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Abstract—We consider the problem of modeling and analyzing
nonlinear piezoelectric energy harvesters for ambient mechanical
vibrations. The equations of motion are derived from the mechan-
ical properties, the characterization of piezoelectric materials,
and the circuit description of the electrical load. For random
ambient vibrations, modeled as white Gaussian noise, the describ-
ing equations become stochastic. The harvester performances
are analyzed through time-domain Monte-Carlo simulations.
Recently proposed solutions inspired by circuit theory, aimed
at improving the power performances of energy harvesters are
discussed in presence of random vibrations. Our results show
that, even in this case, matching network-based approaches
improve significantly the energy harvester performance.

I. INTRODUCTION

Wireless-connected technologies can be nowadays found
in every aspect of daily life. The interconnection among the
most varied elements, such as computers, printers, handheld
communication devices, network appliances and smart systems
in general is provided by the internet protocol, while the
aforementioned elements form the nodes of the network itself.
Among these networked systems, of great practical importance
is the interconnection of sensors and actuators, thus forming a
Wireless Sensor and Actuators Network (WSAN). WSANs are
present whenever there is a need to gather information from
the environment, process it, and, consequently, implement
actions that appropriately follow from the collected data. These
networks may, in general, involve a large (or even huge)
number of nodes, connect multi-domain system, and even
include both electrical and mechanical systems [1].

Deploying a WSAN requires to tackle a significant number
of issues, among which power supply is a major one. In fact,
such networked systems are often made of remotely located
and/or difficult to access nodes, thus making batteries a pos-
sible solution, however impaired by the difficult substitution
and by the required physical size, that could be incompatible
with the occupation and weight requirements of the node.

On the other hand, in most cases nodes can be effectively
designed to require a relatively low power budget as far as the
distance among nodes forming the network is not excessive.

Therefore, a self-powering capability implemented scavenging
energy from the surrounding environment would be the ideal
solution [2]. The term energy harvesting refers to a wide
range of technological solutions aimed at realizing small-
scale systems with the capability to tap available ambient
energy sources, varying from mechanical vibrations to elec-
tromagnetic radiation and thermal gradients, and transform the
collected energy into usable electric power, fed to the WSAN
node either directly or through the use of a buffer battery
[3]–[7]. Among the various possible sources, kinetic energy is
rather popular as it is widely available and characterized by a
significant power density [3]. Several physical principles can
be exploited for the conversion of kinetic energy in electrical
form, such as electromagnetic transformation and piezoelectric
materials. As the latter are in general cheap and allow for the
realization of size-effective and reliable transducers, we will
focus the attention of piezoelectric harvesters [8]–[11].

One of the main performance limitations for a piezoelectric
energy harvester is the sub-optimal energy transfer from the
mechanical source to the electrical load, a condition that can be
conveniently represented as an impedance mismatch between
the electrical equivalent of the entire electro-mechanical sys-
tem and the load. This suggests to introduce a proper reactive
element in parallel with the load, a procedure known in circuit
theory as power factor correction [12], [13].

Turning to the vibration source description, in the simplest
case of purely sinusoidal vibrations, i.e. when their energy is
concentrated at a single frequency, a relatively straightforward
analysis of the harvester is possible [12]. However, a more
physically sound description takes into account the vibration
energy spreading on a relatively wide frequency spectrum, thus
requiring the use of a stochastic process to represent the forc-
ing term. For a flat spectrum over a wide enough bandwidth, a
white Gaussian noise can be used to conveniently describe the
energy source as the theory of stochastic differential equation
driven by white Gaussian noise is well developed. However, if
the finite, non null noise correlation time cannot be neglected,
a colored Gaussian noise process can be used [14], [15].
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Fig. 1. Schematic representation of an energy harvester for ambient vibrations.

In this contribution, we model a piezoelectric energy har-
vester subject to random mechanical vibrations, and present
novel results through numerical analysis. The mathematical
model is derived from the properties of the mechanical part,
from the constitutive equations of linear piezoelectric materi-
als, and from the circuit description of the electrical part. The
model includes nonlinearities, taking into account nonlinear
contributions. Ambient mechanical vibrations are modeled as
a white Gaussian noise process. Consequently, the equations
of motion are stochastic differential equations, here solved
using various numerical integration schemes. Inspired by our
recent work on the application of circuit theory to improve
the efficiency of energy harvesting systems, we apply a power
factor correction solution to the load [12], [16], and we assess
the advantage offered by the modified load in terms of output
average voltage, output average power and power efficiency.
Results show that, even for the case of random mechanical
vibrations, the application of power factor correction improves
the performances by a significant amount.

