and consequently methods such as the Adaptive Cluster Ex-
pansion [29, 12], bmDCA or arDCA are required. Specifically, bmDCA was shown to
be able to generate functional sequences in [139], whereas the arDCA approach was
shown to be comparable to bmDCA in inference accuracy [164], at the same time al-
lowing for a simpler sampling of protein sequences that does not require expensive
MCMC simulations.
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3.6. Generative aspects and entropy: from lattice proteins  
to HIV

An ambitious goal is to generate new and functional protein 
sequences, e.g. by Monte Carlo sampling from the inferred 
model, along the lines of the study of the WW domain by 
Ranganathan and collaborators [43, 44], see !gure 6.

Important intuition can be gained from the highly idealized 
case of lattice proteins, a model of 27 amino-acid long chains 
folding on discrete 3× 3× 3 cubic structures [78]. In this set-
ting, protein families are de!ned as the set of sequences fold-
ing into one of the  ∼105 structures on the cube. Jacquin et al 
[79] found that new sequences generated by MCMC from the 
ACE-inferred Potts model describing a structural family have 
high probability to fold into the same structure (but not for 
less precise Potts models based on MF and PLM inference). 
On the contrary, sequences sampled from the independent 
model rarely fold. These results con!rm—in the simple case 
of lattice proteins—the claim of [43, 44] that keeping 2-point 
statistical information is necessary and suf!cient for generat-
ing structurally valid proteins.

In addition the study of [79] shows that couplings Jij(a, b) 
are, to lowest order approximation, proportional to the prod-
uct of a site-dependent structural matrix, cij − cij, and of the 
knowledge-based Miyazawa-Jernigan interaction matrix, 
E(a, b), expressing the physico-chemical interactions between 
neighbouring amino acids [80]. Here, cij is simply the contact 
map of the native fold, while cij is the average contact map of 
the competing folds. This result is in remarkable agreement 
with the prescriptions followed in [4] for protein design. Note 
that the similarity between the Miyazawa-Jernigan matrix and 
the (a, b) dependence of statistical couplings also holds for 
real proteins, as shown in [81].

However, while lattice proteins are valuable as non-trivial but 
still fully controlled benchmark models for novel algorithmic 

ideas, the transfer of results to real proteins has to be taken with 
care. An example is given by the negative design observable in 
lattice proteins [79]: residues not in contact in a given structure 
frequently show a coevolutionary coupling Jij, which is anti-
correlated to biophysical interactions between residues. The 
formation of contacts between these residues is therefore phy-
cially disfavored, and consequenctly also the risk to fold into a 
competing structure. An easily understandable example is given 
by the preference for charged residues of same sign leading to 
electrostatic repulsion. While this !nding is very intuitive, neg-
ative design has not yet been observed in the coevolutionary 
couplings inferred from MSA of real proteins.

As discussed above, the cross-entropy is an estimate of 
the Gibbs-Shannon entropy of the sequence distribution of 
proteins belonging to the same family, based on the limited 
sample of known functional sequences. Roughly speaking, 
the entropy can be thought of as the logarithm of the num-
ber of sequences in the family. This de!nition is approximate, 
as some sequences may express the biological function with 
varying degrees. Computing the value of the entropy is of 
interest, since it allows us to quantify the diversity of possible 
proteins sharing a common biological function. The size of a 
protein family is expected to be much larger than the size of 
the available MSA. Considering again lattice proteins on the 
3× 3× 3 cube allows one to obtain a quantitative understand-
ing of thses concepts in an idealized case [79]. Calculations 
show that the  ∼105 families de!ned by the possible structures 
contain each a variable number of protein sequences. The 
numbers range between 1020 and 1025 [82] and depend on the 
designability of the native fold [83, 84]. The total number of 
sequences in any of the structures represents thus a tiny frac-
tion of the total number of sequences, 2027 ! 1035.

Unfortunately, estimating the entropy of real protein 
families is a daunting, not well-de!ned task. However, 

Figure 6. WW sequences: Potts energies and folding qualities. Top: distribution of Potts energies (couplings and !elds inferred by the 
ACE algorithm) of sequences, which are sampled by MCMC from the coupled Potts (blue) and the independent-site (green) models. 
The red histogram corresponds to random sequences, which display much higher energies.  Bottom: !rst row: energies of the 43 CC 
sequences, among which 12 well folded (red) and 31 (gray) not well folded according to denaturation tests. Second row: energy of the 43 
IC sequences; none of them folds. Third row: energies of 19 random R sequences; none folds. Last row: the 42 natural sequences, among 
which 28 are well folded (red) and 14 (gray) not. Note the coherence between energy values in the top and the bottom plots.

Rep. Prog. Phys. 81 (2018) 032601

Figure 2.4: Top panel: WW domain Potts model energy spectra generated in three dif-
ferent ways. The blue histogram coincides with sequences generated by MCMC sam-
pling using the aforementioned Potts model. The green histogram corresponds to se-
quences generated from a profile model, i.e. relying only on amino acid conservation.
The red one is related to totally randomly generated sequences. Bottom panel: energy
values of the sequences tested in [140, 150]. Red bars are for folding sequences, grey
for non-folding ones.
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Chapter 3

Annealed Mutational
approximated Landscape
(AMaLa)

In this chapter we present Annealed Mutational approximated Landscape (AMaLa), a
novel inference method tailored for performing inference on DE experiments, as it was
published on the International Journal of Molecular Science [145].

3.1 Motivations
In Sec. 1.3.2 we described the peculiar features of DE experiments, underlying how
the main difference with other kinds of screening experiments lies in the extent at
which mutagenesis is performed. This is particularly interesting, because it allows for
a broader exploration of the sequence space in the neighborhood of the wild-type se-
quence with respect to DMS, yet still giving a local glimpse of such landscape when
compared to MSA of homologous sequences.

The locality of the exploration makes these data optimal candidates for inferring
accurate fitness landscapes in the vicinity of the wild-type sequence. Such fine scale
information might be combined with landscapes inferred over homology data, as to
obtain a more complete description of the fitness landscape [10], with potential appli-
cations to a variety of topics, such as protein engineering, study of evolutionary paths
for functional shift, protein evolution and residue contact prediction.

Most of the computational strategies developed so far to analyze protein evolution
data, mainly rely on two approaches: (i) DCA-inspired models of phylogenetically re-
lated sequences [48, 75, 105, 156, 87, 89, 15]; (ii) supervisedmachine learning approaches
on sequenced samples of high-throughput functional assays or screening experiments.
In this case, a statistical model of the mutants’ fitness is inferred from a subset of the

51



Annealed Mutational approximated Landscape (AMaLa)

sequencing data (training set) with machine learning techniques developed to solve a
specific—generally non-linear—regression problem [24, 138, 121, 142, 176, 58].

Usually, standard DCA approaches are applied only to the last available round, for
it is the one supposed to be closer to equilibrium. However, since this hypothesis is
already not entirely verified for natural MSA data, which evolved over million years
time scales, this is even more true for short-time laboratory data. Consequently, it
seems reasonable to attempt to build a statistical model that is able, at least effectively,
to embody the dynamics of the underlying experimental process.

In this perspective, alternative unsupervised strategies have been proposed [120,
47] to cope with all sequencing data coming from screening experiments. In [47], a
probabilistic model is described, which takes into account three different steps always
occurring in screening experiments: (i) selection, (ii) amplification, and (iii) sequencing
(sampling). Although such models are very effective for describing DMS experiments,
they rely on the variations of the variants’ relative abundances across rounds, and hence
on the sample of the same variants at different time-steps with sufficient statistics.

Several screening setups, and in particular the one of DE experiments, do not pro-
vide such data. In particular, the repeated introduction of newmutant sequences at each
round of the experiment requires to disentangle suchmutational effects from functional
ones when accounting for the library variation. On top of this, the data provided by
[160, 44] turn out to be in a strong undersampling regime, the majority of the counts be-
ing either zero or one, implying an inherent difficulty in applying population based sta-
tistical modelings. In this framework, AMaLa is a time dependent statistical model that
allows to take into account all sequenced data, by effectively resolving the experimental
evolutionary dynamics and without relying substantially on abundances information.

3.2 Modeling
AMaLa uses the sequencing samples of rounds of Directed Evolution experiments to
learn a map between the protein amino acid sequence and the fitness associated with
the selection process, generically indicated as the fitness landscape. Typically, fitness
in these experiments is related to the binding affinity to a certain target or to more
complex phenotypic traits, such as antibiotic resistance in bacterial strains.

We consider the probability of observing a generic sequence at a certain time (or
round) 𝑡 in the following form:

𝑃 (𝑡)(S) = e−𝛽(𝑡)𝐸(S)−𝜈(𝑡)hD(S,S
𝑤𝑡)

𝑍 (𝑡)
, (3.1)

where S = (𝜎1,… , 𝜎𝐿) is the protein sequence, 𝐿 being its length, and the symbols
𝜎’s are defined over the amino acids alphabet 𝜎𝑖 = {𝐴, 𝐶,… , 𝑌} with 𝑖 = 1,… , 𝐿. Alter-
natively, the amino acids can be mapped onto the integers 𝜎𝑖 = {1,… , 𝑞}, with 𝑞 the size
of the amino acid alphabet. The normalization is defined as the sum over all possible
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sequences 𝑍 (𝑡) = ∑S exp [−𝛽(𝑡)𝐸(S) − 𝜈(𝑡)hD (S, S𝑤𝑡)], requiring in principle to sum
over 𝑞𝐿 configurations.

Eq. (3.1) is a Boltzmann-like probability made of two contributions, respectively
modeling selection and mutagenesis; both can be interpreted as made of an energetic
time independent function of the sequence, and a temperature like time dependent pre-
factor. Specifically, the function 𝐸 (S) is the one assumed to contain the functional
properties associated to the sequence:

𝐸 (S) = −
𝐿
∑
𝑖=1

ℎ𝑖(𝜎𝑖) −
𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝐽𝑖𝑗(𝜎𝑖, 𝜎𝑗), (3.2)

which is in the form of a generalized Potts model defined by a set of fields and cou-
plings 𝜃𝐸 = {h, J}. These are the parameters we ultimately aim to determine through the
inference process. The pre-factor 𝛽(𝑡) plays the role of an annealing temperature, con-
straining the exploration of the fitness landscape to be gradually closer to the minima
of 𝐸(S) as the experiment proceeds.

On the other hand, the function hD(S, S𝑤𝑡) = ∑𝐿
𝑖=1 [1 − 𝛿(𝜎𝑖, 𝜎𝑤𝑡𝑖 )] coincides with the

Hamming distance between sequence S and the wild-type, and it models the action of
mutagenesis. In Sec. 3.2.2 we will describe in details the reasons behind the choice of
this functional form and the behavior of the parameter 𝜈(𝑡).

In order to define a likelihood function associated to the whole dataset, we assume
that the model probabilities (Eq. (3.1)) of observing a given sequence at different times
are statistically independent. An alternative approach would consider the dynamics as
a Markov process, describing the transition probabilities defining the whole trajectory
in sequence space. However, such a strategy seems to be computationally intractable, as
one should sum over all possible paths connecting two sequences at subsequent times.
Here, we consider a factorized time-dependent log-likelihood:

ℒ[𝜽𝐸, 𝜷, 𝝂] = ∑
𝑡={𝑡1,…,𝑡𝑓}

𝑀 (𝑡)

∑
𝑚=1

𝑤 (𝑚,𝑡) log 𝑃 (𝑡)(S(𝑚,𝑡)), (3.3)

which is a function of the energetic parameters 𝜽𝐸 and of the time dependent param-
eters 𝜷 and 𝝂, since the actual experimental data correspondent to the sequenced rounds

are plugged into Eq. (3.1). The weights 𝑤 (𝑚,𝑡) = 𝑁 (𝑚,𝑡)/∑𝑀 (𝑡)

𝑚′=1 𝑁 (𝑚′,𝑡) are defined as
the normalized abundances 𝑁 (𝑚,𝑡) of every unique sequence 𝑚 = 1,… ,𝑀 (𝑡) appearing
at round time 𝑡. In order to determine the model parameters we follow a maximum-
likelihood approach, seeking for the optimal set of {𝜽𝐸, 𝜷, 𝝂} that extremizes Eq. (3.3).
In Sec. 3.3 we will discuss the details of the inference pipeline.
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3.2.1 Modeling selectivity
As already previously stated, the function encoding the fitness landscape information is
a GPM energy 𝐸(S). We treated thoroughly this model in Sec. 2.2, but let us recall some
fundamental features. Eq. (3.2) can be interpreted as a fully connected graphical model.
A priori, it is indeed not possible to tell which are the most important couplings, even
if, an interesting method that allows to sparsify the model recently came out, ruling out
some connections in the graph [125].

Since a necessary condition for a protein functionality is that it must be able to fold
into a three-dimensional stable structure, 𝐸(S) should in principle also contain struc-
tural information. In this perspective, dealing with a fully connected model is advanta-
geous, because it allows to consider all the possible contacts between protein residues.
Moreover, the generalized Potts model is epistatic, as the effect of a mutation on fitness
depends on the specific sequence context. Such epistatic effects might indeed be rele-
vant not only for structural features, but also when dealing with protein functionality.

The details of the selection process modeling are reported in Sec. 4.2. Here, we un-
derline how the fundamental hypothesis is the possibility to write down the selection
probabilities related to the transition between rounds 𝑡−1 and 𝑡 as 𝑄𝑡,𝑡−1(S) ∝ e−𝛼𝑡,𝑡−1𝐸(S).
The prefactors 𝛼’s model the selective pressure between neighboring rounds. Conse-

quently, the probability at 𝑡 can be expressed as 𝑃𝑡(S) ∝ e−∑𝑡
𝑡′=𝑡0+1 𝛼𝑡′,𝑡′−1𝐸(S)𝑃𝑡0(S) =

e−𝛽(𝑡,𝑡0)𝐸(S)𝑃𝑡0(S), where we set 𝛽(𝑡, 𝑡0) = ∑𝑡
𝑡′=𝑡0+1 𝛼𝑡′,𝑡′−1. If there are no mutations, the

fundamental Fisher’s theorem states that the selective pressures are a decreasing func-
tion of time [57]. This is not necessarily the case for DE experiments, where the genetic
diversity is augmented at each round.

In the ideal scenario of an infinite number of rounds, the series defining the fictitious
inverse temperature 𝛽 might converge or not. If it does not, then the probability con-
centrates on the ground state of 𝐸. Otherwise, the probability gets peaked around a set
of particularly functional sequences, as in a low-temperature sampling process defined
by e−𝛽(∞)𝐸(S).

3.2.2 Mutagenesis: the Jukes-Cantor model
In this section we discuss a generalization of the Jukes-Cantor (JC) model [110], that
was originally introduced for the description of DNA neutral evolution, that is, in the
absence of selective pressure. Although the model was thought for a four symbols
alphabet, namely the basis 𝐴, 𝐶, 𝐺 and 𝑇 in the genome, it can be generalized to any
arbitrary number of symbols 𝑞. For our case of interest, the model is formulated with
𝑞 = 20, as if mutations were considered to occur directly at the amino acid level rather
than on the genome.

Here, we rely on a continuous time formulation of the JC model, referring the reader
to appendix C for a discussion of the discrete time version. In this scenario, the simplest
possible assumption would be to consider all transitions between amino acids to be
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equally probable, yielding a unique mutation rate 𝜇.
The JC formalism models neutral evolution as a Markov process. Consequently, the

probability of observing a sequence at time 𝑡, can be written in terms of a transition
probability between 𝑡 and 𝑡′ (with 𝑡′ < 𝑡) and a one time probability as:

𝑃(S, 𝑡) = ∑
S′

𝑃(S, 𝑡 |S′, 𝑡′)𝑃(S′, 𝑡′). (3.4)

Then, mutagenesis is taken as a site independent process, so that Eq. (3.4) factorizes
over the protein sites 𝑖 = 1,… , 𝐿. Moreover, evolution is assumed to be starting from a
single original sequence at 𝑡 = 0, namely, the wild-type sequence. Evolutionary trajec-
tories can then be considered from 𝑡 = 0 up to generic time 𝑡, given the probability of
the initial state:

𝑃(S, 0) =
𝐿
∏
𝑖=1

𝛿(𝜎𝑖, 𝜎𝑤𝑡𝑖 ), (3.5)

yielding 𝑃(S, 𝑡) = 𝑃(S, 𝑡 |S𝑤𝑡, 0). In order to determine transition probabilities, we
can write down the single site dynamical equation:

𝑃(𝜎, 𝑡 + Δ𝑡) = 𝑃(𝜎, 𝑡) − 𝑃(𝜎, 𝑡)𝜇Δ𝑡 + ∑
𝜎 ′≠𝜎

𝑃(𝜎 ′, 𝑡)𝜇Δ𝑡, (3.6)

where we introduced the mutation rate 𝜇. Eq. (3.6) can be rewritten in a vectorial
form, gathering the 𝑃’s for each possible value of 𝜎. If we do so, we obtain p(𝑡 + Δ𝑡) =
p(𝑡) + 𝑀p(𝑡)Δ𝑡, introducing the 𝑞 × 𝑞 matrix M:

𝑀 =
⎛
⎜
⎜
⎝

−𝜇 𝜇 … 𝜇
𝜇 −𝜇 … 𝜇
⋮ ⋱ ⋮
𝜇 𝜇 … −𝜇

⎞
⎟
⎟
⎠

. (3.7)

Rearranging Eq. (3.6) and taking the limit Δ𝑡 → 0, we obtain a differential equation
for the single time probability ̇P(𝑡) = 𝑀P(𝑡), which can be readily solved as P(𝑡) =
e𝑡𝑀P(0), where e𝑡𝑀 is the exponential matrix of 𝑡𝑀. Given an invertible matrix 𝑆, the
exponential matrix satisfies e𝑆𝑀𝑆−1 = 𝑆e𝑀𝑆−1. Since𝑀 is diagonalizable, we can directly
solve the differential equation in the basis of 𝑀’s eigenvectors, and then transforming
back the solution to the original basis. By doing so, we obtain the following expression
for the transition probability of amino acid 𝜎 to go from 𝑘 to 𝑙:

𝑃(𝜎 = 𝑙, 𝑡) = 𝑃(𝜎 = 𝑙, 𝑡 |𝜎 = 𝑘, 0) = 𝑊 (𝑡)
𝑘𝑙 (𝜇) =

⎧

⎨
⎩

1−(𝑞−1)e−𝜇𝑡

𝑞 𝑙 = 𝑘,

1−e−𝜇𝑡
𝑞 𝑙 ≠ 𝑘,

(3.8)
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where we introduced the shorthand notation 𝑊 (𝑡)
𝑘𝑙 (𝜇) for the probability of a transi-

tion 𝑘 → 𝑙 over a time 𝑡 given a mutation rate 𝜇. Finally the probability of observing a
sequence at Hamming distance 𝑑 from the wild-type will be equal to:

𝑃 (𝑡) (S|hD(S, S𝑤𝑡) = 𝑑) = [
1 + (𝑞 − 1)e−𝜇𝑡

𝑞
]
𝐿−𝑑

[1 − e−𝜇𝑡

𝑞
]
𝑑

= (
1 + (𝑞 − 1)e−𝜇𝑡

𝑞
)
𝐿

exp {−𝑑 ln [
1 + (𝑞 − 1)e−𝜇𝑡

1 − e−𝜇𝑡
]}

= e−𝜈(𝑡)𝑑

𝑍 (𝑡)
, (3.9)

which yields the functional form appearing in Eq. (3.1), and it also provides the
analytical expression of the time dependent parameter 𝜈(𝑡):

𝜈(𝑡) = ln [
1 + (𝑞 − 1)e−𝜇𝑡

1 − e−𝜇𝑡
] , (3.10)

depending on the number of symbols 𝑞 and the mutation rate 𝜇 only. It is interesting
to compute the two asymptotic behaviors for 𝑡 → 0,+∞:

𝜈(𝑡)
𝑡→0
⟶+∞,

𝜈(𝑡)
𝑡→+∞
⟶ 0. (3.11)

As 𝑡 → 0, no sequence but the wild-type is present in the population. In order to
impose the constraint hD(S, S𝑤𝑡) = 0 in Eq. (3.9), 𝜈(𝑡) needs indeed to diverge. On the
other hand, the purely mutational process can be thought as a free diffusion from the
wild-type sequence. The rate at which the distribution broadens in sequence space is
given by 𝜈, and asymptotically, every possible sequence becomes accessible, yielding a
uniform probability 𝑃 (∞)(S) = (1/𝑞)𝐿.

3.3 AMaLa inference
The goal of the inference procedure is to determine the selective energy parameters
𝜽𝐸. To do so, it is also necessary to fix the values of the time dependent parameters 𝜷
and 𝝂. As previously mentioned, we rely on a maximum likelihood approach in order
to achieve this task. More precisely, we employ the pseudo-likelihood approximation
introduced in Sec. 2.3.3, that allows to compute the partition function in order 𝑂(𝑞𝐿).

If the experimentalist has sequenced 𝑇 rounds of the experiment, the time dependent
parameters will be defined as a 𝑇 component vectors: 𝜷 = (𝛽(𝑡1), 𝛽(𝑡2),… , 𝛽(𝑡𝑓)) and
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𝝂 = (𝜈(𝜇, 𝑡1), 𝜈(𝜇, 𝑡2),… , 𝜈(𝜇, 𝑡𝑓)). For now, let’s take 𝜷 and 𝝂 as fixed. In order to find the
optimal set of parameter 𝜽𝐸 we need to extremize the objective function 𝑔(𝜽𝐸), which is
defined as the sum of the pseudo-likelihood and the regularization contribution. Specif-
ically, since we use the asymmetric version of the pseudo-likelihood approximation, we
are left with 𝐿 independent optimizations of the objective functions 𝑔𝑟 (h𝑟, J𝑟):

𝑔𝑟 (h𝑟, J𝑟, 𝜷, 𝝂) = − ∑
𝑡={𝑡1,…,𝑡𝑓}

𝑀 (𝑡)

∑
𝑚=1

𝑤 (𝑚,𝑡) ln 𝑃(𝜎𝑟 = 𝜎 (𝑚,𝑡)𝑟 |𝜎\𝑟 = 𝜎 (𝑚,𝑡)\𝑟 ) + 𝑅𝑟 (h𝑟, J𝑟)

= − ∑
𝑡={𝑡1,…,𝑡𝑓}

𝑀 (𝑡)

∑
𝑚=1

𝑤 (𝑚,𝑡) {𝛽(𝑡) [ℎ𝑟(𝜎
(𝑚,𝑡)
𝑟 ) +∑

𝑖≠𝑟
𝐽𝑟 𝑖(𝜎

(𝑚,𝑡)
𝑟 , 𝜎 (𝑚,𝑡)𝑖 )] + 𝜈(𝑡)𝛿(𝜎 (𝑚,𝑡)𝑟 , 𝜎𝑤𝑡𝑟 )

− ln [
𝑞
∑
𝑎=1

exp {𝛽(𝑡) [ℎ𝑟(𝑎) +∑
𝑖≠𝑟

𝐽𝑟 𝑖(𝑎, 𝜎
(𝑚,𝑡)
𝑖 ))] + 𝜈(𝑡)𝛿(𝑎, 𝜎𝑤𝑡𝑟 )}]}

+ 𝜆ℎ
𝑞
∑
𝑎=1

ℎ𝑟(𝑎)2 + 𝜆𝐽∑
𝑖≠𝑟

𝑞
∑
𝑎,𝑏=1

𝐽𝑟 𝑖(𝑎, 𝑏)2. (3.12)

In order to find the minimum of Eq. (3.12) it is necessary to set to zero its derivatives:

𝜕𝑔𝑟 (h𝑟, J𝑟, 𝜷, 𝝂)
𝜕ℎ𝑟(𝑐)

= − ∑
𝑡={𝑡1,…,𝑡𝑓}

𝑀 (𝑡)

∑
𝑚=1

𝑤 (𝑚,𝑡)𝛽(𝑡) {𝛿(𝑐, 𝜎 (𝑚,𝑡)𝑟 ) − e𝛽(𝑡)[ℎ𝑟(𝑐)+∑𝑖≠𝑟 𝐽𝑟 𝑖(𝑐,𝜎
(𝑚,𝑡)
𝑖 ))]+𝜈(𝑡)𝛿(𝑐,𝜎𝑤𝑡𝑟 )

𝑍𝑟
}

+ 2𝜆ℎℎ𝑟(𝑐) = 0, (3.13)

𝜕𝑔𝑟 (h𝑟, J𝑟, 𝜷, 𝝂)
𝜕𝐽𝑟 𝑗(𝑐, 𝑑)

= − ∑
𝑡={𝑡1,…,𝑡𝑓}

𝑀 (𝑡)

∑
𝑚=1

𝑤 (𝑚,𝑡)𝛽(𝑡) {𝛿(𝑐, 𝜎 (𝑚,𝑡)𝑟 )𝛿(𝑑, 𝜎 (𝑚,𝑡)𝑗 )

−
𝛿(𝑑, 𝜎 (𝑚,𝑡)𝑗 )e𝛽[ℎ𝑟(𝑐)+∑𝑖≠𝑟 𝐽𝑟 𝑖(𝑐,𝜎

(𝑚,𝑡)
𝑖 ))]+𝜈(𝑡)𝛿(𝑐,𝜎𝑤𝑡𝑟 )

𝑍𝑟
} + 2𝜆𝐽𝐽𝑟 𝑗(𝑐, 𝑑) = 0.

(3.14)

Optimization of the objective functions is performed in parallel via the Julia imple-
mentation of the package NLopt [83].

At this point, we still need to understand how to fix the time dependent parame-
ters. When mutagenesis and selection act simultaneously, nor the modeling presented
in 3.2.1 or 3.2.2 are exacts, because the two processes do not commute with each other.
Thus, to make themodel more flexible, we decide to infer both 𝜷 and 𝝂, rather than plug-
ging in theoretically expected values. To do so, we still rely on a maximum likelihood
approach.
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• 𝝂 = (𝜈(𝜇, 𝑡1),… , 𝜈(𝜇, 𝑡𝑓)). In order to infer the components of the JC parameter
𝜈, we employ the functional form in Eq. (3.10), performing a scan over a set of
possible values of the mutation rate 𝜇, at fixed 𝜷. For each value of 𝜇, we optimize
the objective in Eq. (3.12) with respect to 𝜽𝐸, computing the resulting total pseudo-
likelihood. The optimal 𝜇 is the one yielding the extremal objective. In Fig. 3.1 an
example of the (minus) log-pseudo-likelihood as function of the mutation rate is
reported.

• 𝜷 = (𝛽(𝑡1),… , 𝛽(𝑡𝑓)). The inference of the 𝜷 components is performed similarly
to 𝝂, which is supposed to be fixed. Eq. (3.12) is not contemporarily a convex
function with respect to 𝜷 and 𝜽𝐸, and consequently it is not possible to optimize
jointly with respect to both. In this perspective, the possible alternatives are: per-
forming a scan over a set of values for each different 𝜷 component, or seeking the
pseudo-likelihood maximum by an alternate gradient ascent approach, in which
the 𝜷 and 𝜽𝐸 parameters are updated alternatively. In both cases, it is possible to
set the first 𝜷 component to 𝛽(𝑡1) = 1, which amounts to a rescaling of the subse-
quent components. In appendix B we compute the derivative of the objective with
respect to 𝛽 and, in Fig. 3.1, an example of the scanning approach optimization is
shown.
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Figure 3.1: Scan of the minus log-pseudo-likelihood as a function of: single site muta-
tion proability 𝑝 (closely tied to the mutation rate) (a), two free components of the 𝜷
vector (b). In both cases the optimal value coincides with the minimum of the minus
log-pseudo-likelihood.

The procedure just explained carries some subtleties. First of all, we infer one set of
time dependent parameters at the time while keeping the values of other fixed. This is
in principle not consistent, because for instance, any change of 𝜷 affects 𝝂 and vice versa.
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Thus, the formally correct strategy would be to repeatedly infer 𝝂 and 𝜷 alternatively,
until they both converge to a stable value. In order to avoid this quite costly inference
pipeline, we adopt the following procedure. We first fix a set of values for 𝜷 according to
the linear scaling, i.e. 𝜷0 = (1, 𝑡2/𝑡1,… , 𝑡𝑓/𝑡1), and we infer the mutation rate given such
values. Once 𝜇 is fixed, we infer the optimal set of 𝜷 components, checking that they do
not differ too much from the initial choice. This guarantees that a subsequent inference
of the mutation rate would not yield an outcome which is significantly different from
the previous one, as we explicitly checked on in-silico experiments.

