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Vibration analysis of thermally loaded isotropic and composite
beam and plate structures

R. Azzaraa , E. Carreraa,b, M. Filippia, and A. Pagania

aDepartment of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy; bDepartment of
Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Kingdom of Saudi
Arabia

ABSTRACT
This work proposed the use of the Carrera Unified Formulation (CUF) for
the vibration and buckling analysis of structures subjected to thermal
loads. In detail, the variation of natural frequencies for progressively large
thermal loads is investigated. Here, particular attention is focused on the
study of buckling thermal loads as degenerate cases of the vibration ana-
lysis and on the mode aberration caused by thermal stresses. From this
standpoint, the use of CUF for the development of high-order beam and
plate models is fundamental. Indeed, Lagrange-like (LE) polynomials are
considered for developing the kinematic expansion and Layerwise (LW)
theories are employed to characterize the complex phenomena that may
appear in composite structures. A linearized formulation to study the nat-
ural frequencies variation as a function of the progressive increasing ther-
mal loadings is adopted. Different isotropic and laminated composite
structures have been analyzed and compared with the Abaqus solution to
validate the presented methodology and provide some benchmark solu-
tions. In addition, a parametric study was conducted to evaluate the stack-
ing sequence and thickness effect in the vibration modes and thermal
buckling loads. The results document the excellent accuracy and reliability
of the presented methodology and show the potentialities of this numer-
ical tool able to analyze cases that are difficult to study experimentally.
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1. Introduction

Aerospace structures are usually required to operate under particular conditions that take into
account thermal loads. From a structural point of view, the question is whether the variations in
the temperature during the lifetime of an aircraft are sufficient to compromise its integrity. Some
key parameters of the thermal load are changes in average temperature and temperature differen-
tials. Thin-walled structures, typically adopted in aeronautical engineering, are highly efficient in
terms of mass but also vulnerable to instability phenomena, which can be exploited to improve
the structural performance [1]. The buckling of structures subjected to mechanical loading has
been widely examined over the years. On the other hand, thermal buckling was avoided and, for
this reason, the available literature on thermomechanical vibration and thermal buckling analysis
is not extensive [2]. However, a good investigation of thermomechanically buckled states can help
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structural designers to identify potential advantage opportunities, make better choices and eventu-
ally contribute to better future designs. In this context, new research trends have been focused on
new conceptions about buckling predictions and natural frequencies characterization [3–5].

The importance of thermal effect on structures emerged with the supersonic flight [6, 7]. Over
the years, the focus has evolved, ranging from innovative structural configurations and geometries
to the introduction of next-generation aerospace materials. Therefore, thermal instability analysis
began to attract interest among many scientists and researchers. For example, Thornton [8] pro-
vided various progresses on thermal analyzes on structures from supersonic flight to the current
research. Several experiments in heated composite plate structures were performed by Guti�errez
�Alvarez and Bisagni [9]. Murphy and Ferreira [10] carried out thermal buckling analyses for
clamped, rectangular plates by considering energy considerations and experimental investigations.
Various thermal buckling analyses of functionally graded plate structures using analytical formu-
lations were carried out by Javaheri and Eslami [11]. Pradeep et al. [12] provided vibration and
thermal buckling analysis of different composite sandwich beam structures with viscoelastic core.
Thermal bucking analyses of laminated composite plate structures were investigated by Prabhu
and Dhanaraj [13], in which a finite element method based on the Reissner–Mindlin first-order
shear deformation theory is employed. Bhagat and Yeyaraj [14] carried out various experiment
tests to evaluate the effect of nonuniform temperature distributions on the thermal buckling of
shell structures. Jeyaraj [15] provided free vibration and buckling analysis of metallic plates with
thermal pre-stress. For completeness, readers are referred to [16–19] for other interesting work
about thermal buckling analysis. The amount of work available in the literature on experiments
on thermal buckling prediction through vibration data is not, however, large. Especially, the topic
of mode jumping or mode change through mechanically or thermally induced instability has
been addressed on limited occasions [20].

