
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Who will dominate the global fossil fuel trade? / Ostadzadeh, E.; Elshorbagy, A.; Tuninetti, M.; Laio, F.; Abdelkader, A.. -
In: ECONOMIC SYSTEMS RESEARCH. - ISSN 0953-5314. - (2023), pp. 1-22. [10.1080/09535314.2023.2174002]

Original

Who will dominate the global fossil fuel trade?

Publisher:

Published
DOI:10.1080/09535314.2023.2174002

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978857 since: 2023-05-27T09:38:20Z

Routledge



Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=cesr20

Economic Systems Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/cesr20

Who will dominate the global fossil fuel trade?

Ershad Ostadzadeh, Amin Elshorbagy, Marta Tuninetti, Francesco Laio &
Ahmed Abdelkader

To cite this article: Ershad Ostadzadeh, Amin Elshorbagy, Marta Tuninetti, Francesco Laio &
Ahmed Abdelkader (2023): Who will dominate the global fossil fuel trade?, Economic Systems
Research, DOI: 10.1080/09535314.2023.2174002

To link to this article:  https://doi.org/10.1080/09535314.2023.2174002

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

View supplementary material 

Published online: 24 Feb 2023.

Submit your article to this journal 

Article views: 1760

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=cesr20
https://www.tandfonline.com/loi/cesr20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/09535314.2023.2174002
https://doi.org/10.1080/09535314.2023.2174002
https://www.tandfonline.com/doi/suppl/10.1080/09535314.2023.2174002
https://www.tandfonline.com/doi/suppl/10.1080/09535314.2023.2174002
https://www.tandfonline.com/action/authorSubmission?journalCode=cesr20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=cesr20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/09535314.2023.2174002
https://www.tandfonline.com/doi/mlt/10.1080/09535314.2023.2174002
http://crossmark.crossref.org/dialog/?doi=10.1080/09535314.2023.2174002&domain=pdf&date_stamp=2023-02-24
http://crossmark.crossref.org/dialog/?doi=10.1080/09535314.2023.2174002&domain=pdf&date_stamp=2023-02-24


ECONOMIC SYSTEMS RESEARCH
https://doi.org/10.1080/09535314.2023.2174002

Whowill dominate the global fossil fuel trade?

Ershad Ostadzadeh a, Amin Elshorbagy a,b,c, Marta Tuninetti d, Francesco
Laio d and Ahmed Abdelkader a

aDepartment of Civil, Geological, and Environmental Engineering, University of Saskatchewan, Saskatoon,
Canada; bGlobal Institute for Water Security, University of Saskatchewan, Saskatoon, Canada; cInternational
Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria; dDepartment of Environmental, Land, and
Infrastructure Engineering, Politecnico di Torino, Turin, Italy

ABSTRACT
Fossil fuels are not distributed evenly throughout the world, and
hence the countries rely heavily on international trade to secure
energy supply. Characterization of the energy trade network is
needed to conduct long-term assessments of energy security. This
study proposes a modeling framework to assess the evolution of
energy trade under current conditions as well as under future sce-
narios up to 2050. The total trade of each country is estimated with
trade predictive models (TPMs) using key variables. Subsequently, a
matrix-balancing method (RAS) is used to estimate the annual bilat-
eral trades. The projected energy trade network in 2050 varies under
each shared socioeconomic pathway (SSP) of the future, with annual
fossil fuel global trades among countries ranging between 538 and
215 EJ. Canada, USA, Venezuela, and China are projected to domi-
nate the global trade network, with Canada-USA remaining themost
dominant fossil fuel trade link up to 2050.
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1. Introduction

Access to sufficient and affordable energy resources is essential to improve human welfare
and raise living standards worldwide. In spite of the current global trend towards renew-
able energy sources, fossil fuels including oil, natural gas, and coal are still the dominant
sources (84.7%) of energy (BP Statistical Review of World Energy, 2019), mainly because
of their affordability and availability (Kumar et al., 2011). Since globalization has become
a prominent factor in the world economy, global energy trade has played a substantial role
in energy supply security by redistributing energy throughout the world (Chen & Chen,
2011). The global energy trade network is a complex system, mainly due to the complex-
ity of the relations among the numerous participants in the market (Gao et al., 2015), and
the influence of several controllable and uncontrollable factors on the energy trades. In
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addition, energy trade policies are subject to political pressures as they are mostly imple-
mented through political processes (Zelby & Groten, 1990) that might limit trade due to,
e.g. political sanctions. In addition to concerns about the potential impact of trade barriers
and political instability on energy trade, one of the major concerns is the balance between
demand increase and resource availability. Therefore, the capability of the international
energy market to supply the global demand, in relation to the availability and distribution
of resources, might be an important challenge in the near future.

A large body of literature offers an empirical analysis to understand the energy trade
network (An et al., 2014; Bale et al., 2015; Fracasso et al., 2018; Gao et al., 2015; Geng et al.,
2014; Ji et al., 2014; Lu et al., 2014; Ruzzenenti et al., 2015; Sun et al., 2012; Zhang et al.,
2014; Zhong et al., 2014), but it is still less than exhaustive. First, the existing studies usually
employ a few select techniques such as complex network theory, which is an effective tool
to analyze the features and properties of trade networks, but do not propose amethodology
to (i) model the global energy distribution from exporters to importers or (ii) characterize
the behavior of energy fluxes over time. Second, the capability of the global market to keep
the global energy trade network balanced over time is rarely discussed (Distefano et al.,
2020). Third,most studies are carried out only at local or regional scales, without providing
country-level details. Fourth, to the best of our knowledge, no studies have been carried
out to project the future global energy trade network in a comprehensive country-based
and quantitative manner. However, a few studies provide a perspective with respect to the
future of the energy market (Feng et al., 2017; Holz et al., 2015; Kumar et al., 2011; Paltsev
et al., 2011; Sharmina et al., 2017), but these have a limited scope by focusing on selected
countries and do not propose a methodology to investigate bilateral energy trade between
countries under future scenarios.