Another possible scenario that is worth treating, is when 𝛽(𝑡𝑓) → +∞ during op-
timization. In this case, the strategy is to set 𝛽(𝑡𝑓) = 1 and 𝛽(𝑡1) = 0, inferring the
remaining components with these two fixed, and constrained in the interval [0,1].

3.4 Results on DE experiments
We tested AMaLa on three recently published DE experiments: two are described in
[160] and one in [44]. The proteins mutated and selected in these experiments belong
to the 𝛽-lactamase family (PSE-1 and TEM-1) and acetyltransferase family (AAC6). The
𝛽-lactamase is responsible for the hydrolysis of antibiotics such as penicillin, ampi-
cillin and carbenicillin while the acetyltransferase is responsible for the catalysis of
kanamycin via acetylation. The experiments alternate rounds of variants selection and
mutagenesis steps where part of the population is randomly mutated through error-
prone PCR. The fitness selection is obtained by exposing bacterial cultures containing
the plasmids library to a certain concentration of ampicillin in the case of PSE-1 and
TEM-1 (fixed for the former and variable for the latter), and kanamycin for AAC6. In
all three experiments, only a subset of the rounds is sequenced.

We used two strategies to test the inferred fitness landscape: (i) by direct comparison
of the predicted fitness with experimental measures of the same phenotype probed in
the DE experiment; (ii) through indirect assessment of the predicted 3D structure of the
protein, using the inferred epistatic interactions of the learned model. The first strategy
can be applied only to TEM-1, since, to the best of our knowledge, there are no published
high-throughput measures of kanamycin and ampicillin resistance for the other two
proteins (AAC6, PSE-1). Moreover, being able to useDE experiments to predict a protein
structure is an interesting research perspective in itself, and the main goal of both [160]
and [44].

In Tab. 3.1, we report the values of the inferred 𝜷 and single site mutation probability
𝑝 for the various experiments of [160, 44], together with the regularization multiplier
employed 𝝀 = (𝜆ℎ, 𝜆𝐽) = (2𝜆, 𝜆), as they were introduced in Sec. 2.3.6.

3.4.1 Prediction of mutational effects
High-throughput measurements of ampicillin resistance (viz. the same phenotypic trait
under selective pressure in [44]) of single site mutants of TEM-1 are presented in [51],
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Table 3.1: Values of AMaLa’s time dependent parameters 𝜷 and single site mutation
rate 𝑝, as inferred on real DE data, together with the regularization multiplier 𝜆 (see
Eqs. (2.55) (3.12)).

Protein 𝜆 𝜷opt 𝑝opt
PSE-1 0.01 (1.0,1.7) 0.05
AAC6 0.005 (1.0,1.44,1.89) 0.05
TEM-1 0.01 (0.0,1.0,1.0) 0.017

whereas resistance measures to amoxicillin are presented in [81] (it has to be noted
that the wild-type sequence in the experiment of [44] (PDB entry 1ZG4) and the one
in [51] (Uniprot-P62593) have two mismatches). For the sake of clarity, we will refer
to the various considered experiments as: DE-FAN for the DE data of [44], DMS-FIR
and DMS-JAC for the DMS data of [51] and [81] respectively. In DMS-JAC, the fitness
of the different variants is estimated as the minimum inhibitory concentration of the
antibiotic necessary to neutralize the mutants, compared to the wild-type. In DMS-FIR,
variants fitness is estimated as aweighted average of different antibiotic concentrations:

𝑓𝑚 =
∑13

𝑝=1 𝑐
(𝑚)
𝑝 log2(𝑎𝑝)

∑13
𝑝=1 𝑐

(𝑚)
𝑝

, (3.15)

where 𝑚 is the sequence index, 𝑝 runs over the different antibiotic concentration,
and 𝑐(𝑚)𝑝 is the number of counts of sequence 𝑚 at the 𝑝-th antibiotic concentration. Eq.
(3.15) actually coincides with the unnormalized fitness, the normalized version with
respect to the wild-type sequence being 𝜙𝑚 = 2𝑓𝑚/2𝑓𝑤𝑡 , where 𝑓𝑤𝑡 is the fitness of the
wild-type sequence. In order to assess if the method was able to infer a meaningful
fitness landscape, we compute the correlation of the minus selective energies 𝐸 and
the available fitness measurements. To be more precise, we preliminarily perform a
mapping procedure of the energies onto the fitness measurements, in such a way that
it was possible to employ a linear statistical estimator of the correlations such as the
Pearson coefficient. Such procedure was introduced in [49], and goes as follows: the
−Δ𝐸𝑘 = 𝐸(S𝑤𝑡) − 𝐸(S(𝑘)) related to 𝐾 sequences for which we have associated fitness
measurements are sorted in a decreasing order, and the same is done for the related
fitness measurements. Consequently, we now have a rank index 𝑛, going from 1 for the
highest to 𝐾 for the lowest value. Finally, mutational scores are mapped over fitness
measurements with the same ranking, i.e. −Δ𝐸(𝑛)𝑘 → 𝜙(𝑛), regardless of the sequence
the 𝑛-th fitness measurement 𝜙(𝑛) is related to. The same procedure is also used to map
DMS-FIR onto DMS-JAC.

The statistical energy score inferred by AMaLa on the dataset of DE-FAN highly
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correlates with the DMS-FIR fitness measurements, with a Pearson correlation coeffi-
cient larger than 𝜌 = 0.8, suggesting that the method is able to learn a reliable fitness
landscape. This results is compared with the correlation obtained by applying PlmDCA
to the MSA correspondent to the last round of the experiment, as it is reported in Fig.
3.2. It is also interesting to compare these results with the approach outlined in [49],
where a Boltzmann learning DCA-based approach is applied to the PFAM 𝛽-lactamase
family (PF13354). In this case, the correlation of the experimental minimum inhibitory
concentration with the statistical energy score shows Pearson correlation coefficient
𝜌 ∼ 0.7, as shown in Fig. 3.3 panel (a). Therein, we also report in panel (b) a scatter plot
of −Δ𝐸 of the inferred model against the fitness measurements of DMS-FIR.

DE-FAN data and the MSA of homologous sequences contained in PF13354 pro-
vide us with two very different datasets: the first one is a local exploration around the
wild-type, with sequences selected to medium-low level of ampicillin selective pressure
(average sequence identity of 85%), whereas the second, not surprisingly considering
the extremely long time-scale involved in the evolutionary process, shows a remark-
ably high degree of variability (average sequence identity of 19%). Both can be used
to learn a statistical model (AMaLa for DE-FAN, PlmDCA for PF13354) providing two
distinct sets of model parameters that, remarkably, correlate with each other in terms
of statistical energy score (see panel (a) of Fig. 3.4), and to the fitness measurements.
Interestingly, the parameters of the two models do not correlate with each other (see
panels (b)) in Fig. 3.4) and consequently, they provide very different contact predic-
tions when used to infer structure information as outlined in the next section. We do
not have a clear interpretation of this intriguing result.

3.4.2 Contact prediction
DCA is a powerful tool to extract structural properties from MSA’s of evolutionary-
related protein sequences. However, to show its full potential, MSA’s of at least 103 se-
quences must be used. For many protein families, the number of homologous sequences
available from public databases (e.g. PFAM or UNIPROT) is not sufficient to obtain a
reliable folding structure using DCA predictions. Thus, the question of whether one
can use artificially created sequences from DE experiments to extract structural infor-
mation, has a very interesting practical purpose as discussed in [160] and [44]. In both
papers, the authors apply two similar pseudo-likelihood based inference strategies (the
PlmDCA algorithm in [44] and EV-coupling algorithms in [160]) to learn a GPM from
the last sequenced round of the experiment. Only one of the two experimental work
[160] reaches a precision sufficient to correctly fold the protein.

Here, we propose a different approach that leverages the sequencing information
from all rounds of the DE experiment. AMaLa, instead of focusing only on the final
round of the in-vitro Darwinian dynamics, indeed utilizes the whole time series. We
hypothesize that being able to analyze all available data (as opposite to the use of just
the last sequenced round) through a model that explicitly, albeit effectively, takes into
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Figure 3.2: Comparison between AMaLa and PlmDCA for the reconstruction of TEM-
1 𝛽-lactamase DMS, from the experimental data of DE-FAN. AMaLa is inferred using
all sequenced rounds, whereas PlmDCA is inferred over the last round only. The plot
displays the Pearson correlation between energies and the measurements of DMS-FIR.
Such measurements are preliminarily mapped over DMS-JAC data, following the same
procedure proposed in [49]. Moreover, also the inferred energies are mapped over the
fitness measurements. This allows to rely on the Pearson metrics to assess correlations
between the two quantities. The discrepancy threshold between the two datasets is
reported on the horizontal axis. Only data points that differ less than 𝑥 are used to
compute correlations for a given vertical slice. From the plot it emerges how reducing
the discrepancy provides a performance improvement in terms of correlation.

account both mutation and selection steps, could in principle generate a more accurate
model of the selection process, providing at the same time better structural information.

We assessed the quality of the DCA scores derived from AMaLa and PlmDCA by
comparing the predicted contact map with the true one obtained by the PDB structure
of the protein (see Sec. 2.4.1). The results are shown in Fig. 3.5. From the sensitivity
plots, we see that, independently of the inference strategy, the predictions for PSE-1 are
more accurate than the ones for AAC6. However, if we concentrate on AAC6, AMaLa
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Figure 3.3: Correlation between inferred energies and the DMS-FIR dataset. The same
mapping procedure explained in Fig. 3.2 is used. Panel (a) shows the trend of the
Pearson correlation obtained as a function of this discrepancy threshold. Namely, cor-
relations are referred to energies inferred over DE-FAN dataset via AMaLa (blue line),
and over PFAM PF13354 protein family via PlmDCA (orange). The plot displays a sig-
nificant discrepancy between the two curves. On panel (b) the scatter between minus
the energies (not mapped), and the fitness measurements of DMS-FIR is reported, for a
discrepancy threshold between minimum inhibitory concentrations equal to 𝑥 = 0.8.

predictions turn out to be more accurate. As the study of controlled artificial datasets
presented in Sec. 3.5 seems to indicate, we expect AMaLa to provide better results with
respect to PlmDCA when two conditions occur: (i) selection has a relatively weak ef-
fect compared to mutation, (ii) not too many rounds of the experiment are performed,
so that the Jukes-Cantor modeling of the mutation process remains a good approxima-
tion. Indeed, this scenario entails that the selective factor e−𝛽(𝑡)𝐸(S) can be interpreted
as a perturbative contribution on the almost exact JC modeling. The first of the two
conditions certainly holds for both proteins, since antibiotic concentration is slightly
above the minimum inhibitory one (6𝜇g/ml for PSE-1 and 10𝜇g/ml for AAC6), while
mutation rates are approximately the same for the two. Consequently, since the PSE-1
experiment takes place over 20 rounds, while AAC6 just over 8, we expect to obtain
better results in comparison with PlmDCA for the latter rather than the first.

Nonetheless, the results obtained on PSE-1 show comparable precision of the two ap-
proaches, with AMaLa correctly predicting a higher number of contacts before the first
error. Besides, looking at the predicted contact map, the contacts predicted by PlmDCA
are mainly close to the polypeptide backbone, while the AMaLa ones are spread over
all the contact map, providing long-range predictions that are more important for con-
strained molecular-dynamics simulations.

In complete analogy with what already observed in [44], when the same approach
is used for TEM-1 dataset of Fantini et al., neither model is able to provide statistically
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Figure 3.4: Model comparison between standard PlmDCA performed over the homol-
ogy family (PF13354) and AMaLa, inferred over DE-FAN data restricted to residues cor-
responding to the homologs alignment. Panel (a) shows the scatter between the result-
ing total energies. Panel (b) displays the scatter plots of individual parameters. In the
upper plot is reported the scatter among single site fields h, and in the lower the one
among pair interaction couplings J. Even if energetic parameters displays separately
either low (𝜌ℎ = 0.46), or no correlation at all (𝜌𝐽 = 0.01), the resulting energies are
nonetheless significantly correlated, the Pearson coefficient being 𝜌𝐸 = 0.77. This un-
derlines how the quantity encoding the relevant phenotypic information is indeed the
total energy.

relevant contact predictions. The reason can be related to the different choice of the
trade-off between selection strength and mutation rate compared to Stiffler et al., as
pointed out in [15]. It is remarkable that, while the model predicts correctly the fit-
ness direct measurements as shown in Fig. 3.2 and 3.3, it fails at providing structural
information.

Interestingly, in [160] the authors report that the ep-PCR introduces approximately
3-4% amino acid substitutions per round from which we can estimate a mutation rate
of 𝑝true ≃ 0.035. We can compare it with the maximum-likelihood values inferred by
AMaLa, that are 𝑝infer = 0.05 for PSE-1, 𝑝infer = 0.055 for AAC6, both comparable with
the experimentally estimated one.

3.5 In-silico DE experiments
The results on AAC6, PSE-1, and TEM-1 clearly indicate how different experimental
conditions (in particular the choice of the mutation rate and the selective pressure)
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Figure 3.5: Top: sensitivity plot for contact prediction, via parameters inferred on PSE-1
and AAC6 [160] datasets. Blue curve: the score is computed as the Frobenius norm of
the couplings inferred with AMaLamethod. Orange curve: the score is computed as the
Frobenius norm of the couplings inferred with standard pseudo-likelihood maximiza-
tion approach. On panel (a) we have the result for PSE-1. At the 𝐿/2-th ranked residue
pair AMaLa provides AUC(𝐿/2) = 0.71, PPV(𝐿/2) = 0.58, whereas PlmDCA yields
AUC(𝐿/2) = 0.72, PPV(𝐿/2) = 0.61. Panel (b) shows the sensitivity plot for AAC6.
In this case AMaLa yields at half of the length AUC(𝐿/2) = 0.51, PPV(𝐿/2) = 0.51,
whereas for PlmDCA we have AUC(𝐿/2) = 0.34, PPV(𝐿/2) = 0.31. Bottom: contact
maps up to 𝐿/2 predictions. In the upper-right half is reported the results related to
AMaLa, whereas in the lower-left is the prediction provided by PlmDCA. Correctly
predicted contacts are colored in green/blue, while wrong prediction are reported in
red/orange for PlmDCA/AMaLa respectively. Panel (c) reports the result for PSE-1.
Even if DCA provides both higher AUC and PPV, AMaLa seems to predict more long
range contacts. A similar outcome, although less pronounced, can be appreciated in
panel (d), which shows the contact map related to AAC6.

impact on the ability of the inference algorithm to predict either functional or structural
properties. In particular, the interplay between the mutation rate and the selective
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pressure determines the different dynamical regimes where the assumptions at the basis
of the modeling could be more or less verified. To understand the limits of AMaLa,
we simulated in-silico DE experiments at different regimes of selective pressure and
mutagenesis, as thoroughly discussed in the following subsection 3.5.1.

3.5.1 Experiment simulation
To simulate DE experiments we define a dynamical process that mimics the mutation
and selection steps occurring in a real experiment. The two fundamental parameters in
the generation of synthetic data are: (i) the mutation probability 𝑝, (ii) the strength of
the selective pressure ̃𝛽. Increasing it the selective pressure increases. The observable
quantities are akin to the actual laboratory experiment: 𝑁 (𝑚,𝑡) is the number of clones
of variant𝑚 present at round 𝑡 for 𝑡 ∈ {𝑡1,… , 𝑡𝑓}. The total number of clones is kept fixed

along the simulation and equal to ∑𝑀 (𝑡)

𝑚=1 𝑁 (𝑚,𝑡) = 𝑁tot = 2 × 107.
Mutations are drawn with the following strategy. Firstly, the number of sites to be

mutated is extracted according to a binomial process defined by the mutational proba-
bility 𝑝:

𝑃(#mut = 𝑘) = (
𝐿
𝑘
)𝑝𝑘(1 − 𝑝)𝐿−𝑘. (3.16)

Then, for each selected site the new mutations are extracted uniformly over the
possible 1/(𝑞 − 1) different amino acids. This process either generates new variants or
increases the abundances of already present ones.

Afterwards, we simulate the selection step by associating a survival probability 𝑃𝒮(S(𝑚))
to each variant 𝑚 via a Fermi-Dirac probability in the rare binding regime [47]:

𝑃𝒮(S) =
1

1 + e ̃𝛽[𝐸teacher−�̃�]
, (3.17)

which is defined by the teacher energy 𝐸teacher, which possesses the same func-
tional form of Eq. (3.2) and defines the ground-truth fitness landscape. The auxiliary
parameters ̃𝛽 and �̃�, respectively play the role of an inverse temperature and a chemical
potential. In particular, the choice of the latter is fundamental to guarantee that the
simulation is performed in the rare binding regimes, i.e. when Eq. (3.17) can be approx-
imated by a Boltzmann weight proportional to exp {− ̃𝛽 [𝐸teacher(S(𝑚)) − �̃�]}. Typical
numerical values employed in the simulations are around �̃� ∼ −18.6, for which the
chemical potential is lower than the wild-type sequence energy.

From the set of variants produced by the mutation process, a subset 𝑛(𝑚,𝑡) of surviv-
ing clones is selected according to a binomial process defined by:

𝑃𝐵(𝑛(𝑚,𝑡)|𝑁 (𝑚,𝑡)) = (
𝑁 (𝑚,𝑡)

𝑛(𝑚,𝑡)
)𝑃𝒮(S(𝑚))𝑛

(𝑚,𝑡)
(1 − 𝑃𝒮(S(𝑚)))𝑁

(𝑚,𝑡)−𝑛(𝑚,𝑡) . (3.18)
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Finally, the population of clones that survived the selection step is amplified up to a
fixed number 𝑁tot according to the following multinomial distribution:

𝑃𝐴(N(𝑡)|n(𝑡)) =
𝑁tot!

∏𝑀 (𝑡)

𝑚′=1 𝑁 (𝑚′,𝑡)!

𝑀 (𝑡)

∏
𝑚=1

(𝑛
(𝑚,𝑡)

𝑛tot
)
𝑁 (𝑎,𝑡)

. (3.19)

In addition, we randomly sample 𝑅tot = 106 sequences out of the N(𝑡) present vari-
ants to introduce the sampling noise and simulate the effect of the sequencing.

In Fig. 3.6, a pictorial representation of the whole pipeline for the generation of
simulated data is reported.

The setup of the simulation parameters was chosen with the aim to be as close as
possible to a real experiment and not to introduce unnecessary artificial features. The
teacher model for the ground truth fitness landscape is obtained by the inference of a
Potts model on a Deep Mutational Scan (DMS) experiment [56]. The inference method
used to obtain the teacher model is the one presented in [47], which has been shown
to be able to infer accurate fitness landscapes. In the considered DMS experiment, the
WWdomain of the hYAP65 protein has beenmutated and selected to bind to its cognate
peptide ligand. The mutated part of the protein has a length of 𝐿 = 25 amino acids.

In all experiments we kept the teacher energy parameters and the initial wild-type
sequence fixed. We used subsets of variable size among the total of simulated rounds
(typically including between 2 and 5 rounds).

3.5.2 Results on synthetic data
The performances of the inference method are assessed in terms of the correlation be-
tween teacher and student energies, computed over a test set of sequences not used to
train the model. In Fig. 3.7 we display the retrieval of the true fitness as a function of
the mutation rate (panel (a)) and selective pressure (panel (b)). In both cases we observe
the existence of an optimal value for both tuned parameters. Interestingly, above the
optimal mutation rate, the correlation tends to flatten at a value which is not far from
the optimal one, ensuring that AMaLa’s sweet spot for inference (at fixed selective pres-
sure) is in general towards a high mutation rate regime. Just as a reference to real DE
experiments, the mutation rate reported in [160] is 𝑝true ≃ 0.035.

Unfortunately, we do not have access experimentally to a quantitative assessment
of the strength of the selective pressure, making a direct comparison with experiments
difficult. The method works at intermediate selective pressure as the selection tend
to undermine its assumptions (see section 3.2). Indeed, when the selection strength
is too low (depending on the time scale of the experiment), the sequence dynamics is
dominated by genetic drift and, not surprisingly, the correlation between teacher and
student degrades. The degradation of the performance observed for higher selective
pressure is due to a combination of effects: on the one hand, we expect that in the
limit of 𝛽 → ∞ only the lowest energy sequence generated in the mutation step would
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Figure 3.6: Schematic representation of the pipeline for the generation of in-silico data.
The starting point is a host of copies of the wild-type sequence. The total abundance
𝑁tot remains constant through the entire simulation. Then, mutagenesis is performed
over this collection of wild-types, obtaining a library of �̃� (1) unique sequences. Mu-
tated residues are colored, and the gray-scale boxes indicate the abundances related to
each unique sequence (increasing population going from black to white). This library
is then subjected to both a selection and an amplification step. As a consequence, the
abundances vary according to sequences fitness. Moreover, since the number of unique
sequences may change, we have a new library size labeled by𝑀 (1). The described steps
represent the fundamental unit of the simulation, which is then realized by cycling mul-
tiple times this block. Consequently, we obtain two temporal series of alignments: one
which stems from mutagenesis { ̃N(1), �̃� (1); ...Ñ(𝑇 ), �̃� (𝑇 )}, and the other from selection
and amplification {N(1),𝑀 (1); ...N(𝑇 ),𝑀 (𝑇 )}. Since experimental libraries are typically
sequenced after selection only, we retain just the second series of alignments to con-
struct our data sample. To be more precise, a further subsampling process is performed
yielding the trajectory of reads {R(1),𝑀 (1); ...R(𝑇 ),𝑀 (𝑇 )}.

survive, making any inference unfeasible. On the other hand, at intermediate but high
selective pressure, we expect that the consensus sequence starts drifting significantly
from the initial wild-type sequence, making the mutational contribution in Eq. (3.1) an
inaccurate description of the purely mutational step.

In DE experiments, one of the limiting factor is the number of selection rounds that
can be sequenced (and that therefore can be used for the inference). In the following,
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Figure 3.7: Simulated experiments varying the mutation rate and the selective pressure.
On the top panels the Pearson correlation between true and predicted fitness (teacher
and student model energy) are shown. In order to estimate statistical fluctuations, sev-
eral replicas of the experiment have been realized for each point (𝑁sim = 20-40), re-
porting mean and standard deviation. On panel (a) the mutation rate is varied for two
choices of the selective pressure: ̃𝛽high = 1.2 (blue), ̃𝛽low = 1.0 (orange). Conversely, on
panel (b) the selective pressure is varied at two fixed mutation rates: 𝑝low = 0.001(blue),
𝑝high = 0.01(orange). An optimal mutation rate seems to emerge, with the mean Pear-
son coefficient which flattens for higher mutations rate. Performances appear to de-
crease with increasing selective pressure. Moreover, the curve coinciding with 𝑝high
displays significantly higher correlations. The bottom panels show two examples of
density scatter plot between true (𝑥-axis) and inferred (𝑦-axis) energies over the test
set. Two limiting cases are shown: high selective pressure and low mutation rate in
panel (c) (𝑝 = 0.001 and ̃𝛽 = 1.2), and low selective pressure and high mutation rate in
panel (d) (𝑝 = 0.05 and ̃𝛽 = 0.5) where AMaLa recovers the right fitness landscape. In
the former case the Pearson’s correlation is 𝜌 = 0.81, while in the latter is 𝜌 = 0.97.

we will assume we can afford only between two and five rounds of sequencing, and we
ask which rounds bring the larger information content.
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As shown in Fig. 3.8 panel (a), the correlation between the teacher and student en-
ergies of the test set increases as a function of the last round time for PlmDCA, whereas
AMaLa performance behaves just in the opposite way: early rounds give better results.
This finding is particularly interesting as it suggests that by using AMaLa one could
achieve better inference results by performing just a limited number of rounds, i.e. with
a lower experimental effort. However, AMaLa overall performances are always better
than PlmDCA for any choice of the sequencing round.

Furthermore, the in-silico experiments can be used to investigate the generalization
power of the learned fitness landscape beyond the local region of sequence space probed
by the experiment. More specifically, how far from the wild-type an inference strategy
is still able to predict the fitness? To answer to this questionwe trained both AMaLa and
PlmDCA on rounds (2,4,8). Then, we tested the teacher-student energy correlation over
randomly extracted sequences at Hamming distance up to the whole sequence length
(here 𝐿 = 25). As shown in Fig. 3.8 panel (b), we can see that for both low and high
mutation rate regimes: (i) over the whole range of Hamming distance from the wild-
type sequence, AMaLa always shows higher correlation with the teacher energies, (ii)
PlmDCA performances seem to degrade more slowly as a function of the distance from
the wild-type sequence.

We further investigated the features of the simulated data, specifically focusing on
the Hamming distance from the wild-type sequence. Namely, in Fig. 3.9, we show
the trend of the average Hamming distance from the wild-type in panel (a), and the
Hamming distance of the consensus sequence from the wild-type in panel (b), both as
a function of round time. In panel (a), we compare the outcome of the simulation with
the values of the average Hamming distance expected for a purely mutational process.
For a small mutation probability, as it is for this specific simulation in which 𝑝 = 0.01,
we notice how this trend is basically linear in time. On the other hand, we point out
how, for this specific simulation, selection act as a mild modification of the purely mu-
tational process in terms of Hamming distance. The trend of the Hamming distance
between the consensus sequence and the wild-type in panel (b) displays a peculiar step
behavior. Notably, selection generates a drift effect that pushes the consensus progres-
sively further from the wild-type, although this is not necessarily a general feature, but
depends on the specific choice of the teacher parameters and on the interplay between
selection and mutagenesis.

While finalizing this work, we became aware of a similar approach described in [15].
Their strategy relies on a simultaneous treatment of selection and mutagenesis. The fit-
ness approximated landscape is inferred over the homologous alignment, specifically
via bmDCA of a GPM. Such energy provides a proxy for fitness, and a tool to probe con-
text dependent mutations, for the energy function includes couplings between different
residues. Indeed, a MCMC is implemented to generate a library which mimics the one
that would have been obtained in a real DE experiment. The elementary step of this
MCMC includes both mutation and selection. The energy variation of single site muta-
tions with respect to the wild-type defines the acceptance probability (which depends
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Figure 3.8: Dependence of the inferred signal on the number of rounds and Ham-
ming distance from the wild-type. Panel (a): Pearson correlations for different rounds
choices. Comparison between PlmDCA on the last round (or all rounds) and AMaLa.
The sequenced rounds are: (1, 2, 3); (2, 4, 6); (8, 10); (8, 10, 12); (8, 10, 12, 14, 16); (1, 10, 20).
PlmDCA significantly depends on the number of performed rounds, not significantly
inferring the fitness landscape up to round ∼ 16. On the contrary, AMaLa provides
predicted energy functions highly correlated with the fitness even for low number of
performed selection rounds. Panel (b): degradation of the mean Pearson correlation
between inferred and true energies, as a function of the Hamming distance from the
wild-type sequence. Two different simulations are considered: high (𝑝 = 0.015) and
low (𝑝 = 0.002) mutation probability. AMaLa predictions are systematically better than
PlmDCA, while the latter display a slower decrease in correlation augmenting the dis-
tance from wild-type.

only on the a.a. sequence). On the other hand, the proposed mutations are restricted
to the allowed single mismatch transitions among codons c𝑖 = (𝑐𝑖1, 𝑐𝑖2, 𝑐𝑖3), thus involv-
ing the genomic sequence. This may suggest a possibility to improve AMaLa itself:
the Hamming distance in the Jukes-Cantor contribution in Eq. (3.1) may be computed
over the genome alignment. In this away forbidden transitions among a.a.’s are auto-
matically excluded, but at the same time also multiple transitions are allowed, even if
exponentially suppressed. Remarkably, the findings of [15] with respect to the optimal
regime for a DE experiment agrees with the results we derived from the application of
AMaLa to both in-silico and experimental data.

3.6 Conclusion and perspectives
In this chapter we presented AMaLa, an unsupervised inferencemethod tailored for DE,
a specific kind of laboratory evolution experiments. The most relevant features of the
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Figure 3.9: Panel (a): evolution of the average Hamming distance for in-silico gener-
ated data (blue points), compared to the analytical prediction of the purely mutational
process (orange points) with the same single site mutation probability 𝑝 = 0.01. On the
𝑥-axis is the round time, whereas on the 𝑦-axis we have the empirical average hD(S, S𝑤𝑡)
(blue) and the purely mutational theoretical average ⟨hD(S, S𝑤𝑡)⟩ (orange), according to
Eq. (C.7). Panel (b): evolution of the Hamming distance of the consensus sequence
from the wild-type. The trend displays a step behavior, remaining constant for some
rounds and then increasing of a unit. Along the constant distance interval, the consen-
sus sequence may nonetheless vary.

presented methods are: (i) the possibility to include all the experimentally sequenced
rounds in the inference process via an effective modeling of the underlying dynamical
process (ii) the fact that the statistical model is practically independent of enrichment
information, allowing it to be applied to experiments characterized by severe under-
sampling regimes.