II. MODELING NONLINEAR PIEZOELECTRIC ENERGY
HARVESTING SYSTEMS

Energy harvesters are multi-domain systems, with mechan-
ical and electrical parts: Fig. 1 provides a schematic energy
harvester for ambient mechanical vibrations. The mechanical
domain is responsible for capturing the kinetic energy, and is
composed of an inertial mass m, connected to a vibrating sup-
port through an elastic spring or a cantilever beam. Vibrations
of the support produce oscillations of the mass, here converted
into electrical power exploiting a piezoelectric transducer. We
remark that other transduction mechanisms lead to very similar
equations, thus a similar analysis can be performed [12].

The equation of motion for the oscillating system is readily
derived from classical mechanics

mẍ+ γẋ+ U ′(x) + Ftr(t) = Fvib(t) (1)

where m is the inertial mass, x is the displacement with respect
to the equilibrium position, dots denote derivative with respect
to time, γ is the damping coefficient, U(x) = k1x

2/2+k3x
4/4

is the elastic potential of the spring (or the cantilever), and the ′

denotes derivation with respect to the argument. For k3 = 0 the
harvester is linear, otherwise it is nonlinear. Finally, Ftr(t) is
the force exerted on the mechanical system by the transducer,
and Fvib(t) is the external force modeling ambient vibrations.
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Fig. 2. Representation of a piezoelectric transducer as an electromechanical
two-port.

In a piezoelectric transducer, a layer of piezoelectric ma-
terial is deposited on the oscillating structure (the spring or
the cantilever beam). Stress and strain induced in the layer by
mechanical deformation, are converted into electrical power.
Starting from the characterization of piezoelectric materials
the following relationships between mechanical and electrical
quantities are derived [12], [16]–[18]

Ftr =α e (2a)
qpz =αx− Cpz e (2b)

where α is the electro-mechanical coupling (in N/V or As/m),
Cpz is the electrical capacitance of the piezoelectric layer,
and qpz and e are the charge and voltage, respectively. The
transducer can be represented as an electro-mechanical two-
port, with mechanical quantities at the input, and electrical
quantities at the output, see Fig. 2 and [18]. The output voltage
e is used to supply power to an electrical load.

Substituting (2a) into (1), rewriting as a system of first order
differential equations and differentiating (2b) with respect to
time we obtain:

ẋ =y (3a)

ẏ =− 1

m
U ′(x)− γ

m
y − α

m
e+

1

m
Fvib(t) (3b)

ė =
α

Cpz
y − 1

Cpz
q̇pz (3c)

In circuit theory, a load, normally modeled as a resistor, is
any electrical component absorbing power from the preceding
circuit (Fig. 3(a)). Previous studies [12], [16] showed that a
fundamental factor limiting the harvested power and power
efficiency, is the impedance mismatch between the mechan-
ical and the electrical domains of the harvester. Impedance
mismatch, a classical problem in electrical and electronic
engineering, can be taken care of exploiting a solution inspired
by RF electronics: to interpose a matching network between
the source (the electromagnetic harvester) and the resistive
load so that the power delivered to the load is maximized.
Different types of matching network exist. Here we consider a
simple matching network composed by two reactive elements,
an inductor LS and a capacitor CP connected as in Fig. 3(b).
This solution is called low-pass L-matching network, because
of the arrangement of the reactive elements, and because at
very low frequency the inductor behaves as a short circuit.