With regard to bilateral international trade, gravity law models (GLMs) have been
successful in explaining trade fluxes (Anderson, 1979). GLMs, which are multivariate
regressionmodels, are able to estimate the bilateral trade fluxes between two nodes (Tamea
et al., 2014) and have been used to estimate trade in a variety of areas in which the main
focus has been on modeling node-to-node trade flows. However, when it comes to mod-
eling the global trade network, the node-to-node approach is considerably constrained;
one of the main limitations is the negligence of each node’s overall trade potential within
the global market. As a result, GLMs may underestimate the total global flows (Tuninetti
et al., 2017), and the total inflow-outflow of each nodemay exceed their trade capacity in an
interconnected trade network. Another limitation of the node-to-node approach is the low
accuracy of the overall trade distribution in a network, which is mainly an outcome of the
first constraint. In fact, by following the node-to-node approach, bilateral trades are esti-
mated regardless of the othermultilateral trades of a node. Thus, trade distributions cannot
be accurately estimated because the trade’s potential and priorities are not considered.
Utilizing input–output (IO) techniques (McDougall, 1999; Parikh, 1979; Toh, 1998) for
updating and balancing the global trade, based on the total capacity of exports and imports,
could be one solution toward improved understanding of the behavior of trade networks
with respect to the node’s overall trade potential. The RAS method is the best known and
widely used IO technique, due to its operational simplicity (Toh, 1998), to reconcile the
bilateral trade flows for updating the input–output tables (IOTs) (Lahr & De Mesnard,
2004; Wiebe & Lenzen, 2016) with the constraints respected by targeting marginal (node)
totals (Jackson & Murray, 2004). Updating an IOT provides the ability to investigate the
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evolution of a trade network (Dietzenbacher & Hoekstra, 2002; Tarancón & Rio, 2005),
analyze trade relationships, and study the development, destruction, and substitution of
trade links (Dietzenbacher & Hoekstra, 2002).

Several studies link IO techniques and GLMs (Aichele & Felbermayr, 2015; Caliendo &
Parro, 2015; Guilhoto et al., 2015; Noguera, 2012; Sarker & Jayasinghe, 2007; Sartori et al.,
2017), where GLMs are sometimes used to estimate the bilateral trades (node-to-node) as
the initial inputs of tables (Duarte et al., 2018; Sargento et al., 2012). Recently, Distefano
et al. (2020) assessed the performance of GLMs and the RAS method in the estimation of
bilateral trades and summarized the pros and cons of each approach. However, a modeling
approach is needed for the global energy trade to explain the distributions of energy in the
global network and investigate how the network remains balancedwhen the characteristics
of the network and nodes change. This study aims to address the abovementioned issues,
and in particular, it contributes to the existing literature the following: (i) development
of a novel modeling framework for characterizing the global energy trade network under
current and projected future conditions by employing and combining GLM-based regres-
sion models (to estimate total energy trade of each node) and RAS method (to estimate
the bi-lateral energy fluxes) to benefit from the strengths of both GLM and RAS methods;
(ii) a new characterization of the global fossil fuel energy trade networks, along with quan-
tification of the bilateral trades, under future shared socioeconomic pathways (SSPs); and
(iii) investigation of the potential evolving communities (clusters) of countries, forming
sub-networks within the global trade networks.

2. Data andmethods

The overall research methodology is summarized as follows: (i) significant energy trade
links were identified in the bilateral trade network. Considering all countries (222) means
49,062 potential trade links; however, preliminary investigations revealed that 90% of the
global energy trade from 2000 to 2016 occurred through only 1,185 links. Therefore, the
significant exporting and importing countries (network nodes), along with trade links,
were identified from historical trade data to construct the trade network. As regression
models can generally preserve the mean of the dependent variable, GLMs are better suited
to estimate the total flux from (or into) a county to (or from) the rest of the world. However,
as the geographical distance (as the friction factor of GLM) is not included in the proposed
models formation, we call them the Trade Predictive Model (TPM); (ii) a list of potential
factors that affect the global energy trade was prepared based on data availability, as well as
prior knowledge from previous food and energy trade modeling studies; (iii) descriptive
TPMs were developed for each node to estimate its total annual export to, and import
from, the rest of the world using the identified factors as independent model variables
(predictors); and (iv) using the predicted total annual exports and imports of each node,
the RAS method was used to reconcile the constructed trade matrices and estimate the
bi-lateral fluxes of energy of each network node (country). The whole modeling approach
was developed based on the historical period (2000–2016) for the baseline analysis, due to
the availability of bilateral energy trade data, and the possible futures of the global energy
trade were then projected based on selected future global scenarios (details provided in the
following sections).
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Table 1. Energy related data used in this study, along with their original reported units.

Data Source Unit

National Population∗ EIA Capita
Global Population∗ EIA Capita
GDP∗ EIA Billion $2010 PPPa

National fossil fuel energy production∗ EIA Tera joules
Global fossil fuel energy production∗ EIA Tera joules
National fossil fuel energy consumption∗ EIA Tera joules
Global fossil fuel energy consumption∗ EIA Tera joules
Energy intensity∗ EIA Btub/$2010 GDP PPP
National energy production of other sources of energy∗ EIA Quad Btu
Bilateral fossil fuel energy trades UN Comtrade Kilogram (Weight)
Total export-import∗∗ EIA bbl c

aPPP: Purchasing Power Parity; bBtu: British thermal unit; cbbl: Barrel, ∗Independent variables considered
for the TPMs, ∗∗Dependent variable in the TPMs.