In our work, we showed how AMaLa can be successfully applied to DE data both for
fitness landscape reconstruction and for assessing contact prediction. In particular, we
pointed out how local datasets as the one provided by DE experiments might provide
a better inference platform when compared to MSA of homologous sequences for fine
scale fitness landscape reconstruction. The converse can instead be stated for contact
prediction. In this perspective, the AMaLa method represents a promising tool for in-
ferring accurate local fitness landscapes, or to provide residue contact predictions for
those proteins missing an homology alignment.

Furthermore, our analysis suggests what might be the optimal experimental con-
ditions for extracting relevant information from the data. These coincide with a low
selective pressure and high mutation probability regime, allowing for a broad explo-
ration of the sequence space, at the same time assuring sequence functionality.
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Concerning the future perspectives, several improvements and extensions of the
model are possible. Firstly, it would be interesting to reframe the mutational model
at the genome level, in order to correctly take into account transitions between amino
acids. Similarly, the modeling of the selection part could be ameliorated so to describe
more faithfully the selection mechanism of the specific considered experiment. For in-
stance, in the case of cell-based bacterial platforms probing antibiotic resistance, the
response to antibiotics is typically described by a sigmoidal function. Such knowledge
could be incorporated into the modeling to improve its predictive power.

The presented statistical model is specifically suited for laboratory evolution exper-
iments that start from a unique wild-type sequence. It would be interesting to attempt
to generalize the formalism to the case in which the initial configuration is a general
library made of a set of sequences. A possibility in this perspective is provided by the
inference method presented in the next chapter 4.

The natural next-step would be to develop a more faithful description of the exper-
iment dynamics, that might allow to go beyond the approximate selection-mutation
independent scheme which is at the basis of AMaLa. In this regard, population ge-
netic like models represent an interesting approach, which was successfully applied
to viral strain evolution [151, 152, 93]. The most significant factor undermining the
straightforward application of such methods is the fact that they significantly rely on
the availability of accurate population measurements, which are usually missing in the
context of DE experiments.
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Chapter 4

Inference on screening
experiments: betaDCA

In this chapter we will describe betaDCA, a novel unsupervised inference method for
protein sequence data produced by screening experiments. Such inference method is
closely related to AMaLa Ch. 3, although possessing some crucial differences.

4.1 Motivations
Over the last few years, the development of increasingly accurate high-throughput bio-
chemical assayswithmassive parallel sequencing techniques has established large-scale
genetic screening as a fundamental tool for the investigation of the relationship between
evolution and fitness [34, 6, 99, 81, 153, 101, 54, 102, 115, 137, 154, 1, 90, 136, 159, 175,
84, 94, 98, 38, 62, 141, 155, 134].

As more high-throughput sequencing data of screened libraries are available, new
computational methods for accurate statistical modeling of the genotype–phenotype
association are actively developed. The majority of these methods rely on enrichment
ratios in order to extract relevant phenotypic information from the data. However, as
already mentioned in Sec. 3.1, there are experimental conditions for which such ratios
are either very noisy or simply not available. In particular, the AMaLa method has been
developed for overcoming this issue in the case of Directed Evolution experiments, in
which mutagenesis does not allow for a simple enrichment ratio inference scheme.

For DMS experiments, the main obstacle to develop a population based statistical
modeling is represented by subsampling of the variants’ pool, which can be caused by
a multitude of different experimental setups. For instance, an initial library size that is
too large compared to the sequencing coverage, as it is often the case when dealing with
the sequencing antibodies repertoire [13]. Moreover, too strong a selective pressure can
isolate only very fit sequences, not allowing for a broad survey of the sequence space.
Analogously, a very high number of selection rounds can generate similar effects in
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the last steps of the experiment. Finally, it could be that the very shape of the fitness
landscape does not allow for a proper exploration of the sequence space, as it might
happen if the dynamics get trapped in a very sharp local fitness maximum.

In this perspective, betaDCA represents a simple alternative to populations based
methods for fitness landscape estimation in all the cases in which accurate abundance
information are not accessible, or when the data are characterized by an elevated noise
component. To do so, we model the experiment as an annealing process (see Sec. 3.2)
from an initial sequences distribution. The annealing process progressively isolates the
most fit sequences for the probed selective trait by lowering a statistical temperature.

In Sec. 4.2, we will give a detailed explanation of the method, discussing its advan-
tages and limitations. Afterwards, we assess the capability of betaDCA to reconstruct
meaningful fitness landscapes for various kinds of experimental setups in Sec. 4.4, mak-
ing comparisonswith alternative availablemethods such as: PlmDCA, deterministic rare
binding (DRB) [47] and AMaLa.

4.2 Modeling
In this section, we describe a generalmathematical framework and a statistical inference
approach that applies to several experimental setups and biological systems. Datasets
that can be used include, among others, protein screening experiments with one or mul-
tiple panning rounds, whether they include or not mutagenesis, repertoire sequencing
samples at different times and infection stages and others. In all these cases, we observe
a set of samples of protein variants (or several proteins) under selective pressure, which
shapes the sequences distribution over time.

To describe the method we consider, for simplicity, a protein screening experiment
without mutations that takes place over several panning rounds 𝑡 ∈ {𝑡0, ..., 𝑡𝑓}, where
𝑡0 = 0 refers to the initial unscreened library. The model is defined by the probability
of observing a sequence S at time 𝑡, 𝑃𝑡(S), and the survival probability 𝑄𝑡,𝑡−1(S) between
round 𝑡 − 1 and 𝑡. The fundamental hypothesis of the model concerns the functional
dependence of the survival probability:

𝑄𝑡,𝑡−1(S) ∝ exp [−𝛼𝑡,𝑡−1𝐸(S)] , (4.1)

which is defined by two quantities, a time dependent factor 𝛼𝑡,𝑡−1 modeling the se-
lective pressure between the two rounds, and a time independent function 𝐸(S), asso-
ciating an energy to the protein sequence S. The functional form of Eq. (4.1) is inspired
by a population genetics formalism [113], in which the argument of the exponential
directly coincides with the sequence fitness (apart from a temporal dependence). Con-
sequently, we assume that the energy 𝐸 contains the information about the functional
properties of the protein variants, and we parametrize it as a GPM:
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𝐸(S) =
𝐿
∑
𝑖=1

ℎ𝐸𝑖 (𝜎𝑖) +
𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝐽𝐸𝑖𝑗 (𝜎𝑖, 𝜎𝑗). (4.2)

Whether or not the energy contains epistatic contributions depends on the specific
considered dataset. We indicate the set of parameters defining Eq. (4.2) with 𝜽𝐸. Em-
ploying Eq. (4.1), we can express 𝑃𝑡(S) as:

𝑃𝑡(S) = 𝑄𝑡,𝑡−1(S)𝑃𝑡−1(S)

= 𝑃𝑡0(S)
𝑡

∏
𝑡′=𝑡0+1

𝑄𝑡′,𝑡′−1(S)

∝ 𝑃𝑡0(S) [e
−𝐸(S)]

∑𝑡
𝑡′=𝑡0+1 𝛼𝑡′,𝑡′−1 . (4.3)

Note that the product runs over all the rounds of the experiment, and not only the
sequenced ones. Eventually, we were able to express 𝑃𝑡(S) as a product of the initial
configuration probability 𝑃𝑡0(S) and the factor e−𝐸(S), the latter raised to the sum of the
selective pressures at each transition. We redefine such sum as:

𝛽(𝑡, 𝑡0) =
𝑡

∑
𝑡′=𝑡0+1

𝛼𝑡′,𝑡′−1. (4.4)

Eq. (4.4) can be interpreted as a fictitious inverse temperature, accounting for the
overall selective pressure between 𝑡0 and 𝑡. In the absence of mutations, Fisher’s funda-
mental theorem of evolution states that the 𝛼’s are a decreasing function of time [36].
In the following we will indicate the fictitious inverse temperature as 𝛽(𝑡, 𝑡0) ≡ 𝛽(𝑡).
Employing Eq. (4.4), we can rewrite Eq. (4.3) as:

𝑃𝑡(S) ∝ e−𝛽(𝑡)𝐸(S)𝑃𝑡0(S), (4.5)

fromwhich it emerges how selection acts as a simulated annealing stochastic process
defined by the temperature 𝛽(𝑡), pushing the distribution towards the minima of 𝐸.
Notably, we do not need any explicit assumption on the specific temporal dependence
of the inverse temperature, as the 𝛽 factors are directly inferred from the data. Fig. 4.1
shows a pictorial representation of the overall modeling of the experimental screening
process.

At 𝑡0 = 0, 𝑃0(S) is the distribution of the variants in the initial library, which is
unrelated to the selection process, for no round of screening has been performed at
that stage. We describe the distribution of the initial variants by means of a further
energy function 𝐺(S), so that the time dependent probability finally becomes:

𝑃𝑡(S) =
e−𝛽(𝑡)𝐸(S)−𝐺(S)

𝑍𝑡
, (4.6)
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Q0,1(C) ∝ e−α0,1E(C) Q1,2(C) ∝ e−α1,2E(C)

Initial library First round Second round

P2(C) ∝ e−[α0,1 + α1,2]E(C)P0(C) = e−β2E(C)P0(C)

Figure 4.1: A simplified portrayal of the modeling of the selection process. Each color
represent a different variant. Starting from the initial distribution of variants, the proba-
bility of observing a sequence in a subsequent round is shaped by the selection process,
defined by the energy function 𝐸(S). The selective pressure at each transition is en-
coded in 𝛼𝑡−1,𝑡, and the overall fictitious inverse temperature is given by the sum of all
transitions 𝛽(𝑡) = ∑𝑡

𝑡′=1 𝛼𝑡′−1,𝑡′ . As in a simulated annealing stochastic process where
the temperature is progressively lowered, 𝛽(𝑡) increases with time, thus constraining
the variant probability distribution to peak around the fittest sequences.

where 𝑍𝑡 is a time dependent normalization factor 𝑍𝑡 = ∑{S} exp [−𝛽(𝑡)𝐸(S) − 𝐺(S)],
the sum running over all possible sequence configurations.

The statistical modeling described so far resembles the one outlined in Sec. 3.2. The
crucial difference between the two lies in how the round zero library is modeled. Indeed,
if AMaLa automatically imposes that at 𝑡 = 0 the library collapses onto a wild-type
sequence (Eq. (3.5)), subsequently taking into account the dynamics of the mutation
process, betaDCA ascribes the whole dynamics to the selection process, considering the
contribution related to 𝑃0(S) to be fairly time independent. In particular, we assume the
initial library statistics to be described by another GPM:

𝐺(S) = −
𝐿
∑
𝑖=1

ℎ𝐺(𝜎𝑖) −
𝐿−1
∑
𝑖=1

𝐿
∑
𝑗=𝑖+1

𝐽𝐺𝑖𝑗 (𝜎𝑖, 𝜎𝑗). (4.7)

In order to distinguish between the two GPM’s, we add explicit apexes to the two
sets of parameters 𝜽𝐸 = {h𝐸, J𝐸}, 𝜽𝐺 = {h𝐺, J𝐺}. Depending on the specific experimental
setup, it might suffice to consider Eq. (4.7) as a profile model, for the parameterizations
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of the 𝐸 and 𝐺 energies need not to be the same.
For DE experiments, the first available sequenced round is taken as if it were the

initial library, so that for these data 𝑡0 ≠ 0. In particular, one pretends that the variants
sequenced at 𝑡0 did not undergo any round of selection, discarding the information that
could be in principled extracted from selection up to that round.

To model the selection process, we introduced an energy function 𝐸(S) that asso-
ciates to each sequence S a fitness energy value that is time-independent as it has been
done for the AMaLa modeling (Eq. (3.2)). As a consequence, the selection process fa-
vors variants based on the same fitness over the whole experiment. While this property
is factual for most screening experiments, it might turn into a working approximation
in other contexts, such as for instance viral strain evolution, in which the interaction
between the virus and the host, as well as the action of vaccines makes the fitness time
dependent [100].

4.3 betaDCA inference
In order to infer the model parameters 𝜽𝐸, 𝜽𝐺 and 𝜷 we need to define the objective
function to be optimized, which in our case coincides with the log-likelihood of the
observed data. Such data are related to the subset of rounds of the experiment that
have been sequenced, which we indicate as {𝜏0, 𝜏1,… , 𝜏𝑓} ⊂ {0, 𝑡1,… , 𝑡𝑓}.

ℒ[𝜽𝐸, 𝜽𝐺, 𝜷] = ∑
𝑡∈{𝜏0,…,𝜏𝑓}

𝑀 (𝑡)

∑
𝑚=1

𝑤 (𝑚,𝑡) log 𝑃𝑡(S(𝑚))

= − ∑
𝑡∈{𝜏0,…,𝜏𝑓}

𝑀 (𝑡)

∑
𝑚=1

𝑤 (𝑚,𝑡) [𝛽(𝑡)𝐸(S(𝑚)) + 𝐺(S(𝑚)) + log𝑍𝑡] , (4.8)

where as in Eq. (3.3), 𝑤 (𝑚,𝑡) = 𝑁 (𝑚,𝑡)/∑𝑀 (𝑡)

𝑚′=1 𝑁 (𝑚′,𝑡) coincides with the normalized
number of counts. Differently from the AMaLa modeling though, the annealing tem-
perature has now a further component, as also the initial library (or the round taken as
it) is part of the dataset. Namely, we have 𝜷 = (𝛽(𝜏0), 𝛽(𝜏1),… , 𝛽(𝜏𝑓)) = (𝛽0, 𝛽1,… , 𝛽𝑇),
with 𝑇 equal to the number of sequenced rounds. As in Sec. 3.3, Eq. (4.8) is approx-
imated with a log-pseudo-likelihood objective function, so to avoid the necessity to
compute the complete partition function 𝑍𝑡.

At fixed 𝜷 the single site objective function can be expressed as the sum of theminus-
log-pseudo-likelihood and two regularization functions on the energetic parameters:
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𝑔𝑟 (𝜽𝐸𝑟 , 𝜽𝐺𝑟 ; 𝜷) = − ∑
𝑡={𝜏0,…,𝜏𝑓}

𝑀 (𝑡)

∑
𝑚=1

𝑤 (𝑚,𝑡) log 𝑃𝑡 (𝜎𝑟 = 𝜎 (𝑚,𝑡)𝑟 |𝝈\𝑟 = 𝝈 (𝑚,𝑡)
\𝑟 )

+ 𝑅𝐸𝑟 (h𝐸𝑟 , J𝐸𝑟 ) + 𝑅𝐺𝑟 (h𝐺𝑟 , J𝐺𝑟 ) , (4.9)

where the regularization functions 𝑅𝐸𝑟 (𝜽𝐸𝑟 ) and 𝑅𝐺𝑟 (𝜽𝐺𝑟 ) are 𝑙2 contributions:

𝑅𝐸𝑟 (𝜽𝐸𝑟 ) = 𝜆𝐸ℎ
𝑞
∑
𝑎=1

ℎ𝐸𝑟 (𝑎)2 + 𝜆𝐸𝐽 ∑
𝑖≠𝑟

𝑞
∑
𝑎,𝑏=1

𝐽𝐸𝑟𝑖 (𝑎, 𝑏)2

𝑅𝐺𝑟 (𝜽𝐺𝑟 ) = 𝜆𝐺ℎ
𝑞
∑
𝑎=1

ℎ𝐺𝑟 (𝑎)2 + 𝜆𝐺𝐽 ∑
𝑖≠𝑟

𝑞
∑
𝑎,𝑏=1

𝐽𝐺𝑟𝑖 (𝑎, 𝑏)2. (4.10)

The two sets of regularization multipliers 𝝀𝐸 and 𝝀𝐺 do not generally need to be
equal.

As for the AMaLa modeling, before inferring the time independent parameters we
need to fix the inverse annealing temperature. For the present case, 𝜷 has 𝑇 + 1 compo-
nents, because the initial library is also included. However, the first two components,
related respectively to the initial library and to the first screening round, are fixed to
𝛽(𝜏0) = 0 and 𝛽(𝜏1) = 1. Indeed, the initial library has not yet been subjected to any
selection process, and at the same time, we have the freedom to rescale the selective
pressure at any round according to the first one.

Then, it is necessary to infer the remaining 𝑇 − 2 components {𝛽(𝜏2),… , 𝛽(𝜏𝑓)} =
{𝛽2,… , 𝛽𝑇}. To do so, we follow the same approach outlined in Sec. 3.3. We can per-
form repeated optimizations of the objective function over a grid of points. Each of
these points is defined by a possible combinations of the chosen values for the in-
verse temperature components, and it amounts to find the optimal sets of 𝜽𝐸 and 𝜽𝐺

at fixed 𝜷 = (0, 1, 𝛽(𝑖)2 , 𝛽(𝑗)3 , 𝛽(𝑙)𝑇 ), with the indeces 𝑖, 𝑗 spanning over the possible val-
ues for each component. The optimal inverse annealing temperature is defined as:
𝜷 = argmin𝑖,𝑗,…,𝑙 {min𝜽𝐸,𝜽𝐺 [∑

𝐿
𝑟=1 𝑔𝑟 (𝜽𝐸, 𝜽𝐺; (0,1, 𝛽

(𝑖)
2 , 𝛽(𝑗)3 ,… , 𝛽(𝑙)𝑇 ))]}.

Alternatively, a gradient descent algorithm can be implemented, in such a way to
update the 𝜷 components and the energetic parameters 𝜽𝐸 and 𝜽𝐺 asynchronously. This
alternate optimization is related to the fact that Eq. (4.9) is not contemporarily convex
with respect to 𝜽𝐸 and the annealing temperature 3.3. The two approaches are totally
equivalent, and yield the same optimal 𝜷.

4.4 Results
In this section, we will present the results obtained from the application of betaDCA to
different type of screening experiments, such as DMS, antibody repertoire sequencing
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and DE experiments, as the versatility of the method represents its main strength. Since
both DMS and DE experiments were described in Sec. 1.3, we redirect the reader there
for a thorough description of these two experimental settings.

4.4.1 Deep Mutational Scanning
In the analysis of the inference of betaDCA on DMS experiments, we considered three
different datasets [56, 18, 175].

In [56], the phenotypic probed trait is the binding affinity of the humanWW-domain
(𝐿 = 25) with its peptide ligand. More than 6 × 105 unique variants are generated in the
initial library, which comprises almost all single point mutations, a fourth of the double
and almost 2% of all three point mutations. Then, six rounds of phage display screening
are performed, and rounds 3 and 6 are sequenced, together with the initial library.

In [18], a short segment of the CDR3 antibody heavy-chain (𝐿=4) is probed for
binding against two targets, polyvinylpyrrolidone (PVP) or a short DNA loop of 9 nu-
cleotides. Around the CDR3 segment, 24 different libraries are constructed accord-
ing to possible scaffolds determined by the 𝑉𝐻 variable region, which are subsequently
screened for three rounds of selection.

Also Wu et al. [175] focused on four protein residues, exhaustively generating all
possible mutations. Such residues belong to the IgG-binding domain (GB1), that is
screened for binding onto an immunoglobulin fragment target for a single round of
selection.

In all these experiments, accurate measurements of abundances are available. Con-
sequently, it is possible to estimate a sequence fitness in terms of enrichment ratios
between neighboring rounds. In particular, we employ the empirical quantity log-
selectivity 𝚯 as a reference for experimental fitness:

log [ 𝑁 (𝑚,𝑡)

𝑁 (𝑚,𝑡−1)
] = Θ(𝑚) + 𝛼 (𝑚,𝑡) + 𝜖(𝑚,𝑡). (4.11)

Since in a DMS experiment the whole diversity is introduced in the initial library,
an index 𝑚 running over the 𝑀 (0) unique sequences at the beginning of the experi-
ment is sufficient to identify them univocally at any subsequent rounds. The log-ratio
of the abundances is modeled by means of three different contribution: one is the log-
selectivityΘ(𝑚), which is supposed to be a time independent feature. Then, 𝛼 (𝑚,𝑡) serves
to quantify the amplification factor, which may vary among rounds. Finally, the term
𝜖(𝑚,𝑡) is needed in order to account for stochastic fluctuations. All three sets of param-
eters are inferred via linear regression on the empirical data.

In order to assess the performances of the method, we split the data into a train and
test set, respectively of sizes 4/5 and 1/5 of the whole dataset. The model is learnt on
the training set only, whereas the test one is used as a benchmark. In particular, for
these three DMS experiments betaDCA’s accuracy is estimated in terms of the Pearson
correlation between the inferred selective energies 𝐸 and the empirical log-selectivities
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over the test set sequences. In Fig. 4.2, we show the comparison of betaDCA perfor-
mances with DRB, a state of the art method to perform inference on DMS screening
experiments.
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Figure 4.2: Pearson correlation between the inferred selective energies and empirical
log-selectivities computed on the test set sequences for betaDCA and DRB. The correla-
tion is plotted as a function of the retained data fraction. Sequences are pruned by pro-
gressively leaving out the one having a higher uncertainty of empirical log-selectivity,
as it can be computed by fitting Eq. (4.11). betaDCA trend is plotted as points+solid
lines, whereas DRB is identified by points+dashed lines. The three experiments are dis-
tinguished with different colors: red [175], green [18] and blue [56]. Shaded regions
point out the discrepancy between the two methods for the same dataset.

For all three experiments, DRB provides the best correlations with empirical selectiv-
ities, since the method is able to leverage the abundances dynamics, that are accurately
provided by all [175, 56, 18]. Interestingly, even if systematically worse, betaDCA pro-
vides Pearson correlations comparable with DRB, especially for the data of [175], in
which the broad coverage of the sequence space compensates the lack of enrichment
information in the betaDCA method. Our claim is that betaDCA might be able to even-
tually surpass the performances of DRB on less accurate datasets, as for instance in
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severe undersampling or extremely noisy regimes. This is the case for antibody reper-
toire datasets, which will be treated in the next section 4.4.2.

We also tested the performances of PlmDCA inferred over the last round only. The
method is not able to produce positive correlations for any of the considered experi-
ments, and the trend as a function of the number of retained sequences is erratic and
dominated by random fluctuations. Such an outcome is somewhat expected, since the
DCA approach is thought to be applied to quasi-equilibrium MSA, which are quite far
from the data produced by a DMS.

4.4.2 Antibody Repertoire Sequencing
In Sec. 1.4, we gave a brief and general introduction about the immune system, fo-
cusing on antibodies and how they evolve as a consequence of the exposition of an
organism to a specific pathogen, so that this process could be interpreted as a complex
in-vivo screening experiment. In this perspective, betaDCA represents an interesting
tool to quantify the statistical difference in the repertoire before and after exposure to
the pathogen. To be more precise, by applying the method to antibody repertoire se-
quencing data, we want to infer the probability of an antibody to be the outcome of
an immune response. Once the model is trained, we obtain a parametrization of this
probability function that can be used to design novel antibodies with high affinity to
the target.

In order to test the betaDCAmethod we employ two kinds of datasets: a negative set
related to the naïve repertoire, and a positive set, in which the repertoire is sampled after
exposition to a specific antigen. Both kind of repertoires belong to mice of the BALB/c
strain. Such animals are generated by an in-bred process that lead them to possess the
same genetic material. Consequently, samples from separate mice can be considered as
different realizations of the same repertoire, up to differences due to the phenomenon
of genetic recombination.

The negative or background dataset comprises immunoglobulin G (IgG) secreted
by plasmablast cells of three unimmunized mice [88]. The data are publicly available
at the Observed Antibody Space [91], and includes around 20 thousands sequences of
IgG heavy chains. On the other hand, the positive dataset refers to the repertoires
of mice immunized with respect to two different antigens: Tetanus toxoid (TT) and
Glucose-6-Phosphate Isomerase (GPI). These data were produced by Gerard et al. in
[66], employing a microfluidic platform named CelliGO, which is used to isolate IgG’s
possessing a high binding affinity towards the antigen. Alternatively, one could directly
sample the repertoire after immunization [7].

The basic mechanism of the platform is the following: single B-cells are encapsu-
lated into oil droplets together with two different biomarkers and some paramagnetic
colloidal nanoparticles. The biomarkers are necessary to verify if the B-cells are able
to secrete IgG, and if they do, whether the antibody is able to bind to the antigen. The
droplets are scanned one by one, passing firstly through a magnetic field which aligns
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the beads, and then through a laser producing a fluorescent signal, allowing to dis-
tinguish among the phenotypic properties of the IgG’s. In order to realize single-cell
sequencing, the sorted cells are subsequently re-compartmentalized in another droplet,
where the B-cell membrane undergoes a lysis process, and the available RNA is reverse
transcribed to cDNA, ultimately providing the 𝑉𝐻 antibody sequences.

After the sorting and the sequencing process, some IgG clones are selected to be
tested against binding onto the respective antigens, i.e. TT and GPI. Specifically, 27
clones were selected from sorting against TT and 13 for GPI. The chosen phenotypic
quantities are the EC50 for TT and the dissociation constant 𝐾𝑑 for GPI. The former
is defined as the antibody concentration for which the response is half of the possible
maximum, where the response is usually defined by a change of color of the testing
solution, which is more intense the more antibodies bind onto the antigens. On the
other hand, dissociation constants are obtained from titering curves realized at different
antigen concentrations, 𝐾𝑑 being defined as the antigen concentration such that the
concentration of bound antibody equals half the concentration of unbound ones.

Given these two unimmunized/immunized repertoire dataset, the general idea is to
model the probability of observing an antibody in the positive set as the product of the
following two probabilities: the background probability, i.e. the probability to observe
an antibody in the negative set (the unimmunized repertoire), and the selection prob-
ability that describes the overall effective process of the immune response (together
with the microfluidic platform in this case). In panel (a) of Fig. 4.3, we report a cartoon
representation of the immunization process with respect to its effect on the mapping
between fitness and sequence space, where fitness has to be intended as the antibody
affinity for binding the antigen. The sequence space is fictitiously represented as a
two-dimensional space, whereas fitness is visualized by means of contour lines. The
selection process acts pushing antibodies to a region of sequence space characterized
by a higher affinity with respect to the target.

The first task we tested was to assess the ability of themodel to discriminate between
binders and not binders. For this purpose, we split the positive and background datasets
into a training and a test set to validate the classification predictions. This choice was
due to the lack of a large list of IgG labeled as binders of the two antigens (TT and GPI).
Thus, we use the positive and background sets as a proxy for binders/not binders labels.
Fig. 4.3 panels (b) and (e) show the results of the classification problem. The sequences
with low background energy are likely to be present in the unimmunized repertoire,
while the selection energy accounts for the probability of an antibody being part of the
immune response to the specific antigen. The model can discriminate remarkably well
the binders (of the positive set) and non-binders (of the background set), as displayed
by the ROC curves (panel (e)) in the test sets of both targets (AUC 0.98 for TT and 0.89
for GPI).

We subsequently considered the phenotype measurements realized in [66], namely
the EC50 values for the TT immunization dataset and the dissociation constants 𝐾𝑑
for the GPI exposed one. The antibodies employed to realize such measurements are
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sampled fairly in the sequence space from the positive dataset, and lay on the high-
selectivity model energy region. The results show that inferred selection energy corre-
lates with 𝐾𝑑 GPI measures, while there is no significant correlation between selection
energy and EC50 in the TT case (see Fig. 4.3 panels (c) and (d)).

In summary, the tests we performed show that: (i) the models energies discriminate
well between the positive and the negative sets: the method predicts with high fidelity
whether a sequence comes from an unimmunized repertoire or it is the output of an
immunized and binders-enriched one; (ii) The inferred selection energy contains infor-
mation on the experimental binding energy in one case (GPI, Kd measures), while in
the other (TT), the selection energy does not correlate with the EC50 values.