To assess whether the application of the matching network
improves the power performances of the energy harvester, we
should calculate the average power Pout = Gv2rms absorbed
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Fig. 3. Electrical load connected to the electromagnetic energy harvester. (a)
Resistive load. (b) Resistive load with low-pass L-matching network.

by the load, where vrms is the root mean square value of the
load voltage:

vRrms =
√

⟨v2R(t)⟩ (4)

and ⟨·⟩ denotes the mean value (expectation) operator. For the
resistive load of Fig. 2(a), vR = e, application of Ohm law
yields q̇pz = GvR, where G = R−1 is the load conductance.
Substituting into (3) results in the state equations

ẋ =y (5a)

ẏ =− 1

m
U ′(x)− γ

m
y − α

m
vR +

1

m
Fvib(t) (5b)

v̇R =
α

Cpz
y − G

Cpz
vR (5c)

Conversely, for the matched load shown in Fig. 3(b), q̇pz = I .
Using the constitutive relationship of the linear inductor vLS

=
LS İ and applying Kirchhoff voltage law gives LS İ+vR−e =
0. Similarly, using the constitutive relationship for a linear
capacitor ICP

= CP v̇R and using Kirchhoff current law yields
−I +CP v̇R +GvR = 0. Combining these equations together
with (1) and the time derivative of (2b) yields

ẋ =y (6a)

ẏ =− 1

m
U ′(x)− γ

m
y − α

m
αe+

1

m
Fvib(t) (6b)

ė =
α

Cpz
y − 1

Cpz
I (6c)

İ =
1

LS
(e− vR) (6d)

v̇R =
1

CP
(I −GvR) (6e)

III. EQUIVALENT CIRCUIT MODELING

State equations (5) and (6) can be used to derive an
equivalent circuit model, i.e. an electrical circuit retaining
the behavior of the original electro-mechanical systems as
it is described by the same equations. The equivalent circuit
shown in Fig. 4, is obtained exploiting mechanical to electrical
analogies [16]: the variable substitutions are summarized in
Table I. Ambient mechanical vibrations are modeled as an
independent, ideal voltage source. The oscillating structure is
equivalent to an electrical oscillator, where inductor L1 plays
the role of the inertial mass, and capacitor C1 has a nonlinear
voltage-charge characteristic, representing the nonlinear elastic
potential. Internal friction is described by resistor R1. Finally,
an ideal transformer with turns ratio 1 : n (n = α−1) in

TABLE I
MECHANICAL TO ELECTRICAL ANALOGY

Mechanical Electrical
Force, f Voltage, v

Displacement, x Charge, q
Momentum mẋ Flux linkage, φ

Mass, m Inductance L
Compliance, k−1 Capacity, C

Damping, γ Resistance, R

+
−

R1 L1

vin(t)

Cpz

1 : n

Ambient
vibrations

Mechanical
domain

Piezoelectric
transducer

+

−
e

load

q̇ I

C1

Fig. 4. Equivalent circuit for a piezoelectric nonlinear energy harvester with
a resistive-inductive load.

parallel with a linear capacitor Cpz is used to model the
piezoelectric transducer.

IV. STOCHASTIC DIFFERENTIAL EQUATIONS

Ambient mechanical vibrations are described as stochastic
processes. In particular, if the energy is distributed over a
relatively large frequency interval, vibrations can be modeled
as uncorrelated white Gaussian noise, and the differential
equations (5) or (6) become stochastic differential equations
(SDEs).

Let (Ω,F , P ) be a probability space, where Ω is the sample
space, F = (Ft)t≥0 is a filtration, i.e. the σ-algebra of all the
events, and P is a probability measure. Let Wt = W (t) be a
one dimensional Wiener process, characterized by ⟨Wt⟩ = 0,
covariance cov(Wt,Ws) = ⟨WtWs⟩ = min(t, s) and Wt ∼
N (0, t), where symbol ∼ means “distributed as”, and N (0, t)
denotes a normal distribution with zero expectation.

A d-dimensional system of SDEs driven by the one-
dimensional Wiener process Wt takes the form

dXt = a(Xt)dt+B(Xt)dWt (7)

where Xt : Ω 7→ Rd is a vector valued stochastic process,
i.e. a vector of random variables parameterized by t ∈ T . The
parameter space T is usually the half-line [0,+∞[. The vector
valued function a : Rd 7→ Rd is called the drift, while function
B : Rd 7→ Rd is the diffusion. If B(Xt) is constant, then
noise is un-modulated or additive, otherwise it is modulated or
multiplicative. Functions a(Xt) and B(Xt) are measurable
functions, satisfying a global Lipschitz and a linear growth
conditions, to ensure the existence and uniqueness solution
theorem [19].