2.1. Data

Global energy trade data were obtained from UN Comtrade (2019) which is the freely
accessibleUnitedNations International Trade StatisticsDatabase (http://resourcetrade.earth).
Additional data for all countries were also obtained from the U.S. Energy Information
Administration (EIA) database (US EIA, 2020), including population, gross domestic
product (GDP), energy production, and energy consumption. This study focuses on the
primary energy commodities of oil, natural gas, and coal. Energy production, consump-
tion, and trade were converted to gigajoules (GJ) separately for oil, natural gas, and coal
so all three primary sources had the same energy units and could be summed up in one
quantity. A comprehensive energy conversion calculator tool, EIA Energy Conversion Cal-
culator (2020) was used for the energy conversions. Table 1 summarizes the data used in
this study.

2.2. Network construction

The global energy trades can be viewed as a network of bilateral trade flows whose
structure is determined by participation of several nodes, which yield an Energy Trade
Matrix (ETM). In the proposed modeling approach, 77 countries (nodes) were selected,
which on average represented 93% of the fossil fuel energy trade during the study period
(1993–2016). The 77 selected nodes include 51 exporters and 59 importers; 26 are only-
importer, 18 only-exporter, and 33 exporter-importer. The 77 nodes (countries) created a
maximum of 2,976 links, which were not all active in the network according to the trade
data. For instance, in theUSA-Iran trade link, both countries aremajor players in the global
energy trade network, but there has been no energy trade through this link due to histori-
cal political conflicts. A subsequent filter was applied, similar to the approach followed by
Tuninetti et al. (2017) for food trade networks, by considering a link to be active only if it
was active for more than 50% of the time (9 years out of the simulation period of 17 years)
and if the volume of trade was at least 0.05% of the average of all global fluxes. This filter
was applied to avoid cluttering the network with insignificant links that would cause exces-
sive data noise without adding much value to the objective of capturing the global energy
trade (Tuninetti et al., 2017). The adopted thresholds led to keeping only 1,185 active trade
links, which carried 90% of the energy trade in the study period (Table S1). The trade in

http://resourcetrade.earth
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the inactive links was considered zero in the network in all years. Additional assumptions
included a fixed network topology as well as trade linksmaintaining their condition (active
or inactive) over the baseline period.

2.3. Trade predictivemodels

GLM is a regression-based model, often used to estimate the fluxes occurring in trade
networks (Bergstrand, 1985). For decades, GLMs have been reasonably successful at
explaining the bilateral flows of different types of trade (Distefano et al., 2020). The orig-
inal GLM formulation is inspired by Newton’s universal law of gravity: ‘The attraction
between two objects depends on the mass of these objects’ (Anderson, 1979). In this study,
we developed GLM-based models (coded inMatlab) to describe the relationships between
the total energy outflows (exports of a country to the rest of the world) as a dependent
variable and a set of indicators as independent variables (Country toWorld orCi_W mod-
els; Equation 1). Similarly, the imports of each country (W_Cj models) were developed
(Equation 2). However, in this proposed type of representation there is no need to consider
the geographical distance between a country and a central node that represents the global
market. Therefore, we call the proposed multivariate regression model as TPM to simulate
the total exports and imports of each node of the network. The TPMs were formed as a
linear regression between the logarithms of trade and explanatory variables (Tamea et al.,
2014), and

Ci_W models

Log(Fi,g) = β1 + β2Logv1 + β3Logv2 + β4Logv3 + . . . (1)

W_Cj models

Log(Fg,j) = β1 + β2Logv1 + β3Logv2 + β4Logv3 + . . . (2)

where Fi,g is the energy flow from the exporter node i to the global market g, and Fg,j is the
energy flow from the global market g to the importer node j. βs are the model parameters
interpreted as the regression coefficients, and vi is a model independent variable (provided
in Table 1). For g, global data were used and the data of nodes i and jwere always excluded.
The robust linear regression method (DuMouchel & O’Brien, 1992) was employed to esti-
mate the regression calibration parameters with the best performance in fitting the data.
As fitting one regression model for all countries is not logical, 110 multivariate regres-
sion TPMs were developed for the selected 77 countries in the study period (1993–2016).
First, the TPMs of 51 exporters and 59 importers were developed/calibrated for the period
1993–2009 (17 years annual data or 70% calibration sample size) to estimate the sets of
parameters. The TPMs were then validated for the 2010–2016 period. It is recognized
that the calibration and validation split samples are small; however, several studies sim-
ply employed the entire record for developing such trade models without split samples
(Tamea et al., 2014; Tuninetti et al., 2017). Therefore, the approach adopted in this study
adds another validation layer, admittedly limited, to ensure reasonable model reliability
and similar to what was done by Abdelkader et al. (2018).

To obtain the optimum number and the best set of independent variables for the export
and import TPM models, country to world and world to country, the stepwise regression
technique was implemented through three different alternative regression approaches
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(I, II, and III). In regression approach (I), the export of country i, as a dependent variable,
was regressed against an independent variable v1. This was repeated for all export coun-
tries with the same variable v1, then tried with each of the other independent variables:
v2, . . . v9. The variable with the best corresponding overall result – median of the results of
all exporters – was labeled as the best single variable and kept for the next step. In step 2,
the best second variable, v2, was sought in the same way among the remaining eight inde-
pendent variables and was added to v1 to form a model with the best two variables, and so
on until the best models with an increasing number of variables were formed. At all steps,
the decision wasmade based on themedian performance over all countries to havemodels
with the same set of independent variables for all countries. Also, it is important to note
that all country models with, for example, v1 and v2 are the best two-variable models that
include the best single-variable identified in step 1. The best three-variable models include
the same two variables identified in the best two-variable models, and so on. In regression
approach (II), the best two-variable models were obtained regardless of the best single-
variable. This means that the single-variable model for all countries might include, e.g. v4
but the best two-variable models can include v1 and v5 for all countries. The same thing
applies to all models withmore variables. In other words, the regression algorithmwas free
to select a set among all nine independent variables, as long as the selected set applies to
all export countries. In regression approach (III), the regression was free to select the best
sets and variables for every country individually, so, the best two-variable for country i can
be, for example, v1 and v3, but for country k, they are v2 and v7.