To prove the feasibility of particular phenomena under different loading types, experimental
tests are an essential milestone. However, one of the researchers’ goals over the years has been to
reduce both the time and cost of operations of these complex studies. One of the effective
approaches to do this is to adopt nondestructive experimental tests to compute the critical buck-
ling load of structures. One of the most used nondestructive methods is represented by the
Vibration Correlation Technique (VCT) [21, 22]. The latter computes the critical load and the
equivalent boundary conditions by interpolating the natural frequencies of the structures for pro-
gressively rising applied loadings without reaching the point of instability. The first experimental
VCT studies were data from the 1950s, with the analyses conducted by Lurie [23], Meier [24],
and Chu [25]. Over the years, several approaches have been formulated to obtain reliable results
of buckling prediction and natural frequency variation. For example, a new relation between the
natural frequencies and the applied loadings was presented by Souza and Assaid [26]. Arbelo
et al. [27, 28] implemented a modified-VCT based on the considerations made by Souza et al.
The literature on VCT studies of structures subjected to mechanical loads is vast, whereas the
one considering thermal loadings is limited. Since a complete review of the VCT formulations is
not the purpose of this article, the reader is referred to the book written by Abramovich [29] for
interesting test setup and results.

The goal of the present research is to show a new numerical approach able to study critical
buckling behaviors, characterize natural frequencies variation, provide a means to verify VCT
results, and present benchmark solutions of isotropic and laminated composite beam and plate
structures subjected to uniform thermal loadings. The effect of the temperature changes on the
buckling loads and natural frequencies were investigated, including a parametric study conducted
on the stacking sequence and thickness.

The presented methodology is formulated in the Carrera Unified Formulation (CUF) domain,
see [30]. One of the main advantages of this formulation is that classical to high-order models
can be implemented simply and automatically. In fact, the governing equations and the relative

370 R. AZZARA ET AL.



finite element (FE) arrays of the one-dimensional (1D) and two-dimensional (2D) theories are
expressed in terms of Fundamental Nuclei (FNs). In this article, both Lagrange-like (LE) and
Taylor-like (TE) polynomials are considered. When laminated composite structures are studied,
the Layerwise kinematic [31, 32] is adopted. Note that CUF was already successfully used in
many engineering fields [32–35], and in the present work, it is adopted to perform vibration ana-
lysis of thermal pre-stress structures.

This manuscript is structured as follows: (i) first, the methodology adopted in this work to
perform vibration analysis for thermally loaded isotropic and composite structures is provided in
Section 2; (iii) then, numerical solutions in terms of natural frequencies variation and buckling
loads are discussed in Section 3, including the comparison with the Abaqus solution; (iv) finally,
Section 4 summarizes the main conclusions.

2. Vibration analysis for thermally loaded structures

Considering a generic continuous body, each of its points can be subject to displacements in the
three directions of space according to a Cartesian reference system. In this work, both isotropic
and composite beam and plate structures were studied. For clarity, the following discussion is car-
ried out considering a laminated composite beam structure, in which k stands for the kth layer.
Although derivation is carried out for beams, it should be highlighted that similar relations hold
for plate models. Consequently, the displacement, strain and stress fields are introduced as fol-
lows:

uk ¼ fukx uky ukzgT

�k ¼ fekxx ekyy ekzz ekxz ekyz ekxygT

rk ¼ frkxx rkyy rkzz rkxz rkyz rkxygT
(1)

In the case of small displacements, linear strain–displacement relation is considered. It reads:

�k ¼ buk (2)

in which �k is the full Green-Lagrange strain tensor and b represents the nonlinear differential
operator.

Hooke’s law expresses the physical relationship between the stresses and deformation compo-
nents by means of the material elastic matrix for orthotropic materials Ck [36, 37].

rk ¼ Ck�k (3)