Equations (5)-(6) are conveniently rewritten as SDEs for
a-dimensional variables (including a-dimensional time). The
d-dimensional system of SDEs can be recast in the form:

dXt = (AXt + n(Xt)) dt+B dWt (8)



where the constant matrix A ∈ Rd,d and function n : Rd 7→
Rd are, respectively, the linear and nonlinear terms of the drift,
and the diffusion matrix B is constant (un-modulated noise).

We introduce linear transformed variables y = Px, where
P ∈ Rd,d is a constant matrix. In order for the transformation
to be invertible, P must be regular. Using Itô rule [19], [20],
the following SDEs for the stochastic processes y are obtained:

dY t =
(
PAP−1Y t + Pn(P−1Y t)

)
dt+ P B dWt (9)

Time variable change in SDEs is not trivial. Consider the
time change t′ = τ(t) = ω t, with ω > 0. If Y t solves (9),
then Y τ solves

dY τ =
(
PAP−1Y τ + Pn(P−1Y τ )

)
dτ+P B dWτ (10)

Using the change of time theorem for Itô integrals (see [19],
page 156) the time scaled Wiener process is

Wτ(t) ∼
√
τ ′(t)Wt =

√
ωWt (11)

where, again, symbol ∼ means “distributed as”. Using dτ =
ω dt, and defining Ỹ t = Y τ we have that Ỹ t is a weak
solution for the SDE

dỸ t = ω
(
PAP−1Ỹ t + Pn(P−1Ỹ t)

)
dt+

√
ωP B dWt

(12)
Being a weak solution implies that Ỹ and Y have the same
probability distribution. In most applications this information
is the most important, because the interest is not on the detailed
solution for a specific realization of the Wiener process, but
rather on expected quantities that can be calculated using the
probability density function.

To derive the a-dimensional SDEs for the energy harvester
with the resistive and the matched load, we assume a nonlinear
elastic potential of the form U(x) = k1x

2/2 + k3x
4/4 and

we model ambient vibrations as white Gaussian noise with
variance D2. Consequently, the equivalent circuit in Fig. 4
includes a voltage source vin(t) = DdWt and a nonlinear
capacitor with nonlinear voltage-charge characteristic vC(q) =
q2/(2C1) + q4/(4C3).

For the circuit with resistive load, system (5) is rewrit-
ten as the SDEs (8), with Xt = [q, i, vR]

T , n(Xt) =
[0,−q3/C3, 0]

T , B = [0, D, 0]T and

A =


0 1 0

− 1
L1C1

−R1

L1
− α

L1

0 α
Cpz

− G
Cpz

 (13)

The SDEs for a-dimensional variables are obtained introducing
the diagonal matrix P = diag[Q−1, TQ−1, CpzQ

−1], where
Q is a normalization factor that has dimension of a charge,
and T is the time scaling factor T = 1/ω =

√
L1C1.

Similarly, for the equivalent circuit with the matched load we

Parameter Value
R1 6.9366 Ω
C1 5.874 µF
L1 1 H
Cpz 80.08 nF
R 1 MΩ
n 37.4254

TABLE II
VALUES OF CIRCUIT COMPONENTS, BASED ON [22]

have Xt = [q, i, e, I, vR]
T , n(Xt) = [0,−q3/C3, 0, 0, 0]

T ,
B = [0, D, 0, 0, 0]T and

A =



0 1 0 0 0

− 1
L1C1

−R1

L1
− α

L1
0 0

0 α
Cpz

0 − 1
Cpz

0

0 0 1
LS

0 − 1
LS

0 0 0 1
CP

− G
CP


(14)

SDEs for a-dimensional variables are obtained using the diago-
nal matrix P = diag[Q−1, TQ−1, CpzQ

−1, TQ−1, CpzQ
−1].

V. RESULTS

To verify whether the matched load increases the harvested
power and power efficiency, we have performed Monte Carlo
simulations for the energy harvester with both the resistive
and the matched load. The SDEs have been solved numerically
using different numerical integration schemes, including Euler-
Maruyama1, strong order