The overall performance of TPMs in each step was evaluated, for the calibration
(1993–2009) and validation (2010–2016) periods, using two quantitative statistics: R2 and
Mean Absolute Relative Error (MARE) (Equations S1 and S2). Accordingly, the perfor-
mance of the TPMs was evaluated for each node, and the median of all results based on R2

andMARE values reported. As the optimumnumber and best set of variables for each node
were obtained, the performances of TPMs were then individually evaluated with respect to
the estimation of the total volumes of energy flow using percent bias (PBIAS) (Equation 3)
to characterize any over/underestimation.

PBIAS(%) =
∑n

i=1(Qobsi − Qsimi)∑n
i=1(Qobsi)

× 100 (3)

whereQobs is the observed energy flows,Qsim is the simulated energy flow,Qobs is themean
of observed energy flows, andQsim is themean of simulated energy flows.MARE represents
the average affinity of the simulated flows and ranges from 0 to +∞, indicating relative
percent error in the model performance; R2 is the proportion of the variance explained by
the independent variables in the TPMs, and ranges from 0.0–1.0 where 1.0 indicates the
highest accuracy; and PBIAS is the average of the bias in the simulated energy flows and
ranges from −∞ to +∞, indicating overestimation and underestimation of the energy
flow volumes, respectively (Gupta et al., 1999).

2.4. RAS – energy tradematrix balancing technique

The RAS method, which is a matrix balancing technique (Wiebe & Lenzen, 2016), was
utilized to construct and populate the global energy trade network, reconcile the ETMs,
and estimate the mutual energy trade between each pair of nodes.
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Figure 1. Schematic representation of the global energy trade modeling approach.

The modeling approach developed (Figure 1) includes the following three steps:

(1) The outputs of the TPMs (the total energy export-import of countries) were used as
inputs to the annual ETM shown in Figure 2, as the table targets;

(2) The table cells Fi,j were filled by numbers as initial conditions, required for the initia-
tion of the RASmethod. Different initial conditions were also considered, as explained
below; and

(3) The iterative procedures of the RAS method were conducted, and the resulting bilat-
eral trade flow of each link was assessed when the table reached a balance (i.e. the
estimated total exports and imports matched with the targets specified in step 1).

Global bilateral trade data are available only after 2000, and therefore the period
2000–2016 was considered for the RAS application. As shown in Figure 1, the above pro-
cess was repeated n times for the n years of the study period, with an ETM constructed
for each year. In the process of balancing the ETMs, the accuracy of flow distribution is
highly dependent on the weights and topology of the initial conditions. Five different ini-
tial conditions were considered to initiate the RASmethod and generate the bilateral flows:
(A) for each year of the study period, 1000 sets of random numbers (1000 tables) were
generated as alternative initial conditions using the Latin hypercube sampling method
(Stein, 1987), and the best set of the 1000, based on the simulated bilateral flows, was
identified; (B) all initial Fi,j were given the same value of ‘1.0’ to provide the same ini-
tial weight to all trade links; (C) values of one over the geographical distance between each
pair of nodes were used as the initial inputs, where the priority of trades emphasizes closer
nodes (Anderson, 1979; Bergstrand, 1985); (D) the actual bilateral flows of the first year
of the simulation period (Fi,j)obs,2000were used as the initial conditions of the table, and in
subsequent years the balanced (modeled) bilateral energy trade flows of the preceding year
were used, and (E) the node-to-node approach was used to estimate the annual initial con-
ditions of the ETMwherewe develop the commonly usedGLMs, as incorporated the factor



8 E. OSTADZADEH ET AL.

Figure 2. Structure of the Energy Trade Matrices (ETMs), based on 51 exporters and 59 importers. The
gray cells indicate the countries involved in the bilateral trade. The cells with the rows and columns
summations refer to the total export and import flows of each country, respectively.

of geographical distance between each pair of countries, for the number of active links
(1185).

Based on the findings, one of the abovementioned five conditions will be used to
produce an annual energy trade table. For each year, one table (Figure 2) was created, rep-
resenting the global energy trade network of the corresponding year, where the rows and
columns represent the outflows and inflows of nodes, respectively.

The RASmethod is explained in more detail in McDougall (1999), Toh (1998), UN Sta-
tistical Division (1999), Parikh (1979), and Mínguez et al. (2009). Balanced matrices for
each year were obtained with an iterative procedure that progressively updates the initial
inputs until the error difference between two consecutive steps, as an objective function,
is minimized. This method was validated in this study using the energy bilateral trade
data of the global energy market available from the UN Comtrade (2019). The perfor-
mance of the RAS method was assessed using R2 to evaluate a node’s energy trade flux
simulations.

2.5. Future projections of global energy trade

Global energy trade networks were projected for the study period 2017–2050. This pro-
jection was conducted under future scenarios based on Shared Socioeconomic Pathways
(SSPs) (O’Neill et al., 2017), which project the future population, GDP, annual fossil fuel
consumption, and production (Table S2). The projected population and GDP, on 5-year
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intervals, come from the SSP database (Cuaresma, 2017; Samir & Lutz, 2017) at the coun-
try scale, and the energy data, with a 10-year interval, are the outcome of the integrated
assessment model (IAM) at the regional scale (Calvin et al., 2017; Fricko et al., 2017; Fuji-
mori et al., 2017; Kriegler et al., 2017; Van Vuuren et al., 2017). The International Institute
for Applied Systems Analysis (IIASA) divides the whole world into five regions (OECD,
REF, ASIA,MAF, and LAM); more details regarding the regional aggregation can be found
in the IIASA database (IIASA, 2020). The proposed country-based modeling framework
includes updating the ETMs over time within annual intervals. Therefore, the regional
energy data (IIASA projections) were disaggregated into a country-based scale and the 5-
and 10-year intervals into annual intervals. The regional energy data (production and con-
sumption) were broken down to the country-based scale according to the country’s share
in the corresponding region in the baseline period. The 5- and 10-year interval data were
disaggregated to annual data based on linear interpolation.