According to 1D CUF, the 3D displacement field in the dynamic case is an expansion of gen-
eric functions Fsðx, zÞ for the generalized displacement vector usðy; tÞ, which are functions of the
coordinate y laying along the main structural dimension. Hence:

ukðx, y, z; tÞ ¼ Fksðx, zÞuksðy; tÞ s ¼ 1, :::,M (4)

where t indicates time, M is the number of the terms adopted in the expansion and the repeated
subscript s denotes summation. The choice of Fs determines the class of the 1D and 2D CUF
models. LE CUF models as used in the present research can be found in [36]. In detail, the nine-
point (L9) Lagrange polynomials in the cross-section for beam model and the four-node (LD3)
Lagrange expansion functions in the z direction for plates were used in the following analyses.
For brevity, the interested reader is referred to [30, 38] for a detailed explanation of the mathem-
atical derivation of the 1D and 2D FE formulation in the CUF domain.
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Independently of the selected beam model kinematics, the generalized displacements can be
approximated along the beam axis by introducing the Finite Element Method (FEM) and using
the shape functions NiðyÞ:

uksðy; tÞ ¼ NiðyÞqksiðtÞ, i ¼ 1, :::,Nn (5)

where qsi is the vector of the unknown nodal variables, Nn indicates the number of nodes per
element and i represents summation. For clarity, the four-node (B4) cubic beam elements and
the classical 2D nine-node (Q9) quadratic finite elements are adopted in this work as shape func-
tions [39]. By considering the strain (�) and having the CUF (Eq. (4)) and FEM (Eq. (5)) relations
into Eq. (2), the strain vector can be expressed in algebraic form as:

�k ¼ bðFksNiÞqksi ¼ Bkqksi (6)

For brevity, this nonlinear matrix Bk can be found in [40].
In the linear thermoelasticity, the elastic strain vector �ke is equal to:

�ke ¼ �k � �kT (7)

where �k represents the total strain vector and �kT is the strain vector due to the temperature
change DT ¼ T � T0, that is expressed as follows:

�kT ¼ akDT (8)

in which T0 indicates the reference temperature and a denotes the linear thermal expansion coef-
ficients vector. Consequently, it is possible to define a new constitutive law given by:

rk ¼ rkH � rkT ¼ Ck�k � bkDT (9)

in which the subscript H indicates the quantities relating to Hooke’s law, whereas T those relating
to thermal deformation. In Eq. (9), bk represents the vector of the stress–temperature moduli. It
reads:

bk ¼ Ckak (10)

The governing equations of the free vibrations around trivial equilibrium states are written
adopting the principle of virtual work. Namely:

dLint ¼ �dLine (11)

in which dLint stands for the virtual variation of the internal strain energy and dLine is the virtual
variation of the inertial loads. They are expressed as follows:

dLint ¼
ð
V
d�ke

TðCk�k � bkDTÞ dV ¼
ð
V
dqksj

TBkTðCkBkqksi � bkDTÞ dV ¼

¼
ð
V
dqksj

TBkTðCkBkqksiÞ dV �
ð
V
dqksj

TBkTðbkDTÞ dV ¼

¼ dqksj
TK ijss

S
k
qksi � dqksj

TFT
k
sj

dLine ¼
ð
V
dukTqu} k dV ¼ dqksj

TMijssk q} k
si

(12)
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where V denotes the volume, the K ijss
S

k
represents the secant stiffness matrix, FT

k
sj is the thermal

load vector, that is an artificial forces for modeling thermal expansion, Mijssk is the mass matrix,

that is assumed to be linear, q denotes the density, q€ksi stands for the nodal acceleration vector
and the dot indicates d=dt: The superscripts i, j, s, s are the four indexes exploited to assemble the
matrices.

As in this research the goal is to study the vibrations of structures subjected to initial displace-
ments and pre-stress, Eq. (11) has to be linearized around trivial equilibrium states. Therefore,
the linearization of the virtual variation of the internal strain energy holds:

dðdLintÞ ¼
ð
V
dðd�keTrkÞ dV ¼

ð
V
d�ke

Tdrk dV þ
ð
V
dðd�keTÞrk dV ¼ dqksj

TK ijss
T

k
dqksi (13)

in which K ijss
T

k

represents the tangent stiffness matrix. In the case of small rotations and linear pre-

buckling, K ijss
T

k

can be approximated as the sum of the linear stiffness ðK ijss
0

k ¼ K ijss
S

k ðqksi ¼ 0ÞÞ and
the geometric (pre-stress) contribution (K ijss

r
k
) [41, 42].