Figure 4.3: Main results obtained by the application of betaDCA to antibody repertoires.
Panel (a): pictorial representation of the immunization process. The exposition to the
antigen acts as a selective pressure that shifts the sequences towards a region of high
affinity for antigen binding. Panel (b): discrimination between negative and positive
test by employing the two model energies 𝐸 and 𝐺. Panel (c) and (d): scatter plot be-
tween selection energy 𝐸 and phenotypic traits such as EC50 and dissociation constant
𝐾𝑑. The latter is significantly correlated with the selective energies, whereas the former
is not. Panel (e): ROC curves related to the discrimination between negative and pos-
itive sequences for the exposition to the two antigens GPI and TT. Values of the AUC
are reported in the plot insert.
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4.4.3 Directed Evolution
The flexibility of betaDCA allows to apply it also to experiments in which new protein
variants are introduced at each round via mutagenesis. In this case, as discussed in
[145], we cannot compute the enrichment ratios and selectivities, due to the introduc-
tion of mutations and to the severe undersampling regime in which such experiments
are realized. Consequently, an approach which is not population-based is required. If
AMaLa explicitly models the mutational process by means of a Jukes-Cantor like con-
tribution (see Sec. 3.2.2), this is not the case for betaDCA, in which the 𝐺 Hamiltonian
explicitly models only the statistics of the initial library. Thus, the method can be ap-
plied heuristically, checking a-posteriori its capability to infer a meaningful landscape.
Practically speaking, for a DE dataset, the first round of the experiment is considered
as the initial library, as if that was the starting point of the experiment. Then, since 𝐺 is
learnt over all the sequenced rounds, sequences that were not present in the initial li-
brary can be interpreted as if theywere actually there from the very beginning, but were
not observed due for instance to undersampling effects. In Fig. 4.4, we report a scat-
ter plot between 𝐺 energies and the Hamming distance of a random pool of sequences
from the AAC6 experiment from the corresponding wild-type. The two quantities are
strongly correlated, with a Pearson correlation coefficient 0.94, suggesting that the 𝐺
energy is actually able to effectively model the initial library of the experiment.

We basically repeat the same analysis carried out in 3.4, but for sake of clarity, we
briefly recall the main features of the analyzed experiments and the testing strategies.
The authors of [44, 160] screen proteins responsible for antibiotic resistance in bacteria:
TEM-1 and PSE-1 variants of the 𝛽-lactamase family and AAC6 protein of the acetyl-
transferase family. Starting from a wild-type protein, error-prone PCR creates new
mutants at each round. Subsequently, the library undergoes a selection step in which
bacteria equipped with the mutants are exposed to an antibiotic-rich environment. This
cycle of mutagenesis and screening is repeated multiple times, and for a subset of the
panning rounds a sample of the library is sequenced.

We performed two different tests to assess the inferred model. In the case of TEM-1
𝛽-lactamase, the model energy is directly compared with independent fitness measure-
ments related to antibiotic resistance. Specifically, we considered two experimental
papers [81, 51]. In [81] variants fitness is quantified in terms of minimum inhibitory
concentration (MIC), that is, the minimum antibiotic concentration necessary to neu-
tralize bacteria equipped with that variant. On the other hand, in [51], the authors
directly measured the gene fitness as a weighted average of 13 different antibiotic con-
centrations, with the weights defined by the number of copies of each variant at the
various concentrations. For our analysis, we mapped the measurements of [51] onto
those of [81], following the procedure outlined in [49] (see Sec. 3.4.1 for a thorough
discussion).

In Fig. 4.5 we reported the results obtained in terms of fitness landscape recon-
struction, comparing betaDCA with both AMaLa and PlmDCA. Although the inferred
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Figure 4.4: Scatter plot between 𝐺 energies and Hamming distances from the wild-type,
for a random pool of sequences generated in the AAC6 experiment of [160]. The two
quantities are strongly correlated, as it should be if 𝐺 is meant to model the experiment
initial library.

energies correlate well with these independent experimental fitness measurements, the
performances are worse than both AMaLa and PlmDCA.

When testing over PSE-1 and AAC6 data, for which fitness measurements are not
available, the test involves the prediction of the protein structure contact map and the
comparison with crystallographic studies of the protein, as described in Sec. 2.4.1. The
obtained results in terms of sensitivity plots and contact maps are reported for both
proteins in Fig. 4.6. Interestingly, and as opposed to the outcome for 𝛽-lactamase fitness,
betaDCA displays performance comparable or slightly superior to those of AMaLa for
contact prediction assessment. From panels (c) and (d) it emerges how the method is
able to predict more long range contacts when compared to PlmDCA, as it was the case
for AMaLa.
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Figure 4.5: Analogous of Fig. 3.2, with the addition of the corresponding betaDCA
curve. On the vertical axis we report the Pearson correlation between inferred selective
energies 𝐸 and the fitness measurements of [51], both mapped following the procedure
outlined in [49]. On the horizontal axis, the discrepancy between the measurements
of [81] and [51] is reported. Moving from right to left, disagreeing data points are
progressively excluded.

4.5 Conclusions
In this chapter we presented betaDCA, an unsupervised inference methods for pro-
tein sequence data generated by screening experiments. The basic assumption of the
method is that a time dependent selection process shapes the statistics in sequence space
as an annealing process, inwhich a statistical temperature is progressively lowered. The
statistics of the initial experiment configuration is also included in the modeling, which
is consequently defined by two GPM energies: 𝐸 accounting for the selection process,
and 𝐺 describing the unscreened library.

The main strength of the method is the possibility to apply it to scenarios in which
accurate population measurements are missing, so that it is not possible to rely on en-
richment ratios information. In this regard, betaDCA proved to be particularly effective
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(a)

(c)

(b)

(d)

Figure 4.6: Analogous of Fig. 3.5, with the addition of the corresponding betaDCA
curve. Top: sensitivity plot; the betaDCA approach provides AUC(𝐿/2) = 0.71,
PPV(𝐿/2) = 0.58 for PSE-1, and AUC(𝐿/2) = 0.71, PPV(𝐿/2) = 0.58 for AAC6. Bot-
tom: contact map up to 𝐿/2 predictions. In the upper-right half is reported the results
related to betaDCA, whereas in the lower-left is the prediction provided by PlmDCA.
Correctly predicted contacts are colored in green/blue, while wrong prediction are re-
ported in red/orange for PlmDCA/betaDCA respectively. Panel (c) reports the result
for PSE-1 and panel (d) for AAC6.

on antibody repertoire immunization data, which are usually characterized by signif-
icant noise level and for which it is not possible to access to accurate population tra-
jectories. The method is able to successfully discriminate between sequences of the
negative and positive set, and the selective energy 𝐸 displays a good correlation with
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the measurements of the dissociation constant 𝐾𝑑. When accurate abundance measure-
ments are available, the method is still able to meaningful functional landscape, though
with generally worse performances with respect to alternative methods that are able to
leverage such population information. betaDCAproved aswell to be a versatilemethod,
for it can be successfully applied to DE experimental data, even though the mutational
process is not explicitly considered in the modeling. In particular, the method pro-
vides strikingly good result for the contact prediction problem of the proteins studied
in [160], whereas correlations with TEM-1 𝛽-lactamase fitness turn out to be inferior
with respect to both AMaLa and PlmDCA.

A possible interesting extension of the method would be the inclusion of mutational
effects if present, introducing a suitable time dependence in the Hamiltonian 𝐺. This
might be of particular interest, because it would represent a generalization of theAMaLa
modeling to the case inwhich the initial library is notmade of wild-type sequences only.
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Chapter 5

Learning Restricted Boltzmann
Machines via Expectation
Propagation

In this chapter, we will present the ideas and some preliminary results related to the
application of Expectation Propagation (EP), an iterative algorithm for approximating
intractable probability distributions, to the inference problem of Restricted Boltzmann
Machines (RBM). Thus, in Sec. 5.1 we describe RBM’s architecture, pointing out their
strengths and limitations. In Sec. 5.2, we analyze the EP algorithm, highlighting how
it can be applied to infer RBM’s. Finally, in Sec. 5.3 we present the results obtained by
applying the EP based inference method to the MNIST dataset.

5.1 Restricted Boltzmann Machines
An RBM is an artificial neural network architecture that can be represented as an undi-
rected bipartite graph made of two different type of nodes: the visible and the hidden
units. The visible units usually coincide with the observed data, whereas the hidden
units are necessary to identify and encode features of the data, and to model interac-
tion among the visible units. We identify with 𝑁 the number of visible units, and with
𝑀 the number of hidden units, where typically 𝑀 < 𝑁. The architecture is said to be
restricted because the visible units do not interact directly with each other, but they are
only coupled to hidden units. Similarly, also the hidden units do not interact among
themselves. Consequently, an RBM can be identified by the following set of parame-
ters: the weights 𝑤𝑖𝜇, connecting visible and hidden units; the potentials or priors 𝑔𝑖
acting on the visible units, and 𝑈𝜇 acting on the hidden ones. The indexes 𝑖 and 𝜇 run
respectively over visible and hidden units, 𝑖 = 1,… ,𝑁 and 𝜇 = 1,… ,𝑀. RBM were
originally introduced in [149] with the name Harmonium, and can be interpreted as
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a special case of a Boltzmann Machine, as they were introduced in [2]. RBM gained
popularity after Hinton et al. [72] introduced an efficient learning algorithm known as
contrastive divergence (CD), which we will describe in the following section 5.1.1.

In Fig. 5.1, we show an example of an RBM architecture.
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Figure 5.1: Graphical representation of an RBM. The visible nodes are linked to the
potentials 𝑔𝑖 whereas the hidden ones are linked to 𝑈𝜇. Moreover, each visible unit is
linked to all hidden nodes, but no internal connections are present among variables of
the same type.

The graphical representation is associated to a joint probability function over visible
and hidden nodes:

𝑃(v,h) = 1
𝑍
exp [−𝐸(v,h)] , (5.1)

where 𝑍 is the normalization factor, and 𝐸(v,h) is an energy function:

𝐸(v,h) = −
𝑁,𝑀
∑
𝑖,𝜇=1

𝑣𝑖𝑤𝑖𝜇ℎ𝜇 +
𝑁
∑
𝑖=1

𝑔𝑖(𝑣𝑖) +
𝑀
∑
𝜇=1

𝑈𝜇(ℎ𝜇), (5.2)

which is defined by the 𝑁 × 𝑀 matrix 𝑤, and the 𝑁 and 𝑀 components vectors of
potentials g and U. The type of the visible potential depends on the nature of the
considered data, e.g. binary for images, Potts-field for categorical data. On the other

92
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hand, the choice of the hidden potential is key in determining the properties of the
RBM. In particular, if one wants to introduce collective interactions between the visible
units, it is necessary to choose a non-quadratic potential 𝑈.

Indeed, the marginal distribution over the data is obtained by integration over the
hidden units:

𝑃(v) = ∫ d𝑀ℎ𝑃(v,h) = 1
𝑍
exp [−

𝐿
∑
𝑖=1

𝑔𝑖(𝑣𝑖) +
𝑀
∑
𝜇=1

𝐶𝜇 (𝐼𝜇(v))] , (5.3)

where we introduced the cumulant generating function 𝐶𝜇 (𝐼𝜇(v)):

𝐶𝜇 (𝐼𝜇(v)) = log∫ dℎ𝜇e−𝑈𝜇(ℎ𝜇)+𝐼𝜇(v)ℎ𝜇, (5.4)

and the input function for the hidden unit 𝜇:

𝐼𝜇(v) =
𝑁
∑
𝑖=1

𝑣𝑖𝑤𝑖𝜇. (5.5)

From these definitions, we see that if the hidden potentials are quadratic:

𝑈𝜇(ℎ𝜇) =
𝛾𝜇
2
ℎ2𝜇 − 𝜃𝜇ℎ𝜇, (5.6)

integration in Eq. (5.4) can be carried out analytically, yielding a marginal distribu-
tion:

𝑃Gauss(v) ∝ exp [−
𝑁
∑
𝑖=1

𝑔𝑖(𝑣𝑖) +
𝑀
∑
𝜇=1

(𝐼𝜇(v) + 𝜃𝜇)
2

2𝛾𝜇
] . (5.7)

Eq. (5.7) contains couplings between the visible units defined as 𝐽𝑖𝑗 = ∑𝑀
𝜇=1

1
2𝛾𝜇

𝑤𝑖𝜇𝑤𝑗𝜇,
and represents in fact a fully connected model with pairwise interactions. However,
as soon as the hidden potentials are non-quadratic, arbitrarily high order interactions
among visible units are generated. Some common kind of hidden potentials in the
context of RBM are:

• Bernoulli: 𝑈Ber(ℎ) = −𝜃ℎ, ℎ = {0,1}.

• Gaussian: 𝑈Gauss(ℎ) =
𝛾
2ℎ

2 − 𝜃ℎ.

• ReLU: 𝑈ReLU(ℎ) = {
𝛾
2ℎ

2 − 𝜃ℎ ℎ ≥ 0,
+∞ ℎ < 0.
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Another interesting property of RBM is conditional independence, i.e. both 𝑃(v|h)
and 𝑃(h|v) factorize over the respective nodes. This property derives from the pecu-
liar RBM architecture, which possesses no connection among homologous nodes. It
is particularly useful when performing sampling, because each type of units can be
drawn independently. Specifically, alternate Gibbs-sampling [64] over visible and hid-
den units appears as the natural choice for generating equilibrium configuration from
𝑃(v,h). The sampling strategy goes as follows:

• Choose a random visible configuration v, either extracting it from the data or gen-
erating it from scratch. From this, compute the hidden units associated inputs
Ih = 𝑤𝑇v.

• Sample independently the hidden units according to 𝑃(ℎ𝜇|v) ∝ exp [−𝑈𝜇(ℎ𝜇) + 𝐼𝜇(v)ℎ𝜇].
This step amounts to feature extraction.

• Compute the visible inputs associated to the extracted hidden units Iv = 𝑤h.

• Extract a new visible configuration according to 𝑃(𝑣𝑖|h) ∝ exp [−𝑔𝑖(𝑣𝑖) + 𝐼𝑖(h)𝑣𝑖].

The repetition of the previous steps eventually leads to an equilibrated sample of
both v and h. The presented steps also highlight the relation between visible and hid-
den units. Different data inputs activate different hidden units, providing a featural
and lower-dimensional representation. Conversely, one can generate specific visible
configurations by selecting the appropriate subset of hidden units to be activated. In
this perspective, we can define two further quantities: the transfer function and mean
hidden units activation. The former is defined as:

𝐻𝜇(I𝜇) = argmaxℎ𝜇𝑃(ℎ𝜇|v). (5.8)

If the hidden unit potential derivative is an invertible function, the transfer function

can also be express as (𝑈 ′
𝜇)

−1
(𝐼𝜇). On the other hand, the average hidden activity is

defined as:

⟨ℎ𝜇⟩𝑃(ℎ𝜇|v) =
∫ dℎ𝜇 ℎ𝜇e−𝑈𝜇(ℎ𝜇)+𝐼𝜇(v)ℎ𝜇

∫ dℎ𝜇 e−𝑈𝜇(ℎ𝜇)+𝐼𝜇(v)ℎ𝜇
=

𝜕𝐶𝜇
𝜕𝐼𝜇

(𝐼𝜇(v)) . (5.9)

For a quadratic hidden potential, both the transfer function and the average activ-
ity are a linear function of the activation input Ih, whereas non-quadratic potentials
generate non-linear responses.

In the following section we will describe how to train an RBM in an unsupervised
fashion.
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5.1.1 Learning RBM
Training or learning an RBM means inferring all its constituent parameters, that is, the
set of weights 𝑤 and the parameters defining the visible g and hidden U potentials.
For the moment, we consider the potentials parameters as given, and we focus upon
weights inference.

We follow a maximum likelihood approach, in which the objective function is de-
fined as:

ℒ[𝑤] = 1
𝐷

𝐷
∑
𝑑=1

log 𝑃(v(𝑑)) = 1
𝐷

𝐷
∑
𝑑=1

log∫ d𝑀ℎ 𝑃(v(𝑑),h), (5.10)

where the index 𝑑 = 1,… ,𝐷 runs over the data points v(𝑑), which are plugged into
the marginal visible probability. In order to infer the weight parameters, we have to
find the set �̂� which maximizes Eq. (5.10), and thus we need to compute the gradient:

𝜕ℒ [𝑤]
𝜕𝑤𝑗𝜈

= 1
𝐷

𝐷
∑
𝑑=1

𝑣 (𝑑)𝑗 ⟨ℎ𝜈⟩𝑃(ℎ𝜈|v(𝑑)) − ⟨𝑣𝑗ℎ𝜈⟩𝑃(v,h) = 𝑣 (𝑑)𝑗 ⟨ℎ𝜈⟩𝑃(ℎ𝜈|v(𝑑)) − ⟨𝑣𝑗ℎ𝜈⟩𝑃(v,h) . (5.11)

We notice that the gradient is the difference between two cross correlations: the en-
semble average ⟨𝑣𝑗ℎ𝜈⟩𝑃(v,h) and the average of the hidden unit over the conditional prob-

ability, whose productwith the visible unit is itself averaged over the dataset 𝑣 (𝑑)𝑗 ⟨ℎ𝜈⟩𝑃(ℎ𝜈|v(𝑑)).
We indicate averages computed with respect to probabilities as ⟨𝑂⟩, and with respect to
the data as 𝑂.

The major difficulty lies in the computation of the ensemble cross correlation, which
in principle requires to compute the normalization of the joint distribution. MCMC
sampling methods can be used to overcome this issue and to estimate the sought mo-
ments. In this perspective, the contrastive divergence (CD) [72] and persistent con-
trastive divergence (PCD) [163] methods have been developed with the aim to approx-
imate the likelihood gradient in Eq. (5.11).

Contrastive approaches

The CD algorithm was initially developed by Hinton et al. [72] and allowed for the first
successful application of an RBM architecture to a dataset of consistent size, namely
the MNIST one. The underlying idea is to modify the standard MCMC approach, in
which theMonte Carlo chain is initialized from a random visible configuration. Instead,
CD initializes the Monte Carlo chain from a datapoint v(𝑑) and performs only a fixed
number of Gibbs sampling steps 𝑘, without necessarily reaching equilibrium. Typical
values of the number of steps lie between 1 and 5, so that the obtained samples are
typically strongly out of equilibrium. The name contrastive divergence is due to the
fact that the algorithm quantifies the divergence between the data statistics and the
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probability defined by the RBM. If 𝑃(v) approximates well the empirical statistics, the
divergence, i.e. the difference in the gradient, should go to zero.

Mathematically, if the maximum likelihood approach coincides with the minimiza-
tion of the Kullback-Leibler (KL) divergence between the empirical distribution 𝑃𝒟(v) =
∑𝐷

𝑑=1 𝛿(v − v(𝑑)) and the one defined by RBM:

𝐷KL(𝑃𝒟‖𝑃) = ∑
v
𝑃𝒟(v) log

𝑃𝒟(v)
𝑃(v)

, (5.12)

CD amounts to minimizing the KL difference KL(𝑃𝒟‖𝑃) - KL(𝑃𝑘‖𝑃), in which 𝑃𝑘(v) is
the distribution obtained after 𝑘 steps of Gibbs sampling. To summarize, the CD pipeline
can be schematized ad follows:

• For each data point v(𝑑) 𝑑 = 1,… ,𝐷, initialize a Markov chain with initial state
v0 = v(𝑑).

• Perform 𝑘 steps of alternate Gibbs sampling starting from 𝑃(h0|v0) and proceeding
sampling back and forth until drawing 𝑃(h𝑘|v𝑘).

• Approximate the likelihood gradient as ∇𝑤𝑗𝜈ℒ ≃ ⟨𝑣0𝑗 ⟨ℎ𝜈⟩𝑃(ℎ𝜈|v0)⟩𝑃0
− ⟨𝑣𝑘𝑗 ℎ𝑘𝜈⟩𝑃𝑘

,
where 𝑃0 = 𝑃𝒟 and the average over 𝑃𝑘 is meant to be computed over the𝐷 sample
obtained after 𝑘 steps of Gibbs sampling.

The great advantage of CD is that it allows for a much faster computation of the
gradient, although the parameter estimate is biased, i.e. the optimal set of weights �̂�𝑀𝐿
and �̂�𝐶𝐷 do not generally coincide [25].

An alternative version of the CD algorithm is its persistent version [163]. The differ-
ence between the two approaches is that at each parameters update, the Monte Carlo
chains are not reinitialized from the data sample v(𝑑), but rather from the last sample
obtained from the previous update. The intuition behind this procedure is that, if the
weight parameters are slowly varying, then the sample v from a previous update is al-
ready likely to be drawn from the model distribution, and few Monte Carlo steps are
necessary to reach equilibrium. While this is advantageous with respect to standard
CD when the MCMC mixing rates are slow, it is also true that the approximation be-
comes exact only in the limit of vanishing learning rate (see Sec. 2.3.4), and possible
divergence issues have been reported for finite learning rate values [52].

Moreover, the persistent MCMC might be problematic in situations in which the
model distribution becomes multimodal. Indeed, since the exploration remains local,
the algorithm can get stuck on a particular maximum not visiting the others, especially
when the probability landscape becomes very sharp.

Tempering strategies for MCMC have been proposed to this aim [35, 27], and will
be briefly discussed in the following section.
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Parallel tempering MCMC

Parallel tempering is an algorithm for MCMC simulations tailored for sampling effi-
ciently the probability distribution is defined by a rough energy landscape, and was
introduced in [70] in the context of biomolecules.

The method simulates in parallel 𝑁 replicas of the system at different temperatures,
alternating standard local moves and global updates, in which two configurations at dif-
ferent temperature are exchanged. This global swap yields faster decorrelations within
replicas configurations, i.e. a shorter mixing time, and eventually allows the system to
escape energy barriers.

For the specific case of RBM, the inverse temperature goes from 𝛽1 = 0 to 𝛽𝑁 = 1, i.e.
the 𝑁-th replica coincides with the original system, and it represents the target distri-
bution. If the temperature parameter multiplies only the weights 𝑤, then the statistical
weights associated to each replica are proportional to:

𝑃𝛽(v,h) ∝ exp{𝛽v𝑇𝑤h −
𝑁
∑
𝑖=1

𝑔𝑖(𝑣𝑖) −
𝑀
∑
𝜇=1

𝑈𝜇(ℎ𝜇)}. (5.13)

If instead, the inverse temperature multiplies the whole energy, the statistical weight
of replica 𝑟 needs to be modified to:

𝑃𝛽𝑟(x) ∝ exp{−𝛽𝑟𝐸(x) − (1 − 𝛽𝑟)𝐸0(x)}, (5.14)

where x = (v,h), and 𝐸0 is an energy function not including interacting terms. In
both cases, the acceptance probability for swapping two configurations is given by the
Metropolis-Hastings rule:

𝐴𝑟 = min {1,
𝑃𝛽𝑟(x𝑟+1)𝑃𝛽𝑟+1(x𝑟)
𝑃𝛽𝑟(x𝑟)𝑃𝛽𝑟+1(x𝑟+1)

} . (5.15)

Global swaps are allowed only between neighboring replicas 𝑟 ↔ 𝑟 + 1, as the ac-
ceptance probability drops exponentially with the energy and temperature differences.
After a full Monte Carlo sweep, i.e. after 𝑘-steps of Gibbs sampling and replicas swap-
ping, the configuration at 𝛽𝑁 = 1 is taken as a sample from the model probability.
Alternatively, the swap probability can be restricted to visible marginals, yielding an
augmented acceptance ratio.

The adoption of tempered techniques partially solves the problem of scarce config-
urational exploration related to both CD and PCD. However, if entropic barriers are
present, even PT is not able to reach good sampling of the whole space. To overcome
this further limitation, a new sampling algorithm named augmented PT was developed
in [165].

Before moving to inference methods that are not based on sampling, it is worth
mentioning a systematic study ofMCMC based strategies, which has been carried out in
[33]. The authors focus on the interplay between the number of steps 𝑘 used to estimate

97



Learning Restricted Boltzmann Machines via Expectation Propagation

the gradient in Eq. (5.11) and the mixing time associated to the model distribution. In
particular, when 𝑘 is small (𝑘 ∼ 10), the learning dynamics is strongly out of equilibrium,
and this reflects in the properties of the learned model. Indeed, when sampling from the
inferred distribution, it is possible to define an optimal sampling time 𝑡𝐺 with respect to
statistical estimators such as the log-likelihood, the error on the second moment and so
on. For out of equilibrium sampling methods, one has 𝑡𝐺 ∼ 𝑘, as strong memory effects
emerge. On the other hand, RBM learned with a large number of Monte Carlo steps,
e.g. 𝑘 ∼ 104−5, are able to learn an equilibrium distribution that has a high chance to
generate samples close to the dataset. To sum up, short 𝑘-steps MCMC schemes can be
used if one is to merely generate good quality sample in a short time, whereas 𝑘 should
surpass the mixing time of the model probability at each learning epoch if the aim is to
reproduce the equilibrium distribution of the dataset.

Non-sampling methods

It is also possible to train RBM via methods not based on sampling, as for instance
the MF method, which we already treated when discussing the GPM in Sec. 2.3.1, or
higher order terms of the Plefka’s expansion as in the TAP (Thouless-Anderson-Palmer)
approximation. In particular, a TAP approximation inference scheme has been proposed
in [59] in the context of binary RBM.

The backbone of the method is the aforementioned Plefka’s expansion of the Gibbs
free energy, similarly to what has been described in Sec. 2.3.1. The starting point is to
rewrite the log-likelihood as a sum of two free energy contributions:

ℒ[𝑤] = log (∑
h

e−𝐸(v(𝑑),h)) − log𝑍 = −𝐹 𝑐(v(𝑑)) + 𝐹, (5.16)

with 𝐹 𝑐(v(𝑑)) the clamped free energy over configuration 𝑑 and 𝐹 = − log𝑍 =
− log∑x e

−𝐸(x) the actual free energy of the model. The Plefka’s expansion provides
a systematic method to estimate the free energy in a weak coupling regime. Since the
considered variables are binary (or more precisely boolean), the Legendre transform is
performed with respect to magnetizations ⟨x⟩ = m and an auxiliary field q:

𝐺(m) = supq [𝐹(q) +
𝐿
∑
𝑖=1

𝑞𝑖𝑚𝑖] = supq [− log (∑
x

e−𝐸(x)+∑
𝐿
𝑖=1 𝑞𝑖𝑥𝑖) +

𝐿
∑
𝑖=1

𝑞𝑖𝑚𝑖] . (5.17)

Conversely, the Helmholtz free energy is obtained by anti-transforming 𝐹(q) =
infm [𝐺(m) − ∑𝐿

𝑖=1 𝑞𝑖𝑚𝑖]. The original free energy of the model is recovered for q = 0,
i.e. 𝐹 ≡ 𝐹(q = 0) = minm [𝐺(m)]. Consequently, the model free energy can be com-
puted by expanding 𝐺(m) in powers of a perturbative parameter (possibly the temper-
ature), and then extremizing it with respect to magnetizations.
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The stationarity condition for the Gibbs free energy ∇m𝐺(m) = 0 provides a set of
auto-consistent equations for the magnetizations. If the expansion is performed with
respect to the coupling parameters, one obtains at second order:

𝑚v
𝑖 = 𝜎 [𝑎𝑖 +

𝑀
∑
𝜇=1

𝑤𝑖𝜇𝑚h
𝜇 − 𝑤2

𝑖𝜇𝑚h
𝜇 (𝑚v

𝑖 −
1
2
) (1 − 𝑚h

𝜇)] , (5.18)

where 𝜎(𝑥) = (1 + e−𝑥)−1 is the sigmoid function, and 𝑚v
𝑖 = ⟨𝑣𝑖⟩, 𝑚h

𝜇 = ⟨ℎ𝜇⟩.
Eq. (5.18) belongs to a set of coupled non linear equations, which can be solved

iteratively until convergence. When writing Eq. (5.18), we assumed that the model
energy coincides with 𝐸(x) = −∑𝑖𝜇 𝑣𝑖𝑤𝑖𝜇ℎ𝜇 −∑𝑁

𝑖=1 𝑎𝑖𝑣𝑖 −∑𝑀
𝜇=1 𝑏𝜇ℎ𝜇, so that both visible

and hidden units are boolean variables.
Once the auto-consistency equations converged, the fixed point magnetizations m∗

can be plugged into the Gibbs free energy expansion, providing an approximation of
𝐹 = − log𝑍. Consequently, the approximate gradient can be computed as:

𝜕ℒ [𝑤]
𝜕𝑤𝑗𝜈

≃ −
𝐹 𝑐(v(𝑑))
𝜕𝑤𝑗𝜈

+
𝜕𝐺(m∗)
𝜕𝑤𝑗𝜈

, (5.19)

in which 𝐺(m) can be expanded up to arbitrarily high order in powers of 𝑤. In
[59], it has been shown that the second order expansion was able to provide results of
comparable quality with respect to both CD and PCD.

In the rest of the chapter, we aim to develop another inference method for RBM
which is not based on sampling, but rather, on an iterative algorithm for approximating
probability distributions known as Expectation Propagation (EP).