This study focuses on five SSPs (IIASA, 2020) that are based on RCP4.5, one of the four
representative concentration pathways (RCPs) forcing targets, based on the data availabil-
ity. Accordingly, the TPMswere developed under the future five SSPs, and the RASmethod
was used in a way similar to that conducted for the baseline period to project the bilateral
flows of energy across the global network. The only difference in the RASmethod for future
projection is the first year of initial conditions, which is the year 2016, instead of 2000 for
the baseline period. The calibrated TPMs also used the future-projected variables to esti-
mate the future total trade fluxes. The inactive links, which were forced to be zero in the
baseline period, were all weighted with a small value of 1.0 to have a chance to grow under
the future scenarios, e.g. in the case that a minor country increases its production in the
future. The narratives for each SSP are described in detail in Riahi et al. (2017) and Bauer
et al. (2017).

3. Results and analysis

3.1. Performance assessment of the developed TPMs

The investigation of the three possible approaches of the regression models (explained in
Section S1), led to the implementation of approach (III) in the analysis. Accordingly, the
TPMs, including four independent variables that vary across different countries, resulted
in the best approach for modeling both the export (Ci_W) and the import (W_Cj) TPMs.
As the number of inputs increase, the TPM performance (average performance across all
countries) improves during model calibration; however, there is a turning point beyond
four inputs in the validation period (Figure S1). The TPMs have an average satisfactory
performance across all importer and exporter countries, with R2 values of 0.51 and 0.55
and MARE values of 4.8 and 4.6% for importers and exporters, respectively.

In stepwise regression approaches (I) and (II) for the 51 exporters (Ci_W) and 59
importers (W_Cj), the overall performance of the TPMs in the validation period is not
satisfactory (R2 and MARE) and does not show an optimum number of input variables
(Figure S1, the panels in the upper andmiddle rows). This can be attributed to the need for
different set of inputs for different countries, which is achieved in TPMs of approach (III).
According to the stepwise regression results for both Ci_W andW_Cj models, the best set
of four input variables, out of nine (Table 1), was obtained for every exporter-importer node
(the bottompanels of Figure S1 show the best performance achievedwith four independent
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variables). Figure S2 shows the global median values of MAREs based on approach (III),
with the distribution of overestimation and underestimation in the validation period. The
results indicate the TPMsmaintain their stable performance over the validation period for
both importers and exporters.

The TPMs were used in this study to model and characterize the total fossil fuel trade
(imports and exports) of major players with the rest of the world; therefore, it is important
to investigate the PBIAS of such models. Figure S3 shows the performance of individ-
ual exporter/importer TPMs using approach (III) in the validation period. The poorest
performance of the TPMs belongs to North Korea with a PBIAS of −35.5%. Canada and
Venezuela also have less accurate models, compared to other exporters, with PBIAS values
of −27.3 and −22.3%, respectively. Such negative values of PBIAS indicate an overesti-
mation of energy exports of these countries. These less accurate estimations are probably
due to the absence of some unknown variables that are not included in the TPMs or to
the number of selected variables. For instance, after a focused consideration of these par-
ticular countries, it is concluded that the TPM developed for Canada performs better in
the validation period, with a PBIAS of 16%, when it includes five variables; this is not the
case for Venezuela, for which adding or removing variables does not improve the model
performance. Similarly, there is a less satisfactory performance for six importers – Colom-
bia, Egypt, Hong Kong, Pakistan, Tunisia, and Turkey – with PBIAS values of 22.5, −23.2,
−24.9, 22.2, 40.3, and 38.4%, respectively. As shown in Figure S3, the performance of
models for most countries, with a few exceptions, is between +10 and −10%, which is
satisfactory. Additionally, the well known F-test was used to evaluate significance of the
influence of independent variables on the dependent variable (Shen & Faraway, 2004).
The results indicate that the developed TPMs are significant for 42 exporters (82%) with
P-value < 0.1 including 40 exporters (78%) with a P-value < 0.05. Similarly, 47 importer
TPMs (82%) have a P-value < 0.1, including 41 (70%) with a P-value < 0.05. However,
the P-value > 0.1 for 9 exporter and 11 importer TPMs, which could be attributed to the
small sample size of data. The highest P-values of 0.4, 0.41, and 0.42 belong to the three
exporter TPMs of Yemen, Ukraine, and Egypt, and P-values of 0.38 for the importer TPM
of Philippines. As shown in Figure S3, there are a few TPMs with 0.26 > P-values > 0.1
which include the exporter TPMs of Poland, Sweden, United Arab Emirates, Bahrain, and
Nigeria, and the importer TPMs of Denmark, Brazil, Slovakia, Japan, Bangladesh, United
States, Mexico, Canada, Belarus, Hungary, and Israel.