K ijss
T

k � K ijss
0

k þ kK ijss
r

k
(14)

where k is the progressively increasing load factor. It is important to underline that, in this case,

the K ijss
r

k matrix refers to the linear contributions of stress (rklin). Once the K ijss
T

k is calculated for
each ply of the laminated structure, an LW assembly procedure is adopted according to [43, 44]
to obtain the global assembled tangent stiffness matrix ðKTÞ:

The introduction of thermal loads determines a new definition of the geometric stiffness
matrix K ijss

r
k due to the new constitutive equation reported in Eq. (9). For reasons of clarity,

superscripts are omitted in the following relations. After simple manipulations, the geometric
stiffness matrix is obtained as follows:ð

V
dðd�kTÞrklin dV ¼

ð
V
dqksj

TB�
nl
kTrklin dV ¼ dqksj

T
ð
V
B�
nl
kTCk�k dV dqksiþ

� dqksj
T

ð
V
B�
nl
kTbkDT dV dqksi ¼ dqksj

TKk
rdq

k
si � dqksj

TKk
rTdq

k
si

(15)

in which the Kk
rT represents the new term of the geometric stiffness matrix due to the thermal

contribution. For clarity, it should be noted once again that only linear contributions are taken
into account. Interested readers can find the complete expression of the B�

nl
k and a detailed

description of mathematical operations in [40].
Finally, by assuming harmonic motion around quasi-static equilibrium states, Eq. (11) has the

form of a linear eigenvalue problem:

ðKT � x2MÞq ¼ 0 (16)

where M represents the global assembled mass matrix, x indicates the natural frequency and q
denotes the eigenvector.

For the sake of clarity, the resolution procedure of the proposed approach is summarized in
the following steps:

� First, the static geometrical nonlinear problem is solved using the Newton–Raphson method
based on the arc-length approach.

� Once the nonlinear equilibrium curve is computed, the tangent stiffness matrix is obtained in
each states of interest.
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� Then, by linearizing the equation of motion and assuming harmonic displacement,

dqsiðtÞ ¼ d~qsie
ixt

dq€siðtÞ ¼ �x2d~qsie
ixt

(17)

� the equations of motion is simplified into a linear eigenvalues problem from which it is pos-
sible to evaluate natural frequencies and mode shapes.

� For the sake of clarity, it is important to underline how the nonlinear vibrations exhibit low
amplitudes and small increment of amplitudes during the determination of the nonlinear
vibration modes are considered; consequently, it is legitimate to use a linearization around the
state of equilibrium for the resolution of the problem.

3. Numerical examples

This section provides a numerical linearized approach to perform vibration-buckling investiga-
tions of metallic and laminated beam and plate structures subjected to thermal loadings given by
a uniform variation of the temperature DT on the entire model. The critical buckling loads and
the natural frequencies variation with progressively higher thermal loadings of several structures
are analyzed. The solutions are compared with results obtained using the commercial code
Abaqus to prove the validity of the presented methodology. For the following analyses, clamped
boundary conditions are adopted. Given the thermal loads and boundary conditions considered,
it is possible to predict the generation of compressive stresses due to the tendency of the struc-
tures to expand as the temperature increases, a tendency which is, however, prevented by the
constraint conditions.

3.1. Isotropic beam

The first numerical assessment consists of an isotropic square cross-section beam structure sub-
jected to thermal loadings. Two different configurations, L/h¼ 10 and L/h¼ 100, are considered.
In detail, the beam, illustrated in Figure 1, has the length L equal to 1m, a¼ 0.1m/0.01 m and
h¼ 0.1m/0.01 m. The elastic structure was made of aluminum with Young’s modulus, Poisson’s
ratio, density and linear thermal expansion coefficient equal to E¼ 73GPa, �¼ 0.34,
q¼ 2700 kg/m3, and a¼ 25� 10–6 �C–1, respectively.

After a convergence analysis not displayed here for the sake of brevity, the mathematical
model consists of four nine-point Lagrange polynomials (L9) on the cross-section (x – z) and ten
four-node cubic (B4) beam finite elements along the y-axis. The number of degrees of freedom is,
therefore, 2325. The accuracy of the discretization chosen, according to the CUF theory, was veri-
fied by making a comparison with the results of the modal analysis obtained through the com-
mercial FE software Abaqus (ABQ) [45] using 10� 2� 2 C3D20R solid elements, see Table 1.