5.1.2 Applications of RBM
The introduction of the CD [72] algorithm sparked interest in the possible usage of
RBM. Among the first applications, RBM were stacked one onto the other in order to
learn deep-belief networks, which were subsequently fine-tuned by means of back-
propagation [73]. Later on, the advances in supervised deep learning strategies made
pre-training unnecessary, and RBM were replaced by other architectures as generative
models.

Recently, a novel interest in RBM has aroused both from a theoretical perspective
and for their successful application to biological sequence data. Indeed, RBM represent
a minimal model of neural network architecture with the capability to introduce arbi-
trarily high-order interactions among data, and can be thought as a generalization of the
Hopfield model [77] for pattern storage and recognition. In this perspective, Tubiana et
al. [168] performed a replica-symmetric computation of a random ensemble of RBM’s,
in order to study the possible different operational regimes, correspondent to different
phases.

99



Learning Restricted Boltzmann Machines via Expectation Propagation

The modeling considers the weights 𝑤𝑖𝜇 defining the RBM’s as quenched random
variables representing the source of disorder. The visible units are considered as binary,
i.e. 𝑔𝑖(𝑣𝑖) = −𝑔𝑣𝑖, whereas hidden units are distributed according to a ReLU potential.
Both priors are considered as uniform, that is, possessing the same parameters for each
unit. The replica trick allows to compute an approximation of the free energy of the
model, from which the phase diagram of the system can be studied.

In particular, the authors underline the importance of the so called compositional
regime, in which each data input activates a significant, but not too large, number 𝐿
of hidden units (1 ≪ 𝐿 ≪ 𝑀), as opposed to the ferromagnetic and spin glass phases,
characterized respectively by only one, and a large amount of incoherently activated
hidden units. The fundamental features allowing to reach the compositional phase are:
weights sparsity, quantified by the probability 𝑝 that a weight is non-zero, and the
specific value of the threshold parameter of the ReLU potential.

Stepping away from a purely theoretical viewpoint, in the recent years RBM have
been successfully applied to a plethora of biological contexts, among which we can
mention MSA of homologous protein sequences [167, 166, 147], immune system fea-
tures such as TCR specificity [20, 19] and prediction of antigen presentation by the
HLA-I MHC [21], screening experiments of aptamers binding capabilities [36].

In the context of protein families of homologous sequences, the appeal of RBM is
represented by their capabilities to learn sequence motifs, leading to the possibility
to cluster protein sequences according to different criteria, e.g. structural or functional
properties and phylogenetic relations. Moreover, RBMare generative, so that they could
in principle allow to generate sequences with specific properties, by selection of the
proper hidden units.

5.2 Expectation Propagation
In this section we describe the iterative algorithm Expectation Propagation (EP), origi-
nally introduced by T.P. Minka in [104], even if it was already introduced in the spe-
cialized Gaussian case in the context of statistical physics of disordered systems under
the name adaTAP, by M. Opper and O. Winther [118, 117]. Throughout this thesis we
will mainly rely on the Gaussian version of EP, but a more general formulation based
on exponential families is also possible.

5.2.1 Gaussian EP
Let’s analyze the Gaussian formulation of the EP algorithm. Our goal is to approximate
an intractable probability distribution of the form:

𝑃(x) = 1
𝑍
𝐺(x)

𝑁
∏
𝑖=1

𝜓𝑖(𝑥𝑖), (5.20)
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where 𝐺(x) is a multivariate Gaussian distribution:

𝐺(x) =
det(𝐴)1/2

(2𝜋)𝑁/2
exp [−1

2
x𝑇𝐴x + x𝑇m] , (5.21)

defined by a precision matrix 𝐴 and a mean vector (𝐴)−1m, whereas the univariate
factors 𝜓𝑖(𝑥𝑖) represent the set of intractable priors. The idea of the EP method is to
approximate Eq. 5.20 with a full multivariate Gaussian distribution 𝑄(x):

𝑄(x) = 1
𝑍𝑄

𝐺(x)
𝑁
∏
𝑖=1

𝜙𝑖(𝑥𝑖) =
1

(2𝜋)𝑁/2det(Σ)1/2
exp [−1

2
(x − ⟨x⟩)𝑇 (Σ)−1 (x − ⟨x⟩)] .

(5.22)
In Eq. (5.22) the intractable priors have been substituted by a set of univariate Gaus-

sian factors 𝜙𝑖(𝑥𝑖) = 𝒩 (𝑥𝑖; 𝑎𝑖, 𝑑𝑖) =
1

√2𝜋𝑑𝑖
exp [− (𝑥𝑖−𝑎𝑖)2

2𝑑𝑖
], with 𝑎𝑖 and 𝑑𝑖 coinciding respec-

tively with the mean and the variance of the Gaussian. 𝑄(x) can also be rewritten as
a global multivariate Gaussian defined by a covariance matrix Σ = ⟨xx𝑇⟩ − ⟨x⟩ ⟨x𝑇⟩ =
(𝐴 + 𝐷)−1 and a mean vector ⟨x⟩ = Σ (m + 𝐷a), where we introduced the matrix 𝐷,
which is defined as:

⎛
⎜
⎜
⎜
⎝

1
𝑑1

0 … 0
0 1

𝑑2
… 0

⋮ ⋮ ⋱ ⋮
0 0 … 1

𝑑𝑁

⎞
⎟
⎟
⎟
⎠

, (5.23)

which is a 𝑁 × 𝑁 diagonal matrix having the inverse variances of the univariate
factors as its elements. Within this formulation, it is straightforward to derive the nor-
malization factor 𝑍𝑄 = (2𝜋)𝑁/2det(Σ)1/2.

The free parameters of the EP algorithm are the univariate Gaussians means and
variances {a,d}, which must be optimally determined so that 𝑄(x) is an approxima-
tion of the original distribution 𝑃(x). From a theoretical perspective, the parameters
are fixed by minimizing the local inclusive Kullback-Leibler (KL) divergence between
the two distributions. The global inclusive KL-divergence has expression 𝐷KL(𝑃‖𝑄) =
∫ d𝑁𝑥 𝑃(x) log 𝑃(x)

𝑄(x) and it is generally difficult to directly minimize it. Minka [104]
showed that minimizing a local version of the inclusive KL-divergence is equivalent
to using message passing algorithms, such as belief propagation (BP) and EP. For our
case of interest, the KL-divergence we aim at minimizing is the one between the full
Gaussian approximation 𝑄 and the so called tilted distribution 𝑄(𝑘), which is defined as:

𝑄(𝑘)(x) = 1
𝑍𝑄(𝑘)

𝐺(x) (∏
𝑖≠𝑘

𝜙𝑖(𝑥𝑖)) 𝜓𝑘(𝑥𝑘) =
𝑍𝑄
𝑍𝑄(𝑘)

𝑄(x)
𝜓𝑘(𝑥𝑘)
𝜙𝑘(𝑥𝑘)

. (5.24)
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Thus, the local KL-divergence becomes:

𝐷KL(𝑄(𝑘)‖𝑄) = ∫ d𝑁𝑥 𝑄(𝑘)(x) log
𝑄(𝑘)(x)
𝑄(x)

. (5.25)

It is possible to show that minimizing Eq. (5.25) with respect to 𝑎𝑘 and 𝑑𝑘 amounts
to impose the moment matching conditions:

{
⟨𝑥𝑘⟩𝑄(𝑘) = ⟨𝑥𝑘⟩𝑄 ,

⟨𝑥2𝑘 ⟩𝑄(𝑘) = ⟨𝑥2𝑘 ⟩𝑄 .
(5.26)

The strategy of the EP algorithm is to update iteratively the univariate Gaussian
parameters {a,d} according to Eq. (5.26) until they reach stable values. To better un-
derstand the EP update, we rewrite the tilted distribution as 𝑄(𝑘)(x) ∝ 𝑄\𝑘(x)𝜓𝑘(𝑥𝑘),
where we introduced the cavity distribution:

𝑄\𝑘(x) ∝ exp [−1
2
(x − ⟨x⟩(𝑘))

𝑇
(Σ(𝑘))−1 (x − ⟨x⟩(𝑘))] , (5.27)

where the cavity covariance matrix is defined as Σ(𝑘) = (𝐴 + 𝐷(𝑘))
−1

, with 𝐷(𝑘) the
same matrix as 𝐷 but with the 𝑘-th diagonal entry set to zero. Correspondingly, the
cavity average is given by ⟨x⟩(𝑘) = Σ(𝑘) (m + 𝐷(𝑘)a). Similarly, we can also express 𝑄
as 𝑄(x) ∝ 𝑄\𝑘(x)𝜙𝑘(𝑥𝑘), so that the average values become:

⟨𝑥𝛼𝑘 ⟩𝑄 ∝ ∫ d𝑁𝑥 𝑥𝛼𝑘𝑄
\𝑘(x)𝜙𝑘(𝑥𝑘)

∝ ∫ d𝑥𝑘 𝑥𝛼𝑘𝑄
\𝑘(𝑥𝑘)𝜙𝑘(𝑥𝑘), (5.28)

where 𝑄\𝑘(𝑥𝑘) is the marginal of the cavity distribution and 𝛼 = 1,2. Thus, the
average values are computed with respect to the product of two univariate Gaussians
𝑄\𝑘(𝑥𝑘)𝜙𝑘(𝑥𝑘), for which we can use the known formula:

⎧

⎨
⎩

𝑚 = 𝑠 [𝑚1
𝑠1

+ 𝑚2
𝑠2
] ,

𝑠 = [ 1𝑠1
+ 1

𝑠2
]
−1

,

(5.29)

where𝑚1,2 are the means and 𝑠1,2 the variances of the two Gaussians, and𝑚 and 𝑠 are
those corresponding to the product between the two. Employing Eq. (5.29) to compute
the integrals in Eq. (5.28) one gets:
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⎧⎪
⎨⎪
⎩

⟨𝑥𝑘⟩𝑄 = [ 1
𝑑𝑘
+ 1

Σ𝑘
]
−1

(𝑎𝑘𝑑𝑘
+ 𝜇𝑘

Σ𝑘
) ,

⟨𝑥2𝑘 ⟩𝑄 = [ 1
𝑑𝑘
+ 1

Σ𝑘
]
−1

+ ⟨𝑥𝑘⟩
2
𝑄 ,

(5.30)

where we labeled ⟨x⟩(𝑘)𝑘 = 𝜇𝑘 and Σ(𝑘)𝑘𝑘 = Σ𝑘. The actual EP update equations are
obtained by expressing Eq. (5.26) as a function of 𝑎𝑘 and 𝑑𝑘:

⎧⎪
⎨⎪
⎩

𝑎𝑘 = ⟨𝑥𝑘⟩𝑄(𝑘) + 𝑏𝑘
Σ𝑘

(⟨𝑥𝑘⟩𝑄(𝑘) − 𝜇𝑘) ,

𝑑𝑘 = [ 1
⟨𝑥2𝑘 ⟩𝑄(𝑘)−⟨𝑥𝑘⟩

2
𝑄(𝑘)

− 1
Σ𝑘
]
−1

.
(5.31)

Following Eq. (5.31), two possible update strategies can be pursued. Either EP pa-
rameters are updated sequentially, i.e. after each moments computation the cavity ma-
trix is also updated before moving to the next, or the same Σ(𝑘) and ⟨x⟩(𝑘) are used to
perform every update. The second strategy is known as parallel update, since the single
operations can be performed independently.

In order to simplify some computations, it is possible to rely on the so called Sherman-
Morrison formula [146], which allows to relate two matrices differing for just a single
entry, as it is the case for Σ and Σ(𝑘):

Σ(𝑘) = Σ +
Σe𝑘e𝑇𝑘Σ
𝑑𝑘 − Σ𝑘𝑘

, (5.32)

where e𝑘 is the vector of the canonical basis with all components zero but the 𝑘-th.
From Eq. (5.32) we obtain the marginal cavity mean and variance as:

⎧
⎨
⎩

Σ𝑘 =
𝑑𝑘Σ𝑘𝑘
𝑑𝑘−Σ𝑘𝑘

𝜇𝑘 =
𝑑𝑘⟨𝑥𝑘⟩−𝑎𝑘Σ𝑘𝑘

𝑑𝑘−Σ𝑘𝑘

(5.33)

It is worth stressing that the tilted moments need to be computed explicitly for the
given priors 𝝍:

⟨𝑥𝛼𝑘 ⟩𝑄(𝑘) ∝ ∫ d𝑁𝑥 𝑥𝛼𝑘𝑄
\𝑘(x)𝜓𝑘(𝑥𝑘) = ∫ d𝑥𝑘 𝑥𝛼𝑘

e
− (𝑥𝑘−𝜇𝑘)

2

2Σ𝑘

√2𝜋Σ𝑘
𝜓𝑘(𝑥𝑘), (5.34)

The EP parameters are updated until convergence is reached, according to the tol-
erance parameter 𝜖:

𝜖𝑡 = max𝑘=1,…,𝑁 {|⟨𝑥𝑘⟩𝑄(𝑘)
𝑡

− ⟨𝑥𝑘⟩𝑄(𝑘)
𝑡−1
| + |⟨𝑥2𝑘 ⟩𝑄(𝑘)

𝑡
− ⟨𝑥2𝑘 ⟩𝑄(𝑘)

𝑡−1
|} . (5.35)
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In particular, iterations stop when 𝜖𝑡 < 𝜖stop.
In Alg. 1 we summarize the main points of the parallel implementation of the EP

algorithm, whose key element is the moment function, corresponding to Eq. (5.34).
Therein, we also introduced the damping parameter 𝛾, which is necessary to stabilize
EP dynamics.

Algorithm 1 Parallel EP update

1: procedure EP(𝐴,m, {𝜓1,… , 𝜓𝑁})
2: Initialize aold, dold and Δ𝑎𝑣 = 1
3: while iter < maxiter && Δ𝑎𝑣 > 𝜖 do
4: av = 0
5: var = 0
6: Σ = (𝐴 + 𝐷)−1

7: x = Σ (m + 𝐷a)
8: for 𝑘 = 1,… ,𝑁 do
9: 𝜇𝑘 =

𝑑𝑘⟨𝑥𝑘⟩−𝑎𝑘Σ𝑘𝑘
𝑑𝑘−Σ𝑘𝑘

10: Σ𝑘 =
𝑑𝑘Σ𝑘𝑘
𝑑𝑘−Σ𝑘𝑘

11: ⟨𝑥𝑘⟩𝑄(𝑘) , ⟨𝑥2𝑘 ⟩𝑄(𝑘) = moment(𝜇𝑘,Σ𝑘, 𝜓𝑘)

12: Δ𝑎𝑣 ← max (Δ𝑎𝑣, |⟨𝑥𝑘⟩
(𝑘) − 𝑎𝑣𝑘|)

13: 𝑎𝑣𝑘 ← ⟨𝑥𝑘⟩𝑄(𝑘)

14: 𝑣𝑎𝑟𝑘 ← ⟨𝑥2𝑘 ⟩𝑄(𝑘) − ⟨𝑥𝑘⟩
2
𝑄(𝑘)

15: 𝑑new𝑘 ← [ 1
𝑣𝑎𝑟𝑘

− 1
Σ𝑘
]
−1

16: 𝑎new𝑘 ← 𝑎𝑣𝑘 +
𝑑𝑘
Σ𝑘

(𝑎𝑣𝑘 − ⟨𝑥𝑘⟩
(𝑘))

17: 𝑎old𝑘 ← 𝛾𝑎old𝑘 + (1 − 𝛾)𝑎new𝑘
18: 𝑑old𝑘 ← 𝛾𝑑old𝑘 + (1 − 𝛾)𝑑new𝑘
19: return av, var

5.2.2 EP for RBM inference
In this section we specialize EP to the problem of inferring the constituent parameters
of an RBM. In order to set a specific stage, we consider the case of a binary network, in
which both the visible and the hidden units are boolean variables, i.e. 𝑣𝑖, ℎ𝑖 ∈ {0,1}. In
this scenario, the energy function associated to the RBM can be written as:

𝐸(v,h) = v𝑇𝑤h + v𝑇𝜽v + h𝑇𝜽h, (5.36)

in which we introduce the set of parameters defining the RBM: the 𝑁 × 𝑀 weight
matrix 𝑤 and the respectively 𝑁 and𝑀 dimensional binary fields 𝜽v and 𝜽h. Within the
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EP framework, we assume that the model probability 𝑃(v,h) ∝ exp [−𝐸(v,h)] can be
expressed as:

𝑃(x) = 1
𝑍
e−

1
2x

𝑇𝑊x
𝑁+𝑀
∏
𝑝=1

𝜓𝑝(𝑥𝑝), (5.37)

where x = (v,h) is the concatenation of visible and hidden units vectors, and we
introduced the (𝑁 +𝑀)×(𝑁 +𝑀)matrixW, which plays the role of the precision matrix
𝐴 of the multivariate Gaussian term 𝐺(x), and is defined as:

𝑊 = ( 0 −𝑤
−𝑤 0 ) . (5.38)

The functions 𝜓 are the set of priors imposing the binary constraints. Indeed, ac-
cording to the multivariate Gaussian part, x is in principle a real valued vector of zero
meanm = 0. EP aims at approximating Eq. (5.37) with themultivariate Gaussian ansatz
𝑄(x):

𝑄(x) ∝ e−
1
2x

𝑇𝑊x
𝑁+𝑀
∏
𝑝=1

𝜙𝑝(𝑥𝑝; 𝑎𝑝, 𝑑𝑝) (5.39)

= e−
1
2 [x

𝑇𝑊x+(x−a)𝑇𝐷(x−a)] (5.40)

so that Σ = (𝑊 + 𝐷)−1 and ⟨x⟩𝑄 = Σ𝐷a. The matrix𝐷 contains the inverse variances
of the EP univariate factors:

𝐷 = (
𝐷v 0
0 𝐷h) , (5.41)

where 𝐷v = diag𝑁 ( 1
𝑑1
,… , 1

𝑑𝑁
) and 𝐷v = diag𝑀 ( 1

𝑑𝑁+1
,… , 1

𝑑𝑁+𝑀
). Alternatively, the

variances vectors can be seen as a concatenation of a visible and a hidden part d =
(dv,dh), akin to the mean vector a = (𝑎1,… , 𝑎𝑁, 𝑎𝑁+1,… , 𝑎𝑁+𝑀) = (av, ah).

The EP algorithm requires to invert the precision matrix 𝐴 to obtain the covariance
matrix Σ, since the cavity, and consequently the tilted moments, are computed from it.
For the specific case of RBM, the precision matrix has a peculiar block structure, that
can leveraged so to optimize the inversion process:
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𝐴−1 = Σ = (
𝐷v −𝑤
−𝑤𝑇 𝐷h)

−1

= (
(𝐷v)−1 + (𝐷v)−1 𝑤 (𝐴h)

−1
𝑤𝑇 (𝐷v)−1 (𝐷v)−1 𝑤 (𝐴h)

−1

(𝐴h)
−1

𝑤𝑇 (𝐷v)−1 (𝐴h)
−1 )

= (
(𝐴v)−1 (𝐷h)

−1
𝑤𝑇 (𝐴v)−1

(𝐴v)−1 𝑤 (𝐷h)
−1

(𝐷h)
−1

+ (𝐷h)
−1

𝑤𝑇 (𝐴v)−1 𝑤 (𝐷h)
−1) (5.42)

where we introduced the precision matrices of the visible and hidden units 𝐴v =
𝐷v−𝑤 (𝐷h)

−1
𝑤𝑇,𝐴h = 𝐷h−𝑤𝑇 (𝐷v)−1 𝑤. Each of the two expressions of the covariance

matrix in Eq. (5.42) can be used. Specifically, since generally for the RBM 𝑁 > 𝑀, it
is convenient to employ the one that only requires to invert 𝐴h (inversion of the 𝐷’s
matrices are trivial because they are diagonal). Following this strategy, we passed from
a computational time of 𝑂 ((𝑁 + 𝑀)3), related to the inversion of the full precision
matrix 𝐴, to a computational complexity of order 𝑂(𝑀3) or 𝑂(𝑁 3), depending on the
specific choice made.

Even if the previously presented trick allows for a speed up of the EP algorithm, a
sequential update would still scale at most as 𝑂(𝑀3(𝑁 + 𝑀)). In the context of RBM,
we devised an update strategy that we name block-EP, which is inspired from the al-
ternate Gibbs sampling between visible and hidden units used in Monte Carlo learning
strategies.

The idea of the block update scheme is to alternatively perform a parallel EP update
(Alg. 1) within the visible and hidden units, and a sequential update between the two
blocks. Thus, given the joint probability 𝑄(x), we first need to compute the marginals
associated to the visible and hidden blocks. To do so, it is convenient to first rewrite
the multivariate Gaussian in Eq. (5.40) as:

𝑄(v,h) = 1

(2𝜋)
𝑁+𝑀
2 det (Σ)

1
2

e−v
𝑇𝑤h− 1

2 (v−a
v)𝑇𝐷v(v−av)− 1

2(h−a
h)

𝑇
𝐷h(h−ah), (5.43)

where we highlighted the decomposition in visible and hidden block. Then, the
visible units marginal is obtained by integration over the hidden variables:
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𝑄(v) ∝ e−
1
2 (v−a

v)𝑇𝐷v(v−av)
∫ d𝑀ℎe−(v

𝑇𝑤)h− 1
2(h−a

h)
𝑇
𝐷h(h−ah)

∝ e−
1
2 (v−a

v)𝑇𝐷v(v−av)
∫ d𝑀ℎe−

1
2h

𝑇𝐷hh+[𝐷h(ah)
𝑇
−𝑤𝑇v]

𝑇
h

∝ e−
1
2 (v−a

v)𝑇𝐷v(v−av)e
1
2h

𝑇
(𝐷h)

−1
h

∝ e−
1
2 (v−⟨v⟩)

𝑇𝐴v(v−⟨v⟩) (5.44)

where we defined h = 𝐷h (ah)
𝑇
− 𝑤𝑇v. The marginal precision matrix and mean

vector have explicit expression:

{
𝐴v = 𝐷v − 𝑤 (𝐷h)

−1
𝑤𝑇,

⟨v⟩ = (𝐴v)−1 [𝐷vav − 𝑤ah] .
(5.45)

It is worth pointing out that the expression of the marginal precision matrix could
also be derived by Eq. (5.42). Indeed, the marginal of a multivariate Gaussian is still
a multivariate Gaussian, whose covariance matrix and mean vector are the subparts
related to the considered block. If we repeat the same procedure for the hiddenmarginal
we obtain:

{
𝐴h = 𝐷h − 𝑤𝑇 (𝐷v)−1 𝑤,

⟨h⟩ = (𝐴h)
−1

[𝐷hah − 𝑤𝑇av] .
(5.46)

We now have all the necessary ingredients to write down the block-EP algorithm,
which is reported in Alg. 2. We specialize the pseudocode to the case in which the
intractable probability to be approximated coincides with Eq. (5.37). We notice how
the block algorithm has a computational complexity of order 𝑂(𝑁 3+𝑀3), as it requires
the inversion of the two precisionmatrices𝐴v and𝐴h. It is thus suboptimal with respect
to the parallel update, even if it provides improved accuracy, for at the second inversion
EP parameters are partially updated.

Gradient computation for binary RBM

Once the EP algorithm has converged to a fixed point, the multivariate probability func-
tion 𝑄(x) can be used to approximate the likelihood gradients. For the case of binary
RBM, on top of Eq. (5.11), we also need to compute the derivatives of the likelihood
with respect to the binary fields:
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Algorithm 2 Block EP update for RBM

1: procedure blockEP(𝑤, {𝜓1,… , 𝜓𝑁})
2: Initialize av, ah, dv, dh and Δ𝑎𝑣 = 1
3: while iter < maxiter && Δ𝑎𝑣 > 𝜖 do
4: avv, avh = 0
5: varv, varh = 0
6: 𝐷v = diag𝑁 ( 1

𝑑v1
,… , 1

𝑑v𝑁
)

7: 𝐷h = diag𝑀 ( 1
𝑑h1
,… , 1

𝑑h𝑀
)

8: Σv = (𝐷v − 𝑤 (𝐷h)
−1

𝑤𝑇)
−1

9: ⟨v⟩𝑄 = Σv (𝐷vav − 𝑤ah)
10: for k=1,…,N do
11: 𝜇𝑘 =

𝑑v𝑘 ⟨𝑣𝑘⟩𝑄−𝑎
v
𝑘Σ

v
𝑘𝑘

𝑑v𝑘−Σ
v
𝑘𝑘

12: Σ𝑘 =
𝑑v𝑘Σ

v
𝑘𝑘

𝑑v𝑘−Σ
v
𝑘𝑘

13: ⟨𝑣𝑘⟩𝑄(𝑘) , ⟨𝑣2𝑘 ⟩𝑄(𝑘) = moment(𝜇𝑘,Σ𝑘, 𝜓𝑘)
14: Δ𝑎𝑣 ← max (Δ𝑎𝑣, |⟨𝑣𝑘⟩𝑄(𝑘) − 𝑎𝑣v𝑘 |)

15: 𝑎v, 𝑑v = update (⟨𝑣𝑘⟩𝑄(𝑘) , ⟨𝑣2𝑘 ⟩𝑄(𝑘) , 𝜇𝑘,Σ𝑘)
16: 𝐷v

𝑘𝑘 =
1
𝑑v𝑘

17: 𝑎𝑣v𝑘 , 𝑣𝑎𝑟
v
𝑘 ← ⟨𝑣𝑘⟩𝑄(𝑘) , ⟨𝑣2𝑘 ⟩𝑄(𝑘) − ⟨𝑣𝑘⟩

2
𝑄(𝑘)

18: Σh = (𝐷h − 𝑤𝑇 (𝐷v)−1 𝑤)
−1

19: ⟨h⟩𝑄 = Σh (𝐷hah − 𝑤𝑇av)
20: for k=1,…,M do

21: 𝜇𝑁+𝑘 =
𝑑h𝑘 ⟨ℎ𝑘⟩𝑄−𝑎

h
𝑘Σ

h
𝑘𝑘

𝑑h𝑘 −Σ
h
𝑘𝑘

22: Σ𝑁+𝑘 =
𝑑h𝑘 Σ

h
𝑘𝑘

𝑑h𝑘 −Σ
h
𝑘𝑘

23: ⟨ℎ𝑘⟩𝑄(𝑘) , ⟨ℎ2𝑘⟩𝑄(𝑘) = moment(𝜇𝑘+𝑁,Σ𝑁+𝑘, 𝜓𝑘)
24: Δ𝑎𝑣 ← max (Δ𝑎𝑣, |⟨ℎ𝑘⟩𝑄(𝑘) − 𝑎𝑣h𝑘 |)

25: 𝑎h, 𝑑h = update (⟨ℎ𝑘⟩𝑄(𝑘) , ⟨ℎ2𝑘⟩𝑄(𝑘) , 𝜇𝑁+𝑘,Σ𝑁+𝑘)
26: 𝐷h

𝑘𝑘 =
1
𝑑h𝑘

27: 𝑎𝑣h𝑘 , 𝑣𝑎𝑟
h
𝑘 ← ⟨ℎ𝑘⟩𝑄(𝑘) , ⟨ℎ2𝑘⟩𝑄(𝑘) − ⟨ℎ𝑘⟩

2
𝑄(𝑘)

28: return avv, avh, varv, varh
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⎧
⎨
⎩

𝜕ℒ
𝜕𝜃v𝑗

= 𝑣𝑗 − ⟨𝑣𝑗⟩𝑃(x)

𝜕ℒ
𝜕𝜃h𝜈

= ⟨ℎ𝜈⟩𝑃(ℎ𝜈|v) − ⟨ℎ𝜈⟩𝑃(x) .
(5.47)

As it could be expected, the derivatives with respect to the binary fields 𝜽v and 𝜽h are
given by the difference between empirical and ensemble averages of the visible and hid-
den units respectively. In the previous equation, both the visible and hidden averages
are approximated as ⟨𝑣𝑗⟩𝑃 ≃ ⟨𝑣𝑗⟩𝑄, ⟨ℎ𝜈⟩𝑃 ≃ ⟨ℎ𝜈⟩𝑄, i.e. with the averages of the multivari-
ate Gaussian. The conditional average ⟨ℎ𝜈⟩𝑃(ℎ𝜈|v) appears both in Eqs. (5.11) and (5.47).
Thanks to the peculiar RBM structure, such average can be computed analytically, and
for the specific case of a binary prior one gets:

⟨ℎ𝜈⟩𝑃(ℎ𝜈|v) =
∑ℎ𝜈={0,1} ℎ𝜈e

ℎ𝜈𝜃h𝜈 +𝐼𝜈(v)

∑ℎ𝜈={0,1} e
ℎ𝜈𝜃h𝜈 +𝐼𝜈(v)

= 1
1 + e−[𝜃

h
𝜈 +𝐼𝜈(v)]

. (5.48)

Such conditional average is a function of the field 𝜽h and of the input 𝐼𝜈(v) = ∑𝑁
𝑖=1 𝑤𝑖𝜈𝑣𝑖.