3.2. Performance assessment of the bi-lateral energy flowmodeling (RAS)

Our investigation regarding the best possible approach to construct the bilateral energy
flows reveals that using the observed trade values of the first year of the simulation period
(conditionD, Section 2.4) as initial conditions lead to the best results (Figure S4), compared
to the other approaches used in the literature. The simulation accuracy starts with an R2

value of 0.98 in year 2 and decreases over time until it reaches 0.70 in year 17. Note that the
performance of a model with an R2 value >0.95 can be maintained if the observed trade
values of the past year or two are used. This can be adopted if characterization of the trade
network over the historical period or a forecast of one- or two-year lead time is desired.
However, we used the initial values of the first year of the simulation period to enable recon-
struction of future projections of the trade network over several years. The performance
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of the RAS method was assessed as an average over all cells in the ETM, which means
an average value over the global trade network. The performance of the RAS method for
each country is shown in Figure S5. The energy trade is predicted with acceptable accuracy
for 31 exporter nodes (60% of the network) with R2 > 0.6, including 19 nodes (36%) with
R2 > 0.8. The results also showweak performance in capturing the trade patterns for seven
nodes (13%; Argentina, Ukraine, Yemen, India, Egypt, China, and Azerbaijan), with a total
network trade flux share of 3.2% and R2 < 0.4. For the importers, the accuracy of the pre-
diction for 36 nodes (61%) is goodwithR2 > 0.6, including 27 nodes (45%) withR2 > 0.8;
for 12 nodes (20%; Nigeria, Colombia, Switzerland, Yemen, Bangladesh, Malta, Argentina,
Panama, Chile, Australia, New Zealand, and Portugal), the accuracy is low with R2 < 0.4,
with total network share of 3.6%. The results show the performance of the RAS method in
modeling energy trade is better for major players of the global energy network, which have
a larger global market share. The RAS performance is very good for 18 major exporters,
which carry 80% of the network energy supply and have an average R2 of 0.79, and for 15
major importers, which carry 81% of the network energy demand and have an average R2

of 0.80. The results also indicate weak performance of the RAS method for countries with
a small global market share. Tomore closely examine the performance of the RASmethod,
Figure 3 shows, as examples, its performance in the estimation of the node’s energy trade
values for two major exporters (Saudi Arabia and Russia) and two major importers (the
United States and China) in the last year of the simulation period (2016).

3.3. Analysis of the key variables influencing the energy trade

Based on our methodology, each country has only four selected influential variables that
substantially affect its energy trade (Figure S6). For example, Saudi Arabia’s energy exports
are mainly governed by its national GDP, its fossil fuel production, global fuel production,
and global consumption. The first two variables logically reflect the country’s economic
reliance on its energy exports, which are only limited by the global market demand (rep-
resented by the latter two variables). Canada, as an exporter, shares with Saudi Arabia
the importance of national and global fuel production as variables, but is unique in other
aspects. As amajor energy consumer and a developed country, Canada’s energy exports are
affected by its national energy intensity and reliance on other sources of energy (e.g. hydro,
nuclear, wind). Note that an exporter-and-importer country such as Canada can have
different variables affecting its imports and exports. For example, the national GDP, reflect-
ing industrial development and economic expansion, is an important factor for Canada’s
imports of fossil fuel energy (Figure S6).

Among a total of nine variables, national production of fossil fuel is globally the most
used variable in the TPMs of exporters, where it is included in 29 exporter nodes (57% out
of 51 exporters). Three other variables – national population, national energy production of
other sources of energy, and global fossil fuel energy consumption – are also used in TPMs of
28, 27, and 26 exporter nodes, respectively (Figure S7). In addition, energy intensity is the
least influential variable, being used for only 15 exporter nodes. With regard to importer
countries, note that all variables are influential in the global market, where national GDP is
the most used, affecting 28 importer nodes (47%). The role each variable plays in increas-
ing/decreasing the energy export/import of the countries was analyzed according to their
signs in the regressionmodels (TPMs) (Figure S8). Interestingly, a mixed signal effect of all
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Figure 3. Performance of the RASmethodwith respect to the simulation of energy flux for (a) twomajor
importers and (b) two major exporters in 2016.
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Figure 4. Projected annual fossil fuel energy trade at the global scale.

variables globally is evident. For example, global production of fossil fuels has an increas-
ing effect on the exports of 10 exporters but a decreasing effect on 12 other exporters. On
the other hand, the same variable has an increasing effect on the imports of 13 countries
and a decreasing effect on another 13 importers (Figure S8).

3.4. Future scenarios of the global energy trade

The two-step modeling approach developed in this study (TPMs, followed by RAS) was
adopted to project the global energy trade network under five different SSPs. Figure 4
shows the projected total global fossil fuel energy trade under different SSPs for the period
from 2017 to 2050. In SSP5, a world of rapid and unconstrained growth in economic out-
put and energy use (Keilman, 2020), the global energy consumption and production are at
their highest levels, which leads to fast growth in the global energy trade between energy
suppliers and importers.

The results show a sharp increase of the energy traded under scenario SSP5 (Figure 4)
to a value of 538 EJ in 2050 – a 260% increase compared to the 148 EJ in 2016. The rank of
SSPs in the corresponding projected global energy trade varies over time, but in 2050, SSP2,
SSP4, SSP1, and SSP3 (in that order) come after SSP5. In the case of SSP3, a fragmented
world of resurgent nationalism (Keilman, 2020), countries focus on domestic and regional
issues (Riahi et al., 2017) and decrease their production and consumption, which leads to
the lowest global energy trade (215 EJ). However, trade still increases by 45% compared to
2016 levels, over a period of 34 years.

Figure 5 is the topological visualization of the projected global energy trade network in
2050, using the Flowmap tool (Boyandin, 2020). We show here SSP1 and SSP5 as two dis-
tinct scenarios; the remaining scenarios are shown in Figure S11. The Canada-USA link is
projected to continue as the strongest bilateral trade link under all SSPs, with Venezuela’s
exports to China and India emerging as equally strong under SSP5. The gentle increasing
trend of energy trade under SSP3 and SSP4 (Figure 4) is obviously caused by declining
imports of China and India – the world’s largest importers under these two scenarios
(Figure S11).
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Figure 5. Visualization of the projected global fossil fuel energy trade network at the country scale
under SSP1 and SSP5 in 2050 (remaining scenarios shown in Figure S11).