The characteristics first three free vibration mode shapes of both thick and thin isotropic
beam structures are provided in Figure 2.

Generally speaking, the application of a thermal load to a structure in particular constraint
conditions involves the rise of a state of tension generated by the expansion of the structure.

Figure 1. Geometry and boundary condition of the clamped-clamped beam structure subjected to thermal loadings.
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Especially considering the boundary conditions of the present beam with both edges clamped, the
application of a thermal load, due to a uniform variation of the temperature on the whole model,
leads to a state of compression stress that can lead to buckling of the structure.

Figure 3 plots the comparison between the natural frequencies variation for progressively
increasing thermal loadings computed via the present methodology and Abaqus. The results
obtained show a good correlation with the Abaqus ones, allowing one to predict the critical buck-
ling load and evaluate the natural frequencies variation with high reliability. Particularly, the
graphs suggest that instability phenomena occur for a thermal load corresponding to 1139.03 �C
for the case of the thick beam and 13.04 �C for the slender one. Regarding the thick structure, see
Figure 3a, given the very high DTcr value obtained for the beam in an isotropic material, similar
to an aluminum alloy, in this case, the instability configuration will never be reached. However, it
is possible to have a considerable, albeit secondary, effect when considering a more complex load
environment where the thermal load is only one of the contributors.

3.2. Laminated composite [0�/90�/0�] beam

The second analysis case deals with a laminated composite beam structure subjected to thermal
loadings. The same geometrical data are used as in the previous example. The lamination
sequence considered is [0�/90�/0�]. The material properties of this laminated structure involves
E1 ¼ 144.8 GPa, E2 ¼ E3 ¼ 9.65GPa, �12 ¼ 0.3, G12 ¼ G13 ¼ 4.14GPa, G23 ¼ 3.45GPa,
q¼ 1450 kg/m3, a11 ¼ �2.6279� 10–7�C–1 and a12 ¼ 30.535� 10–6�C–1. The convergent model
for this beam structure is reached by employing at least ten B4 finite elements along the beam-
axis and two Q9 for each layer.

Table 2 shows the comparison between the present formulation and Abaqus solution for the
first six free natural frequencies. Furthermore, the mode shapes of both thick and thin laminated
composite beam structures are depicted in Figure 4.

Also, in this case, the instability behavior of the composite beam under thermal loadings given
by the uniform variation of the temperature DT was confirmed by the frequency trend of the
beam modes with respect to the thermal load, see Figure 5. The current results were compared
with those obtained with Abaqus. The comparisons revealed a perfect agreement between the two
approaches within the considered thermal load interval.

Table 1. Comparison between the present methodology and the Abaqus solution.

Model I flexural mode II flexural mode I torsional mode

CUF LE9 (Hz) 508.85 1,303.07 1,476.05
Abaqus Hex20 (Hz) 509.01 1,303.90 1,471.52

Isotropic beam (L/h¼ 10).

Figure 2. Characteristics first three free vibration mode shapes for clamped-clamped isotropic beams.
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Figure 3. Natural frequency variation versus thermal loadings for the isotropic beam.

Table 2. Comparison between the present methodology and the Abaqus solution.

CUF LE9 (Hz) Abaqus Hex20 (Hz)

I flexural mode xy-plane 571.35 571.83
I flexural mode yz-plane 605.34 605.16
I torsional mode 773.82 773.20
II flexural mode xy-plane 1,234.41 1,235.90
II flexural mode yz-plane 1,270.84 1,273.80
II torsional mode 1,551.99 1,552.10

Laminated composite [0�/90�/0�] beam. L/h¼ 10.
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3.3. Isotropic plate

An isotropic square plate structure subjected to thermal loadings is investigated in the following
analysis case. Figure 6 illustrates the structure geometry, with a¼ 1m, h¼ 0.01m, and the bound-
ary conditions used. The material data are the following: E¼ 73GPa, �¼ 0.34, q¼ 2700 kg/m3

and a¼ 25� 10–6�C–1. The mathematical model consisted of 10� 10 Q9 finite elements over the
xy-plane, while the kinematic theory adopted along the thickness direction is only one LD2.
Therefore, the number of degrees of freedom is 3969.