Alternatively, one can again rely on the approximation 𝑄(x), leveraging the known for-
mula for conditioning Gaussian distributions:

⟨ℎ𝜈⟩𝑄(h|v) = ⟨ℎ𝜈⟩𝑄(x) + (Σvh)
𝑇
(Σv)−1 (v − ⟨v⟩𝑄(x)) , (5.49)

where Σvh and Σv are respectively the 𝑁 ×𝑀 cross-covariance and the 𝑁 ×𝑁 visible
covariance blocks. What is left to compute in Eq. (5.11) is the ensemble cross correlation
⟨𝑣𝑖ℎ𝜇⟩𝑃. This term can be approximated via the covariance matrix Σ of the probability
𝑄 according to:

⟨𝑣𝑖ℎ𝜇⟩𝑃(v,h) ≃ ⟨𝑥𝑖𝑥𝑁+𝜇⟩𝑄(x) = Σ𝑖(𝑁+𝜇) + ⟨𝑥𝑖⟩𝑄(x) ⟨𝑥𝑁+𝜇⟩𝑄(x) . (5.50)

Let’s now focus on the EP update equations for the specific case of a binary RBM,
where we need to compute the average values with respect to the tilted distribution
𝑄(𝑘)(x) = 1

𝑍𝑄(𝑘)
𝑄\𝑘(𝑥𝑘)𝜓𝑘(𝑥𝑘). First of all, we need to compute the normalization factor:
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𝑍𝑄(𝑘) = ∫ d𝑥𝑘 𝑄\𝑘(𝑥𝑘)𝜓𝑘(𝑥𝑘)

= 1

√2𝜋Σ𝑘
∫ d𝑥𝑘 e

− (𝑥𝑘−𝜇𝑘)
2

2Σ𝑘 [ 1
1 + e𝜃𝑘

𝛿(𝑥𝑘) +
1

1 + e−𝜃𝑘
𝛿(1 − 𝑥𝑘)]

= 1

√2𝜋Σ𝑘

⎡
⎢
⎢
⎣

e
−

𝜇2𝑘
2Σ𝑘

1 + e𝜃𝑘
+ e

− (1−𝜇𝑘)
2

2Σ𝑘

1 + e−𝜃𝑘

⎤
⎥
⎥
⎦

= e
− (1−𝜇𝑘)

2

2Σ𝑘

(1 + e−𝜃𝑘) √2𝜋Σ𝑘
[1 + e−𝜃𝑘

1 + e𝜃𝑘
e
1−2𝜇𝑘
2Σ𝑘 + 1] , (5.51)

where we used the notation 𝜇𝑘 = ⟨𝑥𝑘⟩
(𝑘), Σ𝑘 = Σ(𝑘)𝑘𝑘 and 𝜃𝑘 = 𝜃v𝑘 if 𝑘 < 𝑁, whereas

𝜃𝑘 = 𝜃h𝑘−𝑁 if 𝑘 > 𝑁. We can now compute the average values:

⟨𝑥𝑘⟩𝑄(𝑘) =
1

𝑍𝑄(𝑘)
∫ d𝑥𝑘 𝑥𝑘𝑄\𝑘(𝑥𝑘)𝜓𝑘(𝑥𝑘)

= 1
𝑍𝑄(𝑘)

1

√2𝜋Σ𝑘

e
− (1−𝜇𝑘)

2

2Σ𝑘

1 + e−𝜃𝑘

= [1 + e−𝜃𝑘

1 + e𝜃𝑘
e
1−2𝜇𝑘
2Σ𝑘 + 1]

−1

. (5.52)

Since for Boolean variables ⟨𝑥⟩ = ⟨𝑥2⟩, Eq. (5.52) provides all the necessary informa-
tion to run the EP algorithm.

Positive definiteness

In this section, we presented how Gaussian EP might be used to infer the constituent
parameters of an RBM, specifically focusing on the case in which the single unit po-
tentials (i.e. the priors), correspond to Boolean variables. The core of the method is
to approximate the model probability 𝑃(x) in Eq. (5.37) with a multivariate Gaussian
ansatz 𝑄(x). In order for this probability to be well defined, it is necessary for the co-
variance matrix Σ to be positive definite, i.e. its eigenvalues must all be larger than zero
(positive variances in the diagonal basis).

In the context of RBM, the precision matrix 𝐴 possesses a peculiar block structure:

𝐴 = (
𝐷v −𝑤
−𝑤𝑇 𝐷h) , (5.53)
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where 𝑤 is the 𝑁 × 𝑀 weight matrix defining the off-diagonal part, and 𝐷v and 𝐷h

are the diagonal matrices having as elements the inverse EP variances. Since Σ = 𝐴−1,
if the covariance matrix is to be positive definite, also the precision matrix has to, which
is particularly evident if we consider that the eigenvalues of Σ are the inverse of those
of 𝐴.

The positive definiteness condition must hold through the whole iterative update of
EP parameters. In particular, we must guarantee that the initialization of the univariate
variances d is compatible with this condition. In this perspective, we study the simple
case in which all the elements of the variance vector are equal d = 𝑑(1,… ,1), and ask
ourselves what is the maximum value of 𝑑 for which 𝐴 is positive definite.

To answer the question we can employ the useful relation eig(𝐴 + 𝑐𝕀) = eig(𝐴) +
𝑐, where 𝑐 is a constant and 𝕀 is the identity matrix. Thus, we need to compute the
eigenvalues of the matrix 𝑊:

det (𝑊 − 𝜆𝕀𝑁+𝑀) = det (
−𝜆𝕀𝑁 −𝑤
−𝑤𝑇 −𝜆𝕀𝑀

) = 0. (5.54)

Since also Eq. (5.54) is referred to a block matrix, we can rely on the known relation:

det (𝐴 𝐵
𝐶 𝐷) = det(𝐷)det(𝐴 − 𝐵𝐷−1𝐶). (5.55)

Applying Eq. (5.55) to Eq. (5.54) one gets:

(−𝜆)𝑀det (𝑤𝑤
𝑇

𝜆
− 𝜆𝕀𝑁) = 0. (5.56)

𝑊 is an (𝑁 + 𝑀) × (𝑁 + 𝑀) matrix of rank 2𝑀. Consequently, the multiplicity of
the null eigenvalue 𝜆 = 0 is 𝑁 − 𝑀 (for 𝑁 − 𝑀 + 2𝑀 = 𝑁 + 𝑀). The first factor of
Eq. (5.56) provides 𝜆 = 0 as a solution of multiplicity 𝑀. Then, the second factor is to
provide the 2𝑀 non zero eigenvalues and the null eigenvaluewithmultiplicity𝑁−2𝑀 as
further solutions. However, for the positive definiteness problem, we are interested to
determine the larger eigenvalue of𝑊 in absolute value, which is certainly different from
zero. Thus, supposing 𝜆 ≠ 0 in the second factor of Eq. (5.56), the eigenvalue equation
becomes det(𝑤𝑤𝑇 − 𝜆2𝕀𝑁) = 0, i.e. the non-zero eigenvalues of 𝑊 are determined by
the square roots of the eigenvalues of the matrix 𝑤𝑤𝑇, which is a symmetric positive

definite rank-𝑀 matrix. In other words, ±𝜆(𝑊 )
𝑘 = ±√𝜆

(𝑤𝑤𝑇)
𝑘 for any 𝜆(𝑊 )

𝑘 ≠ 0. Finally,

the sought constant 𝑐 is determined as 𝑐 = √𝜆
(𝑤𝑤𝑇)
max + 𝜖, with 𝜖 positive and arbitrarily

small.
The previously presented discussion can be extended to the case in which we have

two different constants 𝑐v and 𝑐h in the visible and hidden blocks along the diagonal.
In this scenario the eigenvalue equation reads:
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det (
(𝑐v − 𝜆)𝕀𝑁 −𝑤

−𝑤𝑇 (𝑐h − 𝜆)𝕀𝑀
) = 0, (5.57)

and applying again Eq. (5.55), Eq. (5.57) becomes:

(𝑐h − 𝜆)𝑀det ((𝑐v − 𝜆)𝕀𝑁 − 𝑤𝑤𝑇

𝑐h − 𝜆
) = 0. (5.58)

Similarly to the previous case, we need to suppose 𝜆 ≠ 𝑐h, checking a posteriori
the consistency of this hypothesis. Doing so, we are left with the eigenvalue problem
det(𝑤𝑤𝑇 − �̃�) = 0, where we set �̃� = (𝑐v − 𝜆)(𝑐h − 𝜆). Thus, �̃� are again the non-
zero eigenvalues of 𝑤𝑤𝑇, whereas the solution to the original eigenvalue problem is
provided by expressing 𝜆 as a function of �̃� (solving the second order equation). Finally,
the non-zero eigenvalues of 𝑊 read:

⎧⎪
⎨⎪
⎩

𝜆(𝑊 )
𝑘+ = 1

2 [𝑐
v + 𝑐h − √4𝜆

(𝑤𝑤𝑇)
𝑘 + (𝑐v − 𝑐h)2] ,

𝜆(𝑊 )
𝑘− = 1

2 [𝑐
v + 𝑐h + √4𝜆

(𝑤𝑤𝑇)
𝑘 + (𝑐v − 𝑐h)2] .

(5.59)

In Eq. (5.59), only the first set of eigenvalues can become negative. We consequently
need to impose:

𝑐v + 𝑐h − √4𝜆(𝑤𝑤
𝑇)

𝑘 + (𝑐v − 𝑐h)2 > 0,

(𝑐v + 𝑐h)
2
> 4𝜆(𝑤𝑤

𝑇)
𝑘 + (𝑐v − 𝑐h)2,

𝑐v𝑐h > 𝜆(𝑤𝑤
𝑇)

𝑘 , (5.60)

where at the second line of Eq. (5.60) we squared both sides of the inequality. In

particular, the inequality holds for every 𝑘 if 𝑐v𝑐h > 𝜆(𝑤𝑤
𝑇)

max , which in turns guarantees
that the precision matrix is positive definite. We notice that the previous condition over
𝑐 is recovered by setting 𝑐v = 𝑐h = 𝑐.

A peculiar behavior that emerged when running the EP algorithm on simple toy
RBM architectures is related to the cavity variances Σ(𝑘)𝑘𝑘 = Σ𝑘, which became negative
along the iterative process. Such behaviormight look as an inconsistency of themethod,
however, the 𝑄\𝑘 are not actual probability distributions, but are only needed to define
the tilted 𝑄(𝑘) distributions, that conversely must be well defined.

5.3 Inference of RBM on MNIST
As a preliminary test, we applied the EP-based learning strategy to infer an RBMmodel
probability for the MNIST dataset, which represents a common benchmark for testing
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the capabilities of deep and shallow networks. Each datapoint is a handwritten digit,
encoded in a 28 × 28 pixels image, which can be also represented as an 𝑁 = 784 compo-
nents vector y𝑑. Each pixel 𝑦𝑑𝑖 is defined over a gray-scale that goes from 0 to 255, but
for our purposes, we proceed by binarizing them rescaling every 𝑦𝑑𝑖 between [0,1], and
defining the binarized version 𝑣𝑑𝑖 according to a threshold 0.5:

{
𝑣𝑑𝑖 = 1 𝑦𝑑𝑖 ≥ 0.5,
𝑣𝑑𝑖 = 0 𝑦𝑑𝑖 ≤ 0.5.

(5.61)

Consequently, we are left with a dataset composed of 𝐷 = 60000 binary vectors v𝑑,
constituting the input of the visible layer. We choose a number of hidden layer units of
𝑀 = 400, since it appears to be a common shared choice in the literature. To define the
training dataset, we do not use the whole set of points, but we rather choose a random
subset of 104 digits.

To begin the learning procedure we need to initialize the model parameters, that in
the case of a binary RBM coincide with the weights 𝑤 and the visible and hidden fields
𝜽v and 𝜽h. Each weight component is initialized as an independent standard normal,
rescaled by the square root of the number of visible units 𝑤𝑖𝜇 ∼ 𝒩 (0,1)/√𝑁. The visible
binary fields are initialized according to the average density of the pixels 𝜌v ≃ 0.23,
i.e. 𝜃v = log 𝜌v

1−𝜌v . The hidden fields are initialized in a similar manner, but with the

average densities 𝜌h𝜇 which are random uniform variable between 0 and 1.
Then, the learning process is defined by minimization of the objective in Eq. (5.10)

(actually minus the likelihood), performing a gradient descent algorithm based on the
gradients in Eqs. (5.11) and (5.47). Similarly to what was presented for BML, the method
relies on the hyperparameter learning rate 𝜂, defining the pace at which parameters are
updated. Choosing the correct value of the learning rate is fundamental to obtain a good
learning process, and a trial and error strategy must be pursued. Usually, a significantly
large learning rate is set at the beginning of the process (e.g. 𝜂 ∼ 0.1), so to accelerate
the learning in this phase in which the landscape is supposed to be smooth, and then it
is shrinked in the final stages of the learning in order to help convergence.

We decided to implement the learning in a stochastic gradient descent (SGD) fashion,
introducing stochasticity in the optimization process. The idea of SGD is to use random
subsets of the dataset in order to compute an approximation of the gradient of the
objective function. Practically speaking, the training dataset is randomly divided in a
number of batches of a certain size, updating the model parameters for each batch. An
iteration over all batches is also referred to as an epoch of the learning process. Themain
advantage of SGD is that it allows for a faster computation of the gradient, since the
empirical averages are computed over smaller sets. On the other hand, convergence is
usually slower because of random fluctuations in the process. However, the introduced
stochasticity can help better navigating the landscape when this is very rough [103],
which is usually the case when training deep neural network architectures.
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For our case, we set the size of the batch to 𝑏𝑠 = 500 datapoints, so that each epoch
is composed by 20 parameters updates.

During the learning process we monitor the trend of some benchmark quantities
such as the likelihood, the error between empirical and model connected correlations,
the weight sparsity ̂𝑝 and the model effective inverse temperature 𝑊2. To track these
quantities we save the state of the RBM at logarithmically spaced learning times, mea-
sured in units of the number of updates. In Fig. 5.2 we show the aforementioned trends.
Panel (a) displays the log-likelihood evolution both for the train and the test set. The
two trends are almost perfectly overlapping, and they both display an inflection point
around 100 updates. Overall, the log-likelihood appears to be a monotonically increas-
ing function of the number of updates. In panel (b) we show the trend of the error on
the connected correlation function, which is defined as:

𝜖(2) = 2
𝑁(𝑁 − 1)

𝑁−1
∑
𝑖=1

𝑁
∑
𝑗=𝑖+1

|Σv𝑖𝑗 − (ΣvMC)𝑖𝑗|
2
, (5.62)

where Σv = vv𝑇−v v𝑇 is the empirical connected correlation function, whereas ΣvMC
is the visible connected correlation function computed from a thermalized Monte Carlo
simulation of the model probability 𝑃. After an initial monotonic decrease, the trend
becomes more erratic. Such a behavior can be related to what happens in the interme-
diate phase of the learning, when EP displays the emergence of multiple attractors (see
Sec. 5.3.2).

The trend of the weight sparsity is reported in panel (c). Such feature is quantified
by means of the parameter ̂𝑝 defined as:

̂𝑝 = 1
𝑀𝑁

𝑀
∑
𝜇=1

(∑𝑁
𝑖=1 𝑤

2
𝑖𝜇)

2

∑𝑁
𝑖=1 𝑤

4
𝑖𝜇

, (5.63)

as it was introduced in [168]. An interesting property of ̂𝑝 is that it provides a scale
invariant score, i.e. ̂𝑝(𝜆𝑤) = ̂𝑝 for weights rescaling 𝑤 → 𝜆𝑤. The weights will be
sparser the lower the estimator ̂𝑝 is. After an initial phase in which ̂𝑝 slightly increases,
it begins to decrease steadily from around iteration 100, reaching a value as low as
̂𝑝 ∼ 0.2.
Finally, the trend of the effective inverse temperature is showed in panel (d). The

estimating parameter 𝑊2 is defined according to:

𝑊2 =
1
𝑀

𝑁,𝑀
∑
𝑖,𝜇=1

𝑤2
𝑖𝜇, (5.64)

and it was as well introduced in [168]. Even if the probabilistic model provided
by the RBM is always set at temperature 𝑇 = 1, the magnitude of the weights can
be interpreted as an effective temperature of the model. Specifically, the larger the
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modulus of the weights, the lower is the effective temperature, coherently with the
definition provided by Eq. (5.64). The estimator𝑊2 displays a monotonically increasing
trend, that appears exponential in log-scale, so that the growth is actually linear with
the number of updates.
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Figure 5.2: Global trends of some benchmarking quantities of the learning process, as a
function of the number of the updates. All the plots are shown with the horizontal axis
in log-scale. Panel (a): trend of the log-likelihood computed both over the train and the
test sets. Panel (b): trend of the error on the second moment, i.e. discrepancy between
the connected correlation function related to the model probability and the one of the
empirical data. Panel (c): trend of weight sparsity estimator ̂𝑝. Panel (d): trend of the
effective inverse temperature estimator of the model 𝑊2.
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5.3.1 Early stage of the learning process
At the beginning of the learning the algorithm starts moving rapidly towards higher
values of the likelihood, suggesting that this phase is characterized by a smooth land-
scape. The first statistical feature that is learnt by the RBM architecture is the average
of the data, that after few iterations is pretty accurately reproduced by the model, as
it can be noticed from Fig. 5.8a, where we show the scatter plots between the empir-
ical statistics and the one provided by the model probability 𝑃(v) after 24 updates of
the weights. Since for Boolean variables the average allows to reconstruct the vari-
ance Var [𝑣] = ⟨𝑣2⟩ − ⟨𝑣⟩2 = ⟨𝑣⟩ (1 − ⟨𝑣⟩), also the diagonal of the covariance matrix is
correctly reproduced by the model at this stage.

The weights remain Gaussian at this learning stage, though displaying an increasing
variance. Moreover, if the visible components of theweights are visualized for a random
subset of hidden units, no internal structure emerges. In panels (a) and (b) of Fig. 5.6,
we show respectively a histogram of all the weights components in semi-log scale, and
a graphical representation of a subset of 16 randomly extracted visible weightsw𝜇 after
14 SGD updates.

It is interesting to compare the capability of the method to approximate the likeli-
hood gradient with alternatives based on Monte Carlo sampling. Specifically, we con-
sidered two methods: Random-𝑘 (Rdm-𝑘), in which the Monte Carlo chain is initialized
randomly and 𝑘 Gibbs sampling steps are performed; contrastive divergence-𝑘 (CD-𝑘),
where the visible initial state is initialized from a datapoint configuration and again 𝑘
sampling steps are realized. In Fig. 5.7, we show the comparison between the meth-
ods. A long thermalized Monte Carlo is used as a benchmark of correct estimate of the
statistics necessary to compute the gradient, coinciding with the averages ⟨v⟩𝑃 and ⟨h⟩𝑃
and the cross correlations ⟨vh𝑇⟩𝑃. We stress that in making this comparison, Rdm-𝑘 and
CD-𝑘 are not used as learning algorithms, but only to estimate the required statistics
at a fixed valued of the RBM parameters. In Figs. 5.7a and 5.7b, we show the compar-
ison between the different methods after 14 steps of weights update. We choose the
number of Gibbs sampling steps to be 𝑘 = 500, for both Rdm-𝑘 and CD-𝑘. Remarkably,
the estimates obtained with the EP approximation are in very good agreement with
the outcome of the thermalized Monte Carlo, and better than those obtained with both
alternative methods.

It is also interesting to study the transfer function defined in Eq. (5.8), a quantity
that reflects if a hidden unit is activated or not. Specifically, we compute it for every
hidden unit, averaging over the visible configurations in the training set. For Boolean
variables, the transfer function has expression:

𝐻𝜇 (𝐼𝜇(v)) = Θ (𝐼𝜇(v) + 𝜃h𝜇 ) , (5.65)

where Θ(𝑥) is the Heaviside function. Thus, the hidden unit is activated if 𝐼𝜇(v) >
−𝜃h𝜇 and not activated otherwise. In Fig. 5.9a we show the histogram of the average
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transfer obtained after 14 updates of the weights, from which it emerges that the ma-
jority of the hidden units are either active or inactive for all the data points.

5.3.2 Emergence of multiple EP attractors
As the learning process goes on, an unexpected feature emerges: the convergence point
of the EP parameters becomes not unique, and the specific reached attractor depends
on the specific initialization of {a,d}. This feature is somewhat surprising, because EP
is usually meant to provide a global approximation of the target probability 𝑃. Instead,
when 𝑃 becomes multimodal, EP begins to separately converge to the different modes,
so that the actual approximation provided by the algorithm is to be intended as amixture
of multivariate Gaussians:

𝑄(x) =
𝐾
∑
𝛼=1

𝜌𝛼𝑄𝛼(x), (5.66)

where 𝛼 = 1,… ,𝐾 are the individual modes, 𝜌𝛼 are the weights of the mixture,
and each 𝑄𝛼 is a multivariate Gaussian having mean ⟨x⟩𝑄𝛼

and covariance matrix Σ𝛼
approximating a specific mode. The single mode statistics can be used to compute the
first and second moment of the total mixture:

⟨x⟩𝑄 =
𝐾
∑
𝛼=1

∫ d𝑁𝑥 𝜌𝛼x𝑄𝛼(x) =
𝐾
∑
𝛼=1

𝜌𝛼 ⟨x⟩𝑄𝛼
, (5.67)

which is the weighted mean of the single mode averages. The non-connected cor-
relation function can be expressed as:

⟨xx𝑇⟩ =
𝐾
∑
𝛼=1

𝜌𝛼 ∫ d𝑁𝑥xx𝑇𝑄𝛼(x)

=
𝐾
∑
𝛼=1

𝜌𝛼 [∫ d𝑁𝑥 (x − ⟨x⟩𝑄𝛼
) (x − ⟨x⟩𝑄𝛼

)
𝑇
𝑄𝛼(x)

+ ∫ d𝑁𝑥x ⟨x𝑇⟩𝑄𝛼
𝑄𝛼(x) + ∫ d𝑁𝑥 ⟨x𝑇⟩𝑄𝛼

x𝑄𝛼(x) − ⟨x⟩𝑄𝛼
⟨x𝑇⟩𝑄𝛼

]

=
𝐾
∑
𝛼=1

𝜌𝛼 [Σ𝛼 + ⟨x⟩𝑄𝛼
⟨x𝑇⟩𝑄𝛼

] , (5.68)

which is again the weighted sum of the single modes correlation function. Finally,
from Eq. (5.68) we can readily derive the mixture covariance matrix:

Σ = ⟨xx𝑇⟩ − ⟨x⟩ ⟨x𝑇⟩ =
𝐾
∑
𝛼=1

𝜌𝛼 [Σ𝛼 + (⟨x⟩𝑄𝛼
− ⟨x⟩𝑄) (⟨x⟩𝑄𝛼

− ⟨x⟩𝑄)
𝑇
] . (5.69)
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If one is able to access the statistics of all themodes, then it is in principle still possible
to estimate the likelihood gradient employing the global mixture as the approximation
of the model probability 𝑃. The drawback of this approach is that even if one is able
to identify all the mixture components, there is still no simple way to determine the
weights of the mixture 𝜌𝛼, i.e. how to mix together the single modes.

A possible solution is provided by the iterative algorithm expectation maximization
(EM) [106], which is often used to cluster data according to a Gaussian mixture. EM is
able to simultaneously determine both the weights of the mixture and the mean vec-
tor and covariance matrix of the single components. For our specific need, the Gaus-
sian modes are already given by EP and we just need to determine the 𝜌𝛼. However,
a subtlety arises, for we should in principle perform EM on configurations generated
according to the model probability 𝑃, requiring the realization of Monte Carlo sampling
simulations that we aim to avoid in our method. As a possible alternative, we take in-
spiration from the CD approach, performing a partial EM on the data themselves. This
procedure will certainly introduce biases in the gradient estimate, being more accurate
near convergence of the algorithm, where 𝑃 should be a good approximation of the
empirical statistics.

In the following, we report the fundamental steps of the EM strategy to compute the
mixture weights.

• Given a mini batch of size 𝑏𝑠 and the number of mixture components 𝐾, initialize
the weights 𝜌0𝛼 = 1/𝐾 and define the evidences 𝑟𝑖𝛼 that data point 𝑖 (𝑖 = 1,… , 𝑏𝑠)
belongs to the 𝛼 component.

• For each data point and component compute the evidence according to

𝑟 𝑡𝑖𝛼 =
𝜌𝑡𝛼𝑄𝛼(x𝑖)

∑𝐾
𝛼′=1 𝜌

𝑡
𝛼′𝑄𝛼′(x𝑖)

.

• Update the mixture weights according to 𝜌𝑡+1𝛼 = 1
𝑏𝑠
∑𝑏𝑠

𝑖=1 𝑟
𝑡
𝑖𝛼.

• If max [|𝜌𝑡+1𝛼 − 𝜌𝑡𝛼|] < 𝛿, where 𝛿 is an arbitrary tolerance, stop the procedure and
return the current 𝜌𝛼 values.

In Fig. 5.3, we report a pair of visible mean vectors related to a two components
mixture in a digit like representation, together with the corresponding global visible
average of the mixture computed via the EM procedure.

Interestingly, the Gaussian mixture obtained from the single EP components is able
to reproduce quite well the statistics of the model distribution, as it can be appreciated
from Fig. 5.4, where we report a comparison between averages and correlations (con-
nected and not) of a long equilibrated Monte Carlo. The shown statistics include both
visible and hidden units.

Practically speaking, how do we deal with the rise of multiple attractors of the EP
algorithm? Our proposal is to realize a replicated EP version, in which we set a certain
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Figure 5.3: Panel (a): average visible vectors in digit-like representation of the two
components of the mixture. Panel (b): visible average in digit-like form of the resulting
mixture. The mixture weights are computed with the EM approach at update 71.

number of independent replicas 𝑅, whose parameters {a𝑟,d𝑟} (𝑟 = 1,… ,𝑅) are initial-
ized randomly. Then, we check how many unique replicas 𝐾 are present among the
converged set of parameters, and employ these unique replicas to estimate the gradient
determining the mixture weights with the partial EM procedure on the minibatch. The
advantage of this approach is that, since the replicas are totally independent of each
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Figure 5.4: Scatter plot between the thermalized Monte Carlo statistics (first and second
moment) and the one provided by the EP mixture 𝑄(x). From left to right: Monte Carlo
averages ⟨x⟩MC versus EP average values ⟨x⟩EP; Monte Carlo correlations ⟨xx𝑇⟩MC ver-
sus EP correlations ⟨xx𝑇⟩EP; Monte Carlo connected correlations ΣMC versus EP covari-
ance matrix ΣEP.

other, the different EP realizations can be run in parallel.
In Fig. 5.5 we show the trend of the number of unique replicas as a function of the

learning time. In particular we show two versions of this trend: in panel (a) we report
the number of unique replicas as a function of the learning epoch, whereas in panel
(b) we report the average number of replicas, mediated over a certain time window, to
obtain a smoother version of the trend. From both plots it emerges how the number of
unique replicas increases with time, and the coarse grained version seems to be com-
posed of several linear trends of different slopes. The shifts between the different trends
are related to changes of the learning rate, which is progressively diminished along the
learning process.

5.3.3 Intermediate learning phase
At the intermediate phase of the learning the likelihood increase rate starts slowing
down, whereas the gradient norm, which initially diminishes steadily, increases to an
order of magnitude higher values. In this phase, at each learning step the model prob-
ability 𝑃 is characterized by one or few modes that might coincide with a subset of the
digits or a mixture of them. Consequently, neither the averages nor the correlation of
the empirical data are accurately reproduced, as it is shown in Fig. 5.8b, obtained at
learning epoch 143. Depending on the specific individual modes of the model proba-
bility, the Pearson correlation coefficient between EP covariance matrix and empirical
connected correlations (and equivalently ⟨xx𝑇⟩MC − ⟨x⟩MC ⟨x𝑇⟩MC) oscillates between
0.4 and 0.6.