Currently, the top three exporters of fossil fuel energy are Russia, Australia, and Saudi
Arabia, with Russia mostly dominating the European trade flows (Figure 6a). According
to our analysis, the 2016 energy network exhibits four main communities (sub-networks)
containing nodes that are more densely connected together than to the rest of the network.
Community detection was carried out using Gephi (https://gephi.org/), a network visu-
alization and exploration software. The algorithm for community detection is based on

https://gephi.org/
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Figure 6. Networks of fossil fuel energy trade in (a) 2016 and 2050 under (b) SSP1 (green road) and (c)
SSP5 (fossil fuels) scenarios. Nodes are colored according to their community evaluated with the mod-
ularity optimization algorithm. For each community, the percentage of included nodes is shown in the
legend. Node size is proportional to export flow, and the top three exporters of each scenario are repre-
sented in the legend. Link color is in accordance with source nodes to highlight the energy flow sources
of each community.

optimizing the network modularity (the strength of division of a network into modules)
according to the approach proposed by Blondel et al. (2008). At the beginning, the num-
ber of communities equals the number of countries. The algorithm then iteratively merges
communities that optimize the modularity of the network. The energy trade network has a
modularity of 0.43, which is an indicator of significant modularity with four communities.

In the current network, Russia dominates the biggest community, including ∼42% of
the total number of active countries (Figure 6a). Australia and Saudi Arabia form and dom-
inate in terms of energy export, along with Indonesia, a different community consisting of
∼27% of the total active countries, but internally trading large amounts of fossil fuels.

The network modularity analysis shows the global leadership of fossil fuel energy
exports will shift from Russia to Canada (Figure 6b) and Venezuela (Figure 6c) under sce-
narios SSP1 and SSP5, respectively. However, Canada will remain a major exporter even
under SSP5, with 4.2× 1010 GJ of exports, second to Venezuela (6.4× 1010 GJ). Note that
countries might change their communities in the future. For example, Canada and USA
currently belong to the same community but are projected to be part of different commu-
nities under SSP1 and SSP5 in the future, as shown by the community detection algorithm.
This applies to many countries, as shown in Figure 6.
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Under SSP5, the Venezuela–China (3× 1010 GJ), Canada-USA (2.9× 1010 GJ), and
Venezuela-India (2.6× 1010 GJ) links are projected to be the strongest ones. Among the
top exporters, both Venezuela and Mexico show large clustering coefficients (CCs; 0.6 for
both countries, according to values estimated by Gephi’s network statistics) under both
SSP1 and SSP5, denoting the tendency of these countries to form tightly connected groups.
This implies the trade partners of Venezuela andMexico are themselves well connected. In
the case of Venezuela in particular, a strong triangle is evident with China and India under
SSP5 (Figure 6c), although China also imports large flows from Indonesia, Iraq, Saudi Ara-
bia, and Australia. Under SSP1, the top three exporters are Canada, Indonesia, and Iraq,
while Russia and Saudi Arabia significantly reduce their energy exports compared to 2016.
In SSP1, onemore community is detected compared to 2016 and SSP5 due to the emerging
role of Brazil as an exporter, especially to China and Latin American countries. Further-
more, among the current leading exporters of energy, Russia and Australia are projected to
remain among the top five exporters under SSP1, SSP2, and SSP4, Saudi Arabia to main-
tain itsmajor position among themunder SSP2, SSP3, and SSP4, and Indonesia to continue
playing a significant role under all SSPs in year 2050.

According to the projection in 2050, China remains a central node in the energy trade
network, as in the past. It is projected to become the biggest importer of energy under
SSP1, SSP2, and SSP5 with imports from diverse communities (Figure 6); this is in contrast
to SSP3 and SSP4 where its energy imports dramatically decrease (Figure S11). However,
it always exhibits a small CC (0.25), highlighting a weakly connected neighborhood due
to the fact it tends to diversify its trading partners, which seems to be a national policy.
Overall, the largest CCs (>0.65) are found for Eastern European countries (e.g. Slovakia,
Latvia), Turkmenistan, and Hong Kong. These countries form tightly connected relations
with a few other countries and are mostly localized at the periphery of the network, being
connected to the core of the energy trade by small energy flows. Figure S11 shows the
Middle East and North Africa’s energy outflow to other regions, as the biggest exporter of
energy in the world, under different SSPs.

4. Discussion

The results of the presented methodology are not meant to be used for predicting specific
annual values of energy trade, but rather to characterize the current global energy trade
network and highlight potential future changes based on various projected scenarios. The
developed modeling framework combines TPMs and the RAS method to construct global
energy trade networks and estimate trade interactions between countries. The results indi-
cate that the proposed modeling approach leads to a good modeling accuracy in the
short-term projection (less than 30 years) compared to other approaches, including the
use of node-to-node approach (GLMs) to estimate annual initial inputs.

The projected global energy trade networks are also alignedwith the narratives of future
SSPs. Under the most optimistic scenario (SSP3), countries are supposed to reduce their
fossil fuel energy consumption along with a decrease in national production, which leads
to the least trade interactions within the global energy network, as evident in Figure S11. In
contrast, under SSP5 countries increase both their national fossil fuel energy consumption
and production, which is projected to result in more trade interactions between countries
within the network (Figure 5b). Sharmina et al. (2017) projected the global fossil fuel trade
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by year 2050 to be a wide range from less than 100 EJ to over 420 EJ based on future low and
high carbon scenarios. In contrast, the results of this study projected a larger global fossil
fuel trade, both inminimumandmaximumvalues, from215EJ under SSP3 to 538EJ under
SSP5 by year 2050. The logical results of the simulations provide additional evidence that
our network characterization model is working well. Canada-USA is the biggest trade link
in the global energy trade network under all SSPs except SSP5, where the Venezuela–China
link is projected to be the most dominant. The Canada-USA trade link in 2050 is projected
to carry 8, 7, 9, 13, and 5% of the global energy trade network under SSP1, SSP2, SSP3,
SSP4, and SSP5, respectively, whereas it carried 4% of the market in 2016.