The values of the first four free vibration modes obtained using the CUF and Abaqus are tabu-
lated in Table 3, whereas the mode shapes are depicted in Figure 7. For clarity, 10� 10 S8R shell
elements are adopted in the Abaqus model.

Figure 8 shows the natural frequencies variation versus increasing thermal loadings via the
present linearized approach, including the comparison with the Abaqus solution. The graph
shows that the first instability mode of the isotropic plate with all edges clamped, corresponding
to a uniform temperature variation DTcr ¼ 13.16 �C, coincides with the vibrational mode (1,1).

Figure 4. Characteristics first three free vibration mode shapes for clamped-clamped laminated composite [0�/90�/0�] thick and
thin beams.
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3.4. Laminated composite plate

As a final example, a laminated composite plate structure under thermal loadings is analyzed. This
plate model has the same geometric data as the previous case. The material data of the present plate
structure are the following: E1 ¼ 144.8GPa, E2 ¼ E3 ¼ 9.65GPa, �12 ¼ 0.3, G12 ¼ G13 ¼ 4.14GPa,
G23 ¼ 3.45GPa, q¼ 1450 kg/m3, a11 ¼ �2.6279� 10–7�C–1 and a12 ¼ 30.535� 10–6�C–1. The
structure is modeled adopting 10� 10 Q9 for the in-plane mesh approximation, whereas only one
LD3 is used in each layer in the z-direction.

First, the dynamic behavior of the composite plate considering a/h¼ 100 and three-layer with
[0�/90�/0�] staking sequence is investigated. Then, a parametric study based on the variation of
the lamination sequence and thickness of the plate is performed.

Figure 5. Natural frequency variation versus thermal loadings for the laminated composite [0�/90�/0�] beam.
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In Table 4 and Figure 9, the natural frequencies and mode shapes of the first five vibration
modes are provided, respectively.

Figure 10 shows the comparison between the natural frequencies variation for progressively
increasing thermal loadings obtained via the present linearized approach and the Abaqus solution.

Figure 6. Geometry and boundary condition of the clamped isotropic plate structure (a/h¼ 100) subjected to thermal loadings.

Table 3. Comparison between the present methodology and the Abaqus solution

Model Mode (1,1) Mode (2,1)/(1,2) Mode (2,2)

CUF (Hz) 93.89 194.90 287.01
Abaqus S8R (Hz) 91.40 186.47 275.77

Isotropic plate (a/h¼ 100).

Figure 7. Characteristics first four free vibration mode shapes for the clamped isotropic plate (a/h¼ 100).
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Figure 8. Natural frequency variation versus thermal loadings for the isotropic plate (a/h¼ 100).

Table 4. Comparison between the present methodology and the Abaqus solution.

Model Mode (1,1) Mode (2,1) Mode (3,1) Mode (1,2) Mode (2,2)

CUF (Hz) 108.67 144.30 222.98 283.06 304.53
Abaqus S8R (Hz) 107.76 141.37 212.54 278.78 299.43

Laminated composite [0�/90�/0�] plate (a/h¼ 100).

Figure 9. Characteristics first five free vibration mode shapes for the laminated composite [0�/90�/0�] plate (a/h¼ 100).
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It can be observed that the frequency of the second vibration mode (2,1) tends to zero at the buck-
ling load value equal to 10.69 �C. Generally speaking, the directionality of the fibers inside the
laminate layers determines a variation in the dynamic behavior of thin plates, affecting the buckling.
This buckling phenomenon is induced by the state of tension that is generated by the application
of thermal loads. For clarity, from the graphs of Figure 11, it can be deduced that the application

Figure 10. Natural frequency variation versus thermal loadings for the laminated composite [0�/90�/0�] plate (a/h¼ 100).