The weights 𝑤 become increasingly sparse, at the same time broadening towards
larger extremal values, as can be appreciated from Fig. 5.6c. Moreover, as it can be seen
from 5.6d, they also display an internal structure which sometimes resembles individual
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Figure 5.5: Trend of the unique number of EP replicas throughout the learning process.
In blue the number of unique replicas at an epoch is reported, whereas in black the
average over an epochs chunck is showed.

digits and in other cases appears to represent more complex features.
We can again compare the gradient estimate obtained via the EP approximation and

with Rdm-𝑘 and CD-𝑘 methods. At epoch 143, EP is again able to provide moment es-
timates that are in good agreement with a long thermalized Monte Carlo simulation,
and better than both Rdm and CD for all the selected number of 𝑘 steps (namely 𝑘 =
10, 50, 100, 150, 200, 250, 500). In Figs. 5.7c and 5.7d we show a comparison between
the different methods for 𝑘 = 50. As the learning proceeds, sampling methods gener-
ally need a higher number of sampling steps in order to provide accurate estimates of
the model probability statistics. In particular, CD seems to need a smaller minimum
number of steps 𝑘with respect to Rdm to obtain accurate values of the means and cross
correlation, as it can be noticed from the comparison between Fig. 5.7c and Fig. 5.7d.

The mean transfer function also changes significantly from the first stages of the
learning, as it can be seen from Fig 5.9b. Two small peaks in 0 and 1 are still visible,
but the majority of the histogram mass is concentrated at low values of the transfer
function.
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5.3.4 Final learning stages
The final stages of the learning procedure are characterized by a significant increase in
the number of possible attractors of the EP algorithm, resulting in a higher computa-
tional burden if one aims to catch all the modes of the model probability. Moreover, EP
dynamics slows down because the parameters {a,d} might oscillate among the differ-
ent attractors. This makes estimating the likelihood gradients (Eqs. (5.47) and (5.11))
problematic, as shown in Figs. 5.7e and 5.7f, where we compare a thermalized Monte
Carlo statistics with the results obtained via EP and both Rdm-𝑘 and CD-𝑘 methods at
epoch 703 of the learning. Since at the final stages of the learning the marginal model
probability 𝑃(v) is close to the empirical one, Rdm-𝑘 struggles significantly more than
CD-𝑘 to reach equilibrium, as the initial configuration of the latter are likely to be close
to thermalization. Consequently, whereas EP still performs better than Rdm-200, CD-
10 is already able to surpass EP accuracy. This can be ascribed to the fact that we did
not have access to enough unique attractors so to exhaustively cover the modes of the
model probability.

On the other hand, the learnt model probability begins to reproduce with a higher
accuracy the empirical statistics, as it can be observed in Fig. 5.8c, where we show the
scatter plot between the averages and correlations computed from equilibrium samples
of the 𝑃 and the empirical ones, at 703 epochs of the learning. The related Pearson
correlations are reported as inserts in the plots. The increased accuracy in reproducing
the empirical statistics can also be noted from the plummeting of the 𝜖(2) at the last
point of panel (b) in Fig 5.2.

The RBM weights, reported in panel (a) of Fig. 5.6e, continue to display the trend
already observed at the intermediate learning phase, as can also be noted from Fig. 5.2
panel (c) and (d), where a steadily decreasing and increasing value of the parameters ̂𝑝
and 𝑊2 respectively is observed. Moreover, from Fig. 5.6f, we can see that the weights
features become progressively more abstract, and it is harder to recognize digits-like
shapes among them.

The histogram of the average activation functions Fig. 5.9c, up to the number of
epochs we reached, looks very similar to the one obtained in the intermediate learning
phase. This can be viewed as an issue of the learning process, since one expects the final
set of the RBM parameters to be such that only a small fraction of the hidden units are
active. In contrast, we observe an average activation of around ≲ 𝑀/2 hidden units.
We do not have a clear explanation for this outcome, and it is indeed something we
wish to further investigate in the future.

5.4 Conclusions and perspectives
In this chapter we discussed how to use the iterative algorithm EP to learn the con-
stituents parameters of an RBM. The founding idea of the proposedmethod is to employ
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EP in order to obtain a multivariate Gaussian approximation 𝑄(x) of the model prob-
ability function 𝑃(x) associated to the RBM. Indeed, unsupervised learning of RBM is
based on a gradient ascent algorithm for the likelihood function (Eq. (5.10)), and the
derivatives of such objective with respect to the model parameters (Eqs. (5.11) and
(5.47)) turn out to be a function of some average values of the model probability, which
can be approximately computed via the EP probability function.

When testing the method on theMNIST benchmark dataset, we found an interesting
behavior: at a certain point of the learning process the EP algorithm stops converging
to a unique solution, and a set of possible attractors arise. The specific one to which EP
converges depends on the initialization of the EP parameters {a,d}. These attractors
can be interpreted as the components of a mixture of multivariate Gaussians, that alto-
gether provide the approximation of the model probability 𝑃(x). The drawback of this
scenario is that the individual weights of the mixture cannot be computed employing
the EP algorithm itself. To workaround this issue, we rely on a partial version of the
EM algorithm to be applied as if we were clustering the data within a minibatch among
the mixture components. Such a strategy allows to obtain an approximation of the like-
lihood gradient that is generally superior to both Rdm and CD 𝑘-steps approaches for
𝑘 ≲ 100, up to the final stages of the learning. There, the increased number of possi-
ble attractors makes the inference process computationally harder. In this perspective,
the major limitation of the method is represented by the slowing down of the EP al-
gorithm when multiple attractors arise. Thus, future efforts will be devoted to try to
improve the convergence speed of EP in the advanced phase of the learning process,
and to better understand the relation occurring between EP parameters initialization
and the corresponding reached attractor.

Furthermore, wewould like to apply the EP-based learning strategy to other datasets
besides the MNIST one, and in particular to MSA of protein sequence data. To do so,
we need to carefully define the prior over the visible units. The natural choice would
be to consider a Potts field potential, yielding an RBM energy function:

𝐸(v,h) = −
𝑁
∑
𝑖=1

𝑀
∑
𝜇=1

𝑤𝑖𝜇(𝑣𝑖)ℎ𝜇 +
𝑁
∑
𝑖=1

𝑔𝑖(𝑣𝑖) +
𝑀
∑
𝜇=1

𝑈𝜇(ℎ𝜇), (5.70)

where 𝑔𝑖(𝑣𝑖) is a Potts field contribution, and the weights become a function of the
specific visible units value 𝑣𝑖. Eq. (5.70) is not suited to interpret the interaction term
as if it were Gaussian. To overcome this issue we can rely on the one-hot encoding
representation of sequence data, which was introduced in Sec. 2.3.2. By doing so, the
potential over the visible units becomes binary, as the one employed for the MNIST
dataset. However, one-hot encoded data possess a specific block structure such that
among the 𝑞 entries of a block, only a single component can be equal to 1. The EP
algorithm can in principle be used to impose that∑𝑞

𝑘=1 𝑣𝑘+𝑞(𝑖−1) = 1, i.e. the sum of the
𝑞 entries related to each protein site block 𝑖 = 1,… , 𝐿 is normalized. Such a constraint
can be imposed within the EP framework by using a Gaussian elimination method.
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Figure 5.6: Weight appearance at different stages of the learning. Early stages after 14
updates. Panel (a): Gaussian distribution of the weigths. Panel (b): no evident internal
structure. Intermediate stages after 143 training epochs. Panel (c): the weigths begin
to display an exponential, i.e. sparse distribution. Panel (d): emergence of an internal
structure, either coinciding with individual digits or with more complex features. Final
stages after 703 training epochs. Panel (e): the weights remain sparse and become
progressively broader. Panel (f): emergence of abstract features.
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Figure 5.7: Comparison of the likelihood gradient estimate at different learning stages
and for different algorithms. The quantities required to estimate Eqs. (5.11) and (5.47)
are the average vector ⟨x⟩ and the cross correlation ⟨vh𝑇⟩. We consider the estimates
provided by EP, CD-𝑘 and Rdm-𝑘, and we compare themwith a long thermalized Monte
Carlo. In the insert of each plot, the corresponding Pearson correlation coefficients are
reported. Early stages. Panel (a): results provided by Rdm-500 and the EP approxima-
tion. Panel (b): results provided by CD-500 and the EP approximation. Intermediate
stages. Panel (c): results provided by Rdm-50 and the EP approximation. Panel (d):
results provided by CD-50 and the EP approximation. Final stages. Panel (e): results
provided by Rdm-200 and the EP approximation. Panel (f): results provided by CD-10
and the EP approximation.
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Figure 5.8: Scatter plot between the empirical statistics (first and second moments) and
the one provided by a long thermalized Monte Carlo of the model probability 𝑃(v), at
different learning stages. From left to right: empirical averages v versus model aver-
age values ⟨v⟩𝑃; empirical correlations vv𝑇 versus model correlations ⟨vv𝑇⟩𝑃; empirical
connected correlations Σv versus visible covariance matrix Σv𝑃. Early stages in panel
(a): the model probability reproduces the empirical averages and the variances. Inter-
mediate stages in panel (b): the model probability is concentrated on one or few data
features and does not consequently reproduce neither averages or correlations. Final
stages in panel (c): the model probability embraces globally the dataset, as it is able to
reproduce both average values and correlations.
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Figure 5.9: Histograms of the average transfer function at different learning stages. The
average is computed over the training set. Early stages in panel (a): the response is
binary as the hidden units are either activated or not. Intermediate stages in panel (b):
the histogram mass concentrates at relatively low values of 𝐻𝜇, with two small peaks
at 0 and 1. Final stages in panel (c): similar to the intermediate stages, but the peaks
at the extrema decrease in height.
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Chapter 6

Overview and conclusions

In this thesis we discussed in Chs. 3 and 4 two inference methods for protein sequence
data produced by laboratory experiments, whereas in Ch. 5 we described how to ap-
ply the iterative algorithm expectation propagation (EP) to the problem of learning
Restricted Boltzmann Machines (RBM).

Protein sequence data are becoming increasingly more available, allowing for the
application of statistical physics inspired methods, especially from the perspective of
inverse problems, where the constituent parameters of the model are inferred from the
available data. In this framework, the generalized Potts model (GPM) has proven to be
a valuable tool to describe relevant properties of proteins in a variety of fields: con-
tact prediction and structure determination, protein family assignment, prediction of
mutational effects, prediction of protein-protein interactions, generation of functional
sequences. Recently, deep supervised methods are gaining considerable attention in the
biological domain, and in particular for sequence data. AlphaFold [85] deep architec-
ture has been developed to predict de-novo tertiary structure from protein sequences,
practically solving the long standing problem of folding. Deep learning architectures
have also been used to predict the effect of mutations [129], to study the relation be-
tween sequence and function [63] and for protein engineering and generation [4, 148,
80, 177].

Among the various machine learning methods, transformers architectures and nat-
ural language models in general are becoming increasingly popular in the context of
protein sequence data [127, 128], for which they proved to be able to encode both struc-
tural and phylogenetic information, through unsupervised or self-supervised learning
approaches. Moreover, they can be used as a starting point for fine-tuning processes, in
which the learned parameters are specialized through a supervised learning approach
on a limited labeled dataset.

In this perspective, our proposed models provide unsupervised learning methods on
local datasets, such as those produced by deep mutational scanning and directed evo-
lution experiments. The models attempt to build a statistical framework which is able,
at least effectively, to take into account the dynamics of the underlying experimental
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process. We claim that, leveraging this information, it is possible to accurately infer lo-
cal approximations of the fitness landscape and to provide better structural predictions
with respect to related unsupervised models that do not include any dynamical contri-
bution. In particular, we encode the functional properties of protein sequences into a
GPM energy function for both the AMaLa and betaDCA models, so that we consider
the fitness landscape to be fairly time independent.

For the AMaLa method discussed in Ch. 3, we tested the meaningfulness of the in-
ferred landscape for both prediction of mutational effects and contacts among residues.
The functional model energy has been inferred on directed evolution data of [44, 160].
When inferred on [44] data, the selective energy turned out to be highly correlated
with independent fitness measurements of antibiotic resistance [51, 81] provided by
the TEM-1 𝛽-lactamase protein. Concerning the data of [160], for which such indepen-
dent fitness measurements are missing, we employed the coupling parameters of the
model energy to assess contact prediction for the two studied proteins PSE-1 and AAC6.
For the former, the performances are comparable to the standard equilibrium-DCA ap-
proach, whereas AMaLa is able to provide a significantly improved outcome for AAC6.
By investigating the method performances through in-silico simulation, we conclude
that this outcome is compatible with the hypothesis and approximations at the foun-
dation of the method, which define a specific optimal experimental regime for AMaLa
application. Such regime is characterized by a high mutation rate and a relatively low
selective pressure, or alternatively, the realization of a small number of selective rounds.

The betaDCA method described in Ch. 4 shares some similarities with AMaLa, and
specifically for modeling selection as an annealing process defined by a statistical tem-
perature. However, the generality of the statistical model allowed to apply betaDCA
to a wider variety of experimental settings, such as deep mutational scanning and an-
tibody repertoire sequencing data, on top of directed evolution experiments as well.
The method proved to be particularly effective for datasets characterized by severe un-
dersampling and noisy regimes, as it is the case for antibody repertoire sequences. In-
deed, the method displayed excellent discrimination performances between antibodies
belonging either to the naïve or to the immunized repertoire [88, 66]. For the consid-
ered deep mutational scanning data [18, 175, 56], which provide accurate abundance
information, betaDCA displayed worse performance when compared to an alternative
method [47] that is able to leverage such population dynamics. Finally, even though the
application of betaDCA to directed evolution data is to be considered heuristics, for the
model does not explicitly account for the mutation process, it shows very good perfor-
mances with respect to the contact prediction problem for the data of [160], whereas it
falls short of the AMaLa method for the prediction of mutational effects on TEM-1.

The peculiar feature of both the AMaLa and betaDCA methods, is that they can be
used in cases where accurate abundance measurements are not accessible, for the statis-
tical modeling does not rely directly on the knowledge of the variants population. If for
AMaLa this feature was a necessary requirement, since both directed evolution experi-
ments [44, 160] are realized in a severe undersampling regime, betaDCA was meant to
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be applied to experimental setups for which such abundance measurements might not
be available for a variety of reasons: very noisy experimental processes, undersampling
of the variants population, introduction of mutations alongside selection.

When compared to alternativemachine learning approaches, and specifically to deep
learning architectures, the advantage of energy based approaches such as the GPM is
that their constituent parameters have a direct biological interpretation, as it happens
e.g. for the coupling parameters, allowing to take into account epistatic effects and to
assess contact prediction by estimating the direct interaction between protein residues.

Among the possible machine learning architectures that recently gathered attention
in the protein sequence data community, we can mention the RBM [167, 166, 21, 20,
147], both trained in an unsupervised or semi-supervised manner. In this thesis, we try
to answer to the methodological question of whether it was possible to train RBM by
employing the EP algorithm. The basic idea, is that EP can be used to approximate the
joint model distribution over the visible and hidden units 𝑃(v,h), which is necessary to
compute the ensemble averages appearing in the likelihood gradient expressions (see
Eqs. (5.47) and (5.11)). We applied this strategy to infer an RBM architecture over the
MNIST dataset of handwritten digits. In doing so, we compared the estimates of the
model probability statistics provided by both contrastive approaches and naive Monte
Carlo sampling methods with the one yielded by EP. The latter is generally better than
both Monte Carlo based approaches, when these are characterized by a finite number
of sampling steps 𝑘 ≲ 100. Moreover, we found out an interesting, and to our knowl-
edge unprecedented behavior of the EP algorithm: as the model probability 𝑃(v,h)
becomes multimodal along the learning process of the weights, so EP begins to con-
verge separately to the different modes, providing for each one a multivariate Gaussian
approximation. This interesting feature generates a slowing down in the convergence
of EP parameters, which is the main reason limiting the application of the method,
especially in the final stages of the learning when the probability landscape becomes
very complex, and several modes appear. Thus, future effort will be devoted to attempt
to cure this slowing down, and to study the relation between parameters initialization
and the specific reached attractor. Furthermore, we would like to be able to apply such
EP-based inference strategy also to protein sequence data.
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Appendix A

Elements of Bayesian
Inference

Bayes theorem
In this appendix we discuss the probabilistic formalism providing the theoretical frame-
work for the inference methods treated throughout the thesis work, i.e. the Bayes theo-
rem. Such theorem is indeed a formula connecting the conditional probabilities of two
events 𝐴 and 𝐵:

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
. (A.1)

Eq. (A.1) can be readily applied to an inference setting. Imagine we have collected
a dataset of 𝑀 samples 𝑋 = {x1,x2,… ,x𝑀} where x𝑚 ∈ ℝ𝑁, which is the outcome of
an experimental process whose underlying rules are either not known or inherently
random, so that each sample can be considered as a stochastic realization. Moreover,
we consider a set of parameters 𝜽 ∈ ℝ𝐷 identifying a model of how the data are gen-
erated, i.e. the stochastic rule defining the process. In the Bayesian framework, the
model itself is taken as stochastic, for an ensemble of possible models are defined by
the different values the parameters can assume. In this perspective, the Bayes formula
can be rewritten as:

𝑃(𝜽|𝑋) =
𝑃(𝑋 |𝜽)𝑃(𝜽)

𝑃(𝑋)
=

𝑃(𝑋 |𝜽)𝑃(𝜽)
∫ d𝐷𝜃 𝑃(𝑋 |𝜽)𝑃(𝜽)

. (A.2)

Let’s break down the different terms of Eq. (A.2):

• 𝑃(𝜽|𝑋) is the so called posterior probability. It tells us how probable it is for the
parameters to assume a specific set of values given the observation made about
the data sample 𝑋.
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• 𝑃(𝑋 |𝜽) is the likelihood function, embodying the hypothesis related to the exper-
imental mechanism, i.e. how the data are generated given the model parameters
𝜽.

• 𝑃(𝜽) is the prior probability, containing our knowledge about how the model pa-
rameters should be distributed regardless of the experimental measurements.

• 𝑃(𝑋) is considered as a normalization factor, indeed in Eq. (A.2) we expressed it
as an integral over the model parameters.

Thus, Eq. (A.2) can be viewed as a flux of information: the a priori knowledge of the
model parameters, i.e. the prior, is updated by the collection of observations through
the likelihood function to define the posterior probability. An interesting feature of
Bayesian inference is that it generally does not provide only a point estimate of the
parameters, but rather gives information about their whole distribution. However, it
can be employed as well to determine a specific set of values ̂𝜽 of the model parameters.
To achieve this goal two possible strategies can be pursued:

• Maximum a posteriori (MAP): the model parameters are estimated according to
̂𝜽 = argmax𝜽 [𝑃(𝜽|𝑋)] = argmax𝜽 [𝑃(𝑋 |𝜽)𝑃(𝜽)], that is, the estimate of the model

parameters is provided by the ones maximizing the posterior probability.

• Maximum likelihood (ML): the optimal set of parameters is determined via
̂𝜽 = argmax𝜽 [𝑃(𝑋 |𝜽)], i.e. through maximization of the likelihood function. This

strategy amounts to consider 𝑃(𝜽|𝑋) ∝ 𝑃(𝑋 |𝜽) or in other words, as if the param-
eters prior were uniform. For continuous random variables this implies that 𝑃(𝜽)
is actually a pseudo-prior, since it is not properly normalizable.

Though theMAP approach is formally more correct, for the assumption of a uniform
prior is not always adequate, there exist some scenarios inwhich the likelihood function
represents the dominant contribution with respect to the prior. This is actually the case
in which one has access to a sample of diverging size, i.e. 𝑀 → ∞. For the sake of
simplicity, we can consider the case in which we have 𝑀 i.i.d. samples, so that the
likelihood function can be rewritten as:

𝑃(𝑋 |𝜽) = 𝑃(x1,x2,… ,x𝑀|𝜽) =
𝑀
∏
𝑚=1

𝑃(x𝑚|𝜽). (A.3)

Thus, neglecting the normalization contribution, the posterior can be expressed as:

𝑃(𝜽|𝑋) = 𝑃(𝜽)
𝑀
∏
𝑚=1

𝑃(x𝑚|𝜽) = exp [𝑀 1
𝑀

𝑀
∑
𝑚=1

log 𝑃(x𝑚|𝜽) + log 𝑃(𝜽)]

= exp{𝑀 [log 𝑃(x|𝜽) + 1
𝑀

log 𝑃(𝜽)]} ≈ exp [𝑀log 𝑃(x|𝜽)] , 𝑀 → ∞. (A.4)
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Consequently, if log 𝑃(𝜽) is a smooth function of the parameters its contribution be-
comes negligible as𝑀 → ∞. Moreover, thanks to the law of large number, the empirical
average of the log-likelihood converges in probability to the ensemble average given by
the true set of parameters 𝜽 :

log 𝑃(x|𝜽) ≃ ∫ d𝑁𝑥 𝑃(x|𝜽) log 𝑃(x|𝜽). (A.5)

Eq. (A.5) is the minus cross-entropy 𝑆𝑐 (𝜽, 𝜽) between 𝑃(x|𝜽) and 𝑃(x|𝜽), which can
be expressed as:

𝑆𝑐 (𝜽, 𝜽) = 𝑆 (𝜽) + 𝐷𝐾𝐿 (𝜽 ‖𝜽) , (A.6)

where 𝑆 (𝜽) = − ∫ d𝑁𝑥 𝑃(x|𝜽) log 𝑃(x|𝜽), is the entropy of the true parameters like-

lihood, whereas 𝐷𝐾𝐿 (𝜽 ‖𝜽) = ∫ d𝑁𝑥 𝑃(x|𝜽) log 𝑃(x|𝜽)
𝑃(x|𝜽) is the Kullback-Leibler (KL) diver-

gence between the likelihoods. Since 𝐷𝐾𝐿 (𝜽 ‖𝜽) ≥ 0, the cross-entropy is bounded from
below by the entropy of the likelihood of the true model parameters, and it reaches a
minimum for 𝜽 = 𝜽, when the KL divergence is zero.

In light of these computations, the posterior can be expressed as:

𝑃(𝜽|𝑋) = e−𝑀𝑆𝑐(𝜽,𝜽)

∫ d𝐷𝜃 e−𝑀𝑆𝑐(𝜽,𝜽)

≃ e−𝑀[𝑆𝑐(𝜽,𝜽)−𝑆(𝜽)]

= e−𝑀𝐷𝐾𝐿(𝜽,𝜽), (A.7)

where in the second passage we approximated the integral over 𝜽with a saddle point
computation, i.e. the integral is substituted by its maximum, which is obtained for
𝑆𝑐(𝜽, 𝜽) = 𝑆 (𝜽). Eq. (A.7) tells us that the posterior probability can be asymptotically
approximated in a large deviation fashion, and any set of parameters ̂𝜽 ≠ 𝜽 is exponen-
tially suppressed with the number of observations 𝑀, with a rate which is controlled
by the KL divergence.
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Appendix B

Pseudo-likelihood
computations

The pseudo-likelihood (PSL) approximation represents the inference strategywe adopted
both in Chs. 3 and 4. In this appendix we analyze some details behind PSL computa-
tions. It is for instance interesting to compute the derivative of the objective function
in Eq. (3.12) with respect to a 𝜷 component 𝛽(𝑡𝑘) ≡ 𝛽𝑘:

𝜕𝑔𝑟 (h𝑟, J𝑟, 𝜷)
𝜕𝛽𝑘

= −
𝑀 (𝑡𝑘)

∑
𝑚=1

𝑤 (𝑚,𝑡𝑘) {ℎ𝑟(𝜎
(𝑚,𝑡𝑘)𝑟 ) +∑

𝑖≠𝑟
𝐽𝑟 𝑖(𝜎

(𝑚,𝑡𝑘)𝑟 , 𝜎 (𝑚,𝑡𝑘)𝑖 )

−
∑𝑞

𝑎=1 [ℎ𝑟(𝑎) + ∑𝑖≠𝑟 𝐽𝑟 𝑖(𝑎, 𝜎
(𝑚,𝑡𝑘)
𝑖 )] e

𝛽[ℎ𝑟(𝑎)+∑𝑖≠𝑟 𝐽𝑟 𝑖(𝑎,𝜎
(𝑚,𝑡𝑘)
𝑖 ))]+𝜈(𝑡)𝛿(𝑎,𝜎𝑤𝑡𝑟 )

𝑍𝑟

⎫⎪
⎬⎪
⎭

= ⟨𝐸𝑟(S(𝑚,𝑡𝑘))⟩ − 𝐸𝑟(S(𝑚,𝑡𝑘)), (B.1)

which is a function of the difference between the ensemble energy and the energy
of the sequence S(𝑚,𝑡𝑘) at time 𝑡𝑘, averaged over all the sequences observed at that time.
It is then possible to determine the optimal 𝜷 performing a Newton gradient descent
(NGD) according to (B.1). NGD optimization employs also the second derivate of the
objective function, and has the advantage to be a learning rate free algorithm, for the
update equation for our case of interest becomes:

𝛽(𝑡+1)𝑘 = 𝛽(𝑡)𝑘 −
𝜕𝑔𝑟/𝜕𝛽𝑘
𝜕2𝑔𝑟/𝜕𝛽2𝑘

, (B.2)

where 𝛽(𝑡)𝑘 is the value of the 𝑘-th 𝜷 component at iteration 𝑡 of the optimization al-
gorithm. Eq. (B.2) can be interpreted as if we were using a non-constant learning rate
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𝜆 = 1
𝜕2𝑔𝑟/𝜕𝛽2𝑘

. The subtlety of this strategy is that the objective (3.12) is not contemporar-

ily convex with respect to {h𝑟, J𝑟} and 𝜷, so that if one is to optimze with respect to both
set of parameters contemporarily, convergence to a global extremum is not guaranteed.
To work around this issue, we decided to adopt the following strategy: we let the en-
ergetic parameters converge at fixed 𝜷 at each iteration, performing afterwards a finite
number of updates of the fictitious inverse temperature at fixed {h𝑟, J𝑟}. The algorithm
stops when the variation of the 𝛽𝑘’s goes under a chosen tolerance threshold.

In Sec. 2.2.1, we discussed the gauge invariance property of the GPM, and in Sec.
2.3.3 we mentioned how the PSL approximation allows to impose automatically a gauge
at the end of the learning process. To be more precise, the gauge is imposed by the
presence of the regularization term (see Sec. 2.3.6), which for our case of interest is an
𝑙2 contribution. In the following, we perform the computation for the asymmetric PSL
approach applied to the objective function of Eq. (3.12). Firstly we need to rewrite Eqs.
(3.13) and (3.14) as:

𝜕𝑔𝑟 (h𝑟, J𝑟, 𝜷, 𝝂)
𝜕ℎ𝑟(𝑐)

= − ∑
𝑡={𝑡1,…,𝑡𝑓}

𝑀 (𝑡)

∑
𝑚=1

𝑤 (𝑚,𝑡)𝛽(𝑡) [𝛿(𝑐, 𝜎 (𝑚,𝑡)𝑟 ) − 𝑃(𝜎𝑟 = 𝑐|𝝈\𝑟 = 𝝈 (𝑚,𝑡)
\𝑟 )]

+ 2𝜆ℎℎ𝑟(𝑐) = 0, (B.3)

𝜕𝑔𝑟 (h𝑟, J𝑟, 𝜷, 𝝂)
𝜕𝐽𝑟 𝑗(𝑐, 𝑑)

= − ∑
𝑡={𝑡1,…,𝑡𝑓}

𝑀 (𝑡)

∑
𝑚=1

𝑤 (𝑚,𝑡)𝛽(𝑡)𝛿(𝑑, 𝜎 (𝑚,𝑡)𝑟 ) {𝛿(𝑐, 𝜎 (𝑚,𝑡)𝑗 ) − 𝑃(𝜎𝑟 = 𝑐|𝝈\𝑟 = 𝝈 (𝑚,𝑡)
\𝑟 )}

+ 2𝜆𝐽𝐽𝑟 𝑗(𝑐, 𝑑) = 0. (B.4)

The equality to zero holds at convergence of the algorithm. Summing Eq. (B.3) with
respect to all possible amino acids, one gets the gauge condition over the fields:

𝑞
∑
𝑐=1

ℎ𝑟(𝑐) = 0, (B.5)

since for every 𝑡 ∈ {𝑡1,… , 𝑡𝑓} and𝑚 ∈ {1,… ,𝑀 (𝑡)} it holds∑𝑞
𝑐=1 𝛿(𝑐, 𝜎

(𝑚,𝑡)
𝑟 ) = ∑𝑞

𝑐=1 𝑃(𝜎𝑟 =
𝑐|𝝈\𝑟 = 𝝈 (𝑚,𝑡)

\𝑟 ) = 1. Moreover, Eq. (B.3) can be used to express the fields at convergence:

ℎ𝑟(𝑐) =
1
2𝜆ℎ

∑
𝑡={𝑡1,…,𝑡𝑓}

𝑀 (𝑡)

∑
𝑚=1

𝑤 (𝑚,𝑡)𝛽(𝑡) [𝛿(𝑐, 𝜎 (𝑚,𝑡)𝑟 ) − 𝑃(𝜎𝑟 = 𝑐|𝝈\𝑟 = 𝝈 (𝑚,𝑡)
\𝑟 )] . (B.6)

The gauge conditions for the couplings are respectively obtained by summing Eq.
(B.4) with respect to the first and the second amino acid entry:
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{
∑𝑞

𝑐=1 𝐽𝑟 𝑖(𝑐, 𝑑) = 0,

∑𝑞
𝑑=1 𝐽𝑟 𝑖(𝑐, 𝑑) =

𝜆ℎ
𝜆𝐽
ℎ𝑟(𝑐).