The presented modeling framework is impacted by multiple limitations that should be
considered and addressed in future research. First, the energy trade network constructed
in this study includes a large number of countries for which the availability of annual trade
data was a major limitation. The combination of the RAS method and the TPMs requires
adequate data to function properly. In addition, data gaps for some national variables were
also a limitation for many countries. Second, the future projected energy variables, which
are the outcome of the IAMprovided by the IIASA, were only limited to energy production
and consumption at a regional scale, and with 10-year intervals. Thus, the projected data
needed to be disaggregated by country with annual intervals, which affects the accuracy
of results. Also, only one future RCP was used in this study due to data availability. Third,
the estimation of total trade fluxes, done using TPMs, could be improved as they greatly
affect the performance of the RASmethod. Such improvement could be achieved by either
including additional influential factors, e.g. energy price, foreign investments, and political
sanctions, or even employing other modeling approaches. Fourth, although fossil fuels are
still the dominant source of energy in theworld, the pattern and quantity of national energy
consumption from other sources of energy and their impact on the fossil fuel energy trade
are worth investigating inmore detail. Fifth, in this work, the trade fluxes of fossil fuels (oil,
natural gas, and coal) were aggregated together to convert the trade volumes of multiple
products into one single energy unit. It is acknowledged that this aggregation approach
may have limited our modeling framework capabilities for exploring future projections of
individual fuel types, and it does not capture how each fuel typemight be replaced by other
sources within the energy trade network. We did not model individual fuel types due to
the lack of data needed to develop the trade networks for each individual fossil fuel sepa-
rately, whichmight be addressed in future studies oncemore comprehensive trade datasets
become available. Sixth, the existing fossil fuel distribution infrastructureswere not directly
incorporated into the proposed modeling framework. Hence, investigation of the future
scenarios may need to consider the current reality of the fuel distribution infrastructure
and how that might change or evolve in the future. One of the solutions could be to assign
some weights to specific links within the RAS method to direct fluxes to specific regions
that are projected to have better infrastructure connecting them. Seventh, this study did
not investigate the main causes of trade changes under future scenarios. Therefore, future
studies need to employ proper methods (e.g. complex network theory) to deeply analyze
the features of projected trade networks, such as national and global drivers that lead to
the creation of significant trade communities and pathways.

The main policy implication of this study is that greater emphasis should be placed
on the energy supply security with respect to the uncertainty of the future global energy
trade network. At least until the mid of the century, fossil fuels would remain the core of



18 E. OSTADZADEH ET AL.

the global energy supply under all SSPs (IIASA, 2020). The global plans to mitigate global
warming, the Paris agreement in particular, have also entered into a new phase and the
countries have pledged to take practical steps, including reducing CO2 emissions asso-
ciated with fossil fuels development. Such international mitigation policies could lead to
gradual changes within the global energy trade network. Major energy consumer coun-
tries are more vulnerable to instability of the global energy trade network; the effect of the
Russian-Ukraine war is an example and the role that energy suppliers play under future
scenarios could be decisive for setting energy trade policies. Therefore, the results of this
study could provide national policymakers and resourcemanagers with amodeling frame-
work that can serve as an analysis toolkit to inform long-term strategies and investments
concerning fossil fuel energy, production, consumption, and trade. Meanwhile, we rec-
ommend that the key parties involved in the main trade links, such as USA–Canada,
Venezuela–China, and Russia-Europe, to accelerate development plans to rely more on
local renewable energy sources to reduce the environmental impacts of fossil fuel use and
trade, and to avoid the significant disturbance due to trade network shocks.

5. Conclusion

A modeling framework was developed in this study to characterize the annual global
fossil fuel (energy) trade network at the country level and investigate potential changes
that might happen within the network under future scenarios. The total annual energy
exports and imports of each country were estimated based on the trade predictive models,
using four identified independent variables that differ for each country. The distribution of
energy within the trade network (node-to-node) was modeled using the RAS method as a
matrix-balancing technique for the baseline period (2000–2016) and projected up to 2050
under five shared socioeconomic pathways (SSPs). The main contribution of this study is
summarized as follows:

(a) the proposedmodeling approach captured the main characteristics of the global trade
network well, and simulated and quantified major trade links with good accuracy.

(b) the projection results indicate that the annual global energy trade may reach 215 EJ
(45% growth compared to 2016) under SSP3 as a green scenario and 538 EJ (260%
growth) under SSP5 over the period from 2017 to 2050.

(c) the trade network analysis indicates (i) China is projected to remain a central node
in the global energy trade network as a major importer, (ii) Canada-USA will remain
the most dominant trade link in terms of bilateral traded energy under four out of five
future SSPs, and (iii) the naturally formed communities (sub-networks) within the
global energy trade network significantly change depending on the future scenario.

The findings of this study have significant implications for a variety of sectors including:
(1) governments; for ensuring energy security for citizens under future scenarios through
the implementation of energy policies, (2) energy companies; to actively trade energy
within the global market by making investment decisions based upon the future energy
trade projections, (3) financial institutions, to finance the energy projects according to
country’s projected energy supply and demand, (4) environmental organizations, to inves-
tigate the environmental impact of global fossil fuel trade, and (5) research institutions, to
conduct further research and provide analysis on future energy trends.
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We strongly urge all countries to be transparent in sharing more detailed data on their
energy production, consumption, and trade on a finer (sub-annual) temporal scale and
separated based on fuel (or energy) type, and to contribute to an accessible global database
to enable effective modeling and research, and to support the development of sound and
informed energy policies.
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