Figure 11. Through-the-thickness stresses distribution for the laminated composite [0�/90�/0�] plate (a/h¼ 100) subjected to
DT ¼ 3 �C at x¼ –0.25m and y¼ 0m considering different kinematic expansions: LD2 (Three-node quadratic Lagrange expan-
sion), LD3 (Four-node cubic Lagrange expansion), TE1 (First-order Taylor-like expansion), TE3 (Third-order Taylor-like expansion).
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of a thermal load due to a uniform variation of the temperature DT on the entire laminated struc-
ture leads to the generation of compressive stresses. In particular, the stresses rxx are more intense
in the central layer of the laminate, while the stresses ryy are more intense in the external layers.
The structure is consequently subjected to a state of biaxial compression tension. At the critical
value of temperature variation DTcr, the compressive stresses are able to induce the phenomenon
of instability.

Table 5 displays the buckling load values of the composite plates considering different lamin-
ation sequences. For the sake of clarity, the numerical results come from simple linearized buck-
ling analyses, where the KT is approximated as the sum of the linear matrix and the geometric
stiffness resulting from the linear stress state. These thermal buckling values are confirmed by the
trend of the natural frequencies variation plotted in Figure 12. It is interesting to highlight how
the choice of lamination affects the buckling behavior of the structure. In fact, choosing a
[0�/90�/0�] lamination causes the variation of the mode shape of the first buckling mode of the
plate, passing from a one half-wave, as for the laminations 0

�
=45

�
=� 45

�� �
s and 45

�
=� 45

�� �
s, to

two ones.
In addition, the thickness effect on the frequencies and buckling loads is presented in Figure 13

and Table 6. The results suggest that as the thickness of the laminated composite plate increases,
there is a noticeable rising in natural frequencies and critical buckling loads due to the increasing
stiffness of the structure.

Table 5. The first critical buckling load considering different lamination sequences.

Lamination Buckling mode shape CUF (�C) Abaqus (�C)
½0�

=90
�
=0

� � Mode (2,1) 10.69 10.42
½0�

=45
�
=� 45

� �s Mode (1,1) 11.42 11.30
½45�

=� 45
� �s Mode (1,1) 9.02 8.91

Laminated composite plate (a/h¼ 100).

Figure 12. Effect of lamination on the natural frequency variation versus increasing thermal loadings. Laminated composite
plate (a/h¼ 100).
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4. Conclusions

A novel numerical approach to analyze the eigen frequencies and eigen modes of isotropic and
laminated composite beam and plate structures subjected to thermal loadings in their quasi-static
equilibrium states has been presented in the present research. This methodology allows to predict
the critical thermal buckling loads of different structures, investigate the natural frequencies vari-
ation for progressively increasing thermal loadings, and provide a verification of the experimental
VCT results, which, in some cases, can be difficult to execute. The formulation, based on the
CUF, allows one to describe various kinematics models for 1D and 2D isotropic and laminated
composite structures. Thus, low- to high-order models can be formulated with ease. The analyses
conducted have demonstrated that:

Figure 13. Effect of thickness on the natural frequency variation versus increasing thermal loadings. Laminated composite
[0�/90�/0�] plate.

Table 6. The first critical buckling load considering different thickness values of the laminated composite [0�/90�/0�] plate.

a/h Buckling mode shape CUF (�C) Abaqus (�C)
100 Mode (2,1) 10.69 10.42
50 Mode (2,1) 40.80 40.221
20 Mode (2,1) 206.01 206.96
10 Mode (1,1) 502.46 504.60
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� The proposed approach, in agreement with the solution computed using the software Abaqus,
provides a tool able to provide a perfect prediction of critical buckling loads and natural fre-
quencies variation;

� By considering the thermal load and clamped boundary conditions, compressive stresses are
generated due to the tendency of the structures to expand as the temperature increases, a ten-
dency which is, however, prevented by the constraint conditions. Therefore, the application of
the thermal loadings in this configuration leads to buckling phenomena;

� The choice of the lamination sequence represents a further important variable in the design
process of a laminated composite structure that allows or does not respect the imposed design
requirements. In fact, changes in the modal form of the first buckling mode are observed for
different lamination sequences;

� As the thickness of the laminated composite plate increases, there is a considerable rise in the
natural frequencies due to the increasing rigidity of the plate and, therefore, in the thermal
buckling load for which the buckling phenomenon occurs.

Future works will concern the vibration-buckling investigation of isotropic, classical composite
and variable-angle tow (VAT) beam, plate and shell structures under different distributions of
thermal loads by adopting a full nonlinear approach.
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