(B.7)

where in the second equality we employed Eq. (B.6) to express the result as a func-
tion of the fields. These gauge conditions have been verified for the asymmetric PSL
approach both on real and synthetic data. One can also readily derive the gauge con-
ditions for the symmetrized coupling parameters, obtained when combining 𝐽𝑟 𝑖 and 𝐽𝑖𝑟.
Indeed, one has:

⎧

⎨
⎩

∑𝑞
𝑎=1 𝐽𝑖𝑗(𝑎, 𝑏) =

1
2 [∑

𝑞
𝑎=1 𝐽 𝑖𝑖𝑗(𝑎, 𝑏) + ∑𝑞

𝑎=1 𝐽
𝑗
𝑗𝑖(𝑏, 𝑎)] =

𝜆ℎ
2𝜆𝐽

ℎ𝑗(𝑏),

∑𝑞
𝑏=1 𝐽𝑖𝑗(𝑎, 𝑏) =

1
2 [∑

𝑞
𝑏=1 𝐽

𝑖
𝑖𝑗(𝑎, 𝑏) + ∑𝑞

𝑏=1 𝐽
𝑗
𝑗𝑖(𝑏, 𝑎)] =

𝜆ℎ
2𝜆𝐽

ℎ𝑖(𝑎),
(B.8)

in which we added the superscript 𝐽 𝑟𝑟𝑘 to specify that such coupling parameter was
determined by optimization of the objective 𝑔𝑟 (Eq. (3.12)), related to site 𝑟.
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Appendix C

Jukes Cantor mutational
model

In this appendix we go deeper into the Jukes-Cantor (JC) model of neutral evolution, i.e.
in which the dynamics in sequence space is solely determined by the mutation process.
In Sec. 3.2.2 we treated the continuous time version of the JC model. Here, we would
like to give some additional results about the continuous time formalism, highlighting
how it can be related to the discrete time dynamics.

We already stated that the fundamental quantities defining the JC model are, for the
continuous time case, the number of symbols 𝑞 and the single site mutation rate 𝜇, i.e.
how many mutations are expected to take place in the time unit. For the discrete time
case, the equivalent of the mutation rate is the single site mutation probability 𝑝, i.e.
the probability for a single site to be mutated over a round. Indeed, rather than writing
down a master equation as in Eq. (3.6), the stochastic dynamics will be modeled as a
Markov chain. The state of the chain is probabilistically described by a 𝑞 × 𝐿 matrix
𝑃 𝑡, such that 𝑃 𝑡𝑎𝑖 is the probability that at time 𝑡 site 𝑖 is found in amino acid 𝑎. At
𝑡 = 0, all sequences must coincide with the wild-type, so that the matrix elements read
𝑃0𝑎𝑖 = 𝛿(𝑎, 𝜎𝑤𝑡𝑖 ). For a Markov chain process, the relation between the probabilities at
neighboring times is defined as:

𝑃 𝑡+1 = 𝑊𝑃 𝑡, (C.1)

where 𝑊 is the 𝑞 × 𝑞 transition matrix, that for the discrete JC model reads:

𝑊 =

⎛
⎜
⎜
⎜
⎝

1 − 𝑝 𝑝
𝑞−1

𝑝
𝑞−1 … 𝑝

𝑞−1
𝑝

𝑞−1 1 − 𝑝 𝑝
𝑞−1 … 𝑝

𝑞−1
⋮ ⋱ ⋮
𝑝

𝑞−1
𝑝

𝑞−1 … … 1 − 𝑝

⎞
⎟
⎟
⎟
⎠

. (C.2)

Diagonal elements in Eq. (C.2) account for the probability of a site not to mutate,
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whereas out of diagonal elements account for the probability that a site does mutate
over the cycle. Such event has to be normalized to 𝑞 − 1, which is the number of
available symbols. Interestingly, the 𝑊 matrix is doubly stochastic, i.e. the sum over
both rows and columns is equal to 1. This automatically guarantees that the asymp-
totic distribution exists and is uniform, so that 𝑃∞𝑎𝑖 = 1/𝑞 for every 𝑎 = 1,… , 𝑞 and
𝑖 = 1,… , 𝐿. Since the JC model is site-independent, the probability of a specific se-
quence S = (𝜎1, 𝜎2,… , 𝜎𝐿) (where we consider 𝜎 ∈ {1,… , 𝑞}) is obtained by multiplying
the proper 𝑃 𝑡 elements: 𝑃 (𝑡)(S) = ∏𝐿

𝑖=1 𝑃
𝑡
𝜎𝑖,𝑖. Consequently, the asymptotic probability

becomes 𝑃 (∞)(S) = 1/𝑞𝐿 for any sequence, as expected.
Eq. (C.1) can also be expressed as 𝑃 𝑡 = (𝑊)𝑡 𝑃0, where (𝑊)𝑡 is the 𝑡-th power of

the transition matrix. In this way, it is possible to obtain the probability of a sequence
to be observed at time 𝑡 as an expansion in powers of 𝑝, as the single site mutation
probability is supposed to be generally small 𝑝 ≪ 1. In particular, we get a different
expansion depending on the Hamming distance between the considered sequence and
the wild-type. Namely:

{
𝑃 (𝑡) (S|hD(S, S𝑤𝑡) = 0) = 1 − (𝑡𝐿)𝑝 + 𝐶2(𝑡, 𝐿, 𝑞)𝑝2 + 𝑂(𝑝3),

𝑃 (𝑡) (S|hD(S, S𝑤𝑡) = 𝑑) = ( 𝑝𝑡
𝑞−1)

𝑑
+ 𝑂(𝑝𝑑+1).

(C.3)

where 𝐶2(𝑡, 𝐿, 𝑞) =
𝑡𝐿

2(𝑞−1) {𝑡 [(𝑞 − 1)𝐿 − 𝑡] + 𝑡(𝑡 + 1) − 𝑞}. Even if 𝑝 is small, we notice
that the first of Eq. (C.3) breaks down as soon as 𝑡𝐿 ∼ 𝑝. However, the second equation
might suggest an ansatz for the time dependent probability: 𝑃 (𝑡) (S|hD(S, S𝑤𝑡) = 𝑑) ∝
exp{−𝑑 ln (𝑞−1𝑝𝑡 )}, which closely resembles Eq. (3.9). From this computation, the ad-
vantage of the continuous time formalism should emerge, as it is able to automatically
re-sum all the perturbative contributions in Eq. (C.3).

At this point, it is worth deriving the relation between 𝑝 and 𝜇. In particular, from
the second of Eq. (3.8) it follows:

𝑝(𝜇, 𝜏 ) =
𝑞 − 1
𝑞

(1 − e−𝜇𝜏) =
𝑞 − 1
𝑞

𝜇𝜏 + 𝒪(𝜇𝜏)2, (C.4)

expressing 𝑝 as a function of 𝜇 and a time interval 𝜏. Eq. (C.4) states how we could
switch from the continuous to the discrete time formalism, interpreting the interval of
duration 𝜏 as a single cycle of mutagenesis.

In the following, we will go back to the continuous time formalism with the aim
to survey some further features of the purely mutational process. We recall that the
probability of observing a sequence at time 𝑡 given a certain mutation rate 𝜇 reads:

𝑃 (𝑡)(S) = e−𝜈(𝑡)hD(S,S
𝑤𝑡)

𝑍 (𝑡)
, (C.5)

where 𝑍 (𝑡) is the normalization factor which can be explicitly computed as:
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𝑍 (𝑡) = ∑
{S}

e−𝜈(𝑡)hD(S,S
𝑤𝑡)

=
𝐿
∑
𝑑=0

(
𝐿
𝑑
)(𝑞 − 1)𝑑e−𝜈𝑑

= e−𝜈𝐿 [(𝑞 − 1) + e𝜈]𝐿

= [
𝑞

1 + (𝑞 − 1)e−𝜇𝑡
]
𝐿
, (C.6)

where at the second line we changed the summing variables from the sequence space
to the possible distances from 0 to 𝐿 (with the proper Jacobian), and we pointed out two
possible expressions of 𝑍 (𝑡). Eq. (C.5) can be readily employed to compute the moments
of the Hamming distance for the neutral evolution process:

⟨𝑑(𝑡)⟩ = 1
𝑍 (𝑡)

𝐿
∑
𝑑=0

𝑑(
𝐿
𝑑
)(𝑞 − 1)𝑑e−𝜈(𝑡)𝑑 =

(𝑞 − 1)𝐿
𝑞 − 1 + e𝜈(𝑡)

, (C.7)

⟨𝑑2(𝑡)⟩ − ⟨𝑑(𝑡)⟩2 =
(𝑞 − 1)𝐿e𝜈𝑡

[𝑞 − 1 + e𝜈(𝑡)]
2 . (C.8)

These observables can be used as a benchmark to verify how much an evolution
process which includes selection deviates from a neutral one.
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Appendix D

Further results on DE
experiments

In this appendix we report further results obtained onDE experiments. Firstly, we study
how the performances of the standard DCA approach change when all the sequenced
rounds of the experiment are taken into account contemporarily, as opposite to consid-
ering only the last one. Generally, we find a worsening of the performances, both with
respect to the prediction of mutational effects and residue-residue contacts. In Fig. D.1
we show the analogous of Fig. 3.2, i.e. the correlation between the model energies and
the independent fitness measurement of TEM-1, for two DCAmodels: (i) one is inferred
over the last round only; (ii) the other uses sequences from all sequenced rounds.

In Fig. D.2, we show the results obtained from [160] data for the contact prediction
problem of proteins PSE1 and AAC6. Specifically, we report the sensitivity plots anal-
ogous to Fig. 3.5 in the main text, with the addition of the DCA model inferred on all
sequenced rounds. For both the considered proteins, such a strategy yields a worsening
with respect to when DCA is inferred only on the last available round.
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Figure D.1: Comparison between two DCA models: one is inferred only on the last
round of [44] data, the other is inferred from a global alignment containing the se-
quences produced from all the sequenced rounds. Strikingly, even if the second model
is inferred over a larger number of sequences, its performances in terms of prediction
of mutational effects are considerably worse than when DCA is determined over the
last round only.
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Figure D.2: Sensitivity plots for the contact prediction of PSE1 (panel (a)) and AAC6
(panel (b)) proteins, obtained from the AMaLa and DCA methods applied to the data of
[160]. For the DCA approach, we both performed the inference on the last and on all
the available sequenced rounds.

147





Bibliography

[1] Christopher D Aakre et al. “Evolving new protein-protein interaction specificity
through promiscuous intermediates.” In: Cell 163.3 (2015), pp. 594–606.

[2] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. “A learning al-
gorithm for Boltzmann machines.” In: Cognitive science 9.1 (1985), pp. 147–169.

[3] FedaaAli, Amal Kasry, andMuhamedAmin. “The new SARS-CoV-2 strain shows
a stronger binding affinity to ACE2 due to N501Y mutant.” In: Medicine in drug
discovery 10 (2021), p. 100086.

[4] Ethan C Alley et al. “Unified rational protein engineering with sequence-based
deep representation learning.” In: Nature methods 16.12 (2019), pp. 1315–1322.

[5] Carlos L Araya and Douglas M Fowler. “Deep mutational scanning: assessing
protein function on a massive scale.” In: Trends in biotechnology 29.9 (2011),
pp. 435–442.

[6] Carlos L Araya et al. “A fundamental protein property, thermodynamic stability,
revealed solely from large-scale measurements of protein function.” In: Proceed-
ings of the National Academy of Sciences 109.42 (2012), pp. 16858–16863.

[7] Lorenzo Asti et al. “Maximum-entropymodels of sequenced immune repertoires
predict antigen-antibody affinity.” In: PLoS computational biology 12.4 (2016),
e1004870.

[8] Sivaraman Balakrishnan et al. “Learning generative models for protein fold fam-
ilies.” In: Proteins: Structure, Function, and Bioinformatics 79.4 (2011), pp. 1061–
1078.

[9] Carlo Baldassi et al. “Fast and accurate multivariate Gaussian modeling of pro-
tein families: predicting residue contacts and protein-interaction partners.” In:
PloS one 9.3 (2014), e92721.

[10] Pierre Barrat-Charlaix, Matteo Figliuzzi, and Martin Weigt. “Improving land-
scape inference by integrating heterogeneous data in the inverse Ising problem.”
In: Scientific Reports 6.1 (2016), pp. 1–9.

[11] Pierre Barrat-Charlaix et al. “Sparse generative modeling via parameter reduc-
tion of Boltzmann machines: application to protein-sequence families.” In: Phys-
ical Review E 104.2 (2021), p. 024407.

149



BIBLIOGRAPHY

[12] John P Barton et al. “ACE: adaptive cluster expansion for maximum entropy
graphical model inference.” In: Bioinformatics 32.20 (2016), pp. 3089–3097.

[13] Jennifer Benichou et al. “Rep-Seq: uncovering the immunological repertoire through
next-generation sequencing.” In: Immunology 135.3 (2012), pp. 183–191.

[14] William Bialek et al. “Statistical mechanics for natural flocks of birds.” In: Pro-
ceedings of the National Academy of Sciences 109.13 (2012), pp. 4786–4791.

[15] Matteo Bisardi et al. “Modeling sequence-space exploration and emergence of
epistatic signals in protein evolution.” In: Molecular biology and evolution 39.1
(2022), msab321.

[16] Anne-Florence Bitbol et al. “Inferring interaction partners fromprotein sequences.”
In: Proceedings of the National Academy of Sciences 113.43 (2016), pp. 12180–
12185.

[17] Jesse D. Bloom et al. “Protein stability promotes evolvability.” In: Proceedings of
the National Academy of Sciences 103.15 (2006), pp. 5869–5874. doi: 10.1073/
pnas.0510098103. eprint: https://www.pnas.org/content/103/15/
5869.full.pdf. url: https://www.pnas.org/content/103/15/5869.

[18] Sébastien Boyer et al. “Hierarchy and extremes in selections from pools of ran-
domized proteins.” In: Proceedings of the National Academy of Sciences 113.13
(2016), pp. 3482–3487. issn: 0027-8424. doi: 10 . 1073 / pnas . 1517813113.
eprint: https://www.pnas.org/content/113/13/3482.full.pdf. url:
https://www.pnas.org/content/113/13/3482.

[19] Barbara Bravi et al. “Learning the differences: a transfer-learning approach to
predict antigen immunogenicity and T-cell receptor specificity.” In: bioRxiv (2022),
pp. 2022–12.

[20] Barbara Bravi et al. “Probing T-cell response by sequence-based probabilistic
modeling.” In: PLoS Computational Biology 17.9 (2021), e1009297.

[21] Barbara Bravi et al. “RBM-MHC: a semi-supervised machine-learning method
for sample-specific prediction of antigen presentation by HLA-I alleles.” In: Cell
systems 12.2 (2021), pp. 195–202.

[22] Lukas Burger and Erik Van Nimwegen. “Disentangling direct from indirect co-
evolution of residues in protein alignments.” In: PLoS computational biology 6.1
(2010), e1000633.

[23] Thomas C Butler et al. “Identification of drug resistance mutations in HIV from
constraints on natural evolution.” In: Physical Review E 93.2 (2016), p. 022412.

[24] Frédéric Cadet et al. “A machine learning approach for reliable prediction of
amino acid interactions and its application in the directed evolution of enan-
tioselective enzymes.” In: Scientific reports 8.1 (2018), pp. 1–15.

150

https://doi.org/10.1073/pnas.0510098103
https://doi.org/10.1073/pnas.0510098103
https://www.pnas.org/content/103/15/5869.full.pdf
https://www.pnas.org/content/103/15/5869.full.pdf
https://www.pnas.org/content/103/15/5869
https://doi.org/10.1073/pnas.1517813113
https://www.pnas.org/content/113/13/3482.full.pdf
https://www.pnas.org/content/113/13/3482


BIBLIOGRAPHY

[25] Miguel A Carreira-Perpinan and Geoffrey Hinton. “On contrastive divergence
learning.” In: International workshop on artificial intelligence and statistics. PMLR.
2005, pp. 33–40.

[26] Ryan R Cheng et al. “Connecting the sequence-space of bacterial signaling pro-
teins to phenotypes using coevolutionary landscapes.” In:Molecular biology and
evolution 33.12 (2016), pp. 3054–3064.

[27] KyungHyun Cho, Tapani Raiko, and Alexander Ilin. “Parallel tempering is ef-
ficient for learning restricted Boltzmann machines.” In: The 2010 international
joint conference on neural networks (ijcnn). IEEE. 2010, pp. 1–8.

[28] Patrick C Cirino, Kimberly M Mayer, and Daisuke Umeno. “Generating mutant
libraries using error-prone PCR.” In: Directed evolution library creation. Springer,
2003, pp. 3–9.

[29] Simona Cocco and Rémi Monasson. “Adaptive cluster expansion for the inverse
Ising problem: convergence, algorithm and tests.” In: Journal of Statistical Physics
147.2 (2012), pp. 252–314.

[30] Simona Cocco et al. “Inverse statistical physics of protein sequences: a key issues
review.” In: Reports on Progress in Physics 81.3 (2018), p. 032601.

[31] Charles Darwin. On the origin of species, 1859. Routledge, 2004.

[32] Nicholas G Davies et al. “Estimated transmissibility and impact of SARS-CoV-2
lineage B. 1.1. 7 in England.” In: Science 372.6538 (2021), eabg3055.

[33] Aurélien Decelle, Cyril Furtlehner, and Beatriz Seoane. “Equilibrium and non-
equilibrium regimes in the learning of restricted Boltzmann machines.” In: Ad-
vances in Neural Information Processing Systems 34 (2021), pp. 5345–5359.

[34] Zhifeng Deng et al. “Deep sequencing of systematic combinatorial libraries re-
veals 𝛽-lactamase sequence constraints at high resolution.” In: Journal of molec-
ular biology 424.3-4 (2012), pp. 150–167.

[35] Guillaume Desjardins et al. “Tempered Markov chain Monte Carlo for training
of restricted Boltzmann machines.” In: Proceedings of the thirteenth international
conference on artificial intelligence and statistics. JMLR Workshop and Confer-
ence Proceedings. 2010, pp. 145–152.

[36] Andrea Di Gioacchino et al. “Generative and interpretable machine learning for
aptamer design and analysis of in vitro sequence selection.” In: bioRxiv (2022).

[37] Javier M Di Noia and Michael S Neuberger. “Molecular mechanisms of antibody
somatic hypermutation.” In: Annu. Rev. Biochem. 76 (2007), pp. 1–22.

[38] Michael B Doud and Jesse D Bloom. “Accurate measurement of the effects of all
amino-acid mutations on influenza hemagglutinin.” In: Viruses 8.6 (2016), p. 155.

151



BIBLIOGRAPHY

[39] Stanley DDunn, Lindi MWahl, and Gregory B Gloor. “Mutual information with-
out the influence of phylogeny or entropy dramatically improves residue contact
prediction.” In: Bioinformatics 24.3 (2008), pp. 333–340.

[40] Richard Durbin et al. Biological sequence analysis: probabilistic models of proteins
and nucleic acids. Cambridge university press, 1998.

[41] Sean R. Eddy. “Profile hidden Markov models.” In: Bioinformatics (Oxford, Eng-
land) 14.9 (1998), pp. 755–763.

[42] Magnus Ekeberg, TuomoHartonen, and ErikAurell. “Fast pseudolikelihoodmax-
imization for direct-coupling analysis of protein structure from many homolo-
gous amino-acid sequences.” In: Journal of Computational Physics 276 (2014),
pp. 341–356.

[43] Magnus Ekeberg et al. “Improved contact prediction in proteins: using pseudo-
likelihoods to infer Potts models.” In: Physical Review E 87.1 (2013), p. 012707.

[44] Marco Fantini et al. “Protein Structural Information and Evolutionary Land-
scape by In Vitro Evolution.” In:Molecular Biology and Evolution 37.4 (Oct. 2019),
pp. 1179–1192. issn: 0737-4038. doi: 10.1093/molbev/msz256. eprint: https:
//academic.oup.com/mbe/article-pdf/37/4/1179/32960043/msz256.
pdf. url: https://doi.org/10.1093/molbev/msz256.

[45] Christoph Feinauer andMartinWeigt. “Context-aware prediction of pathogenic-
ity ofmissensemutations involved in human disease.” In: arXiv preprint arXiv:1701.07246
(2017).

[46] Christoph Feinauer et al. “Inter-protein sequence co-evolution predicts known
physical interactions in bacterial ribosomes and the Trp operon.” In: PloS one
11.2 (2016), e0149166.

[47] Jorge Fernandez-de-Cossio-Diaz, Guido Uguzzoni, and Andrea Pagnani. “Unsu-
pervised Inference of Protein Fitness Landscape from Deep Mutational Scan.”
In: Molecular Biology and Evolution (Aug. 2020). msaa204. issn: 0737-4038. doi:
10.1093/molbev/msaa204. eprint: https://academic.oup.com/mbe/
advance - article - pdf / doi / 10 . 1093 / molbev / msaa204 / 33862547 /
msaa204.pdf. url: https://doi.org/10.1093/molbev/msaa204.

[48] Matteo Figliuzzi, Pierre Barrat-Charlaix, and Martin Weigt. “How pairwise co-
evolutionary models capture the collective residue variability in proteins?” In:
Molecular biology and evolution 35.4 (2018), pp. 1018–1027.

[49] Matteo Figliuzzi et al. “Coevolutionary landscape inference and the context-
dependence of mutations in beta-lactamase TEM-1.” In: Molecular biology and
evolution 33.1 (2016), pp. 268–280.

[50] Robert D Finn, Jody Clements, and Sean R Eddy. “HMMER web server: interac-
tive sequence similarity searching.” In: Nucleic acids research 39.suppl_2 (2011),
W29–W37.

152

https://doi.org/10.1093/molbev/msz256
https://academic.oup.com/mbe/article-pdf/37/4/1179/32960043/msz256.pdf
https://academic.oup.com/mbe/article-pdf/37/4/1179/32960043/msz256.pdf
https://academic.oup.com/mbe/article-pdf/37/4/1179/32960043/msz256.pdf
https://doi.org/10.1093/molbev/msz256
https://doi.org/10.1093/molbev/msaa204
https://academic.oup.com/mbe/advance-article-pdf/doi/10.1093/molbev/msaa204/33862547/msaa204.pdf
https://academic.oup.com/mbe/advance-article-pdf/doi/10.1093/molbev/msaa204/33862547/msaa204.pdf
https://academic.oup.com/mbe/advance-article-pdf/doi/10.1093/molbev/msaa204/33862547/msaa204.pdf
https://doi.org/10.1093/molbev/msaa204


BIBLIOGRAPHY

[51] Elad Firnberg et al. “A comprehensive, high-resolution map of a gene’s fitness
landscape.” In: Molecular biology and evolution 31.6 (2014), pp. 1581–1592.

[52] Asja Fischer and Christian Igel. “Empirical Analysis of the Divergence of Gibbs
Sampling Based Learning Algorithms for Restricted Boltzmann Machines.” In:
ICANN (3) 6354 (2010), pp. 208–217.

[53] Anthony A Fodor and Richard W Aldrich. “Influence of conservation on calcu-
lations of amino acid covariance in multiple sequence alignments.” In: Proteins:
Structure, Function, and Bioinformatics 56.2 (2004), pp. 211–221.

[54] Douglas M Fowler and Stanley Fields. “Deep mutational scanning: a new style
of protein science.” In: Nature methods 11.8 (2014), pp. 801–807.

[55] Douglas M Fowler, Jason J Stephany, and Stanley Fields. “Measuring the activity
of protein variants on a large scale using deep mutational scanning.” In: Nature
protocols 9.9 (2014), pp. 2267–2284.

[56] Douglas M Fowler et al. “High-resolution mapping of protein sequence-function
relationships.” In: Nature methods 7.9 (2010), p. 741.

[57] Steven A Frank andMontgomery Slatkin. “Fisher’s fundamental theorem of nat-
ural selection.” In: Trends in Ecology & Evolution 7.3 (1992), pp. 92–95.

[58] Trevor S Frisby and Christopher James Langmead. “Bayesian optimization with
evolutionary and structure-based regularization for directed protein evolution.”
In: Algorithms for Molecular Biology 16.1 (2021), pp. 1–15.

[59] MarylouGabrié, EricWTramel, and Florent Krzakala. “Training Restricted Boltz-
mannMachine via the Thouless-Anderson-Palmer free energy.” In:Advances in
neural information processing systems 28 (2015).

[60] Carlos A Gandarilla-Perez et al. “Combining phylogeny and coevolution im-
proves the inference of interaction partners among paralogous proteins.” In:
bioRxiv (2022).

[61] Wilfredo F Garcia-Beltran et al. “Multiple SARS-CoV-2 variants escape neutral-
ization by vaccine-induced humoral immunity.” In: Cell 184.9 (2021), pp. 2372–
2383.

[62] Molly Gasperini, Lea Starita, and Jay Shendure. “The power of multiplexed func-
tional analysis of genetic variants.” In: Nature protocols 11.10 (2016), pp. 1782–
1787.

[63] Sam Gelman et al. “Neural networks to learn protein sequence–function rela-
tionships from deep mutational scanning data.” In: Proceedings of the National
Academy of Sciences 118.48 (2021), e2104878118.

[64] Stuart Geman and Donald Geman. “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images.” In: IEEE Transactions on pattern analysis
and machine intelligence 6 (1984), pp. 721–741.

153



BIBLIOGRAPHY

[65] Antoine Georges and Jonathan S Yedidia. “How to expand around mean-field
theory using high-temperature expansions.” In: Journal of Physics A: Mathemat-
ical and General 24.9 (1991), p. 2173.

[66] Annabelle Gérard et al. “High-throughput single-cell activity-based screening
and sequencing of antibodies using droplet microfluidics.” In: Nature biotechnol-
ogy 38.6 (2020), pp. 715–721.

[67] Andonis Gerardos, Nicola Dietler, and Anne-Florence Bitbol. “Correlations from
structure and phylogeny combine constructively in the inference of protein part-
ners from sequences.” In: PLOS Computational Biology 18.5 (2022), e1010147.

[68] Thomas Gueudré et al. “Simultaneous identification of specifically interacting
paralogs and interprotein contacts by direct coupling analysis.” In: Proceedings
of the National Academy of Sciences 113.43 (2016), pp. 12186–12191.

[69] Allan Haldane et al. “Structural propensities of kinase family proteins from a
Potts model of residue co-variation.” In: Protein Science 25.8 (2016), pp. 1378–
1384.

[70] Ulrich HE Hansmann. “Parallel tempering algorithm for conformational studies
of biological molecules.” In: Chemical Physics Letters 281.1-3 (1997), pp. 140–150.

[71] Ryan T Hietpas, Jeffrey D Jensen, and Daniel NA Bolon. “Experimental illumi-
nation of a fitness landscape.” In: Proceedings of the National Academy of Sciences
108.19 (2011), pp. 7896–7901.

[72] Geoffrey E Hinton. “Training products of experts by minimizing contrastive di-
vergence.” In: Neural computation 14.8 (2002), pp. 1771–1800.

[73] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast learning algo-
rithm for deep belief nets.” In: Neural computation 18.7 (2006), pp. 1527–1554.

[74] Markus Hoffmann et al. “SARS-CoV-2 variants B. 1.351 and P. 1 escape from
neutralizing antibodies.” In: Cell 184.9 (2021), pp. 2384–2393.

[75] Thomas A Hopf et al. “Mutation effects predicted from sequence co-variation.”
In: Nature biotechnology 35.2 (2017), pp. 128–135.

[76] Thomas A Hopf et al. “Sequence co-evolution gives 3D contacts and structures
of protein complexes.” In: elife 3 (2014), e03430.

[77] John J Hopfield. “Neural networks and physical systems with emergent collec-
tive computational abilities.” In: Proceedings of the national academy of sciences
79.8 (1982), pp. 2554–2558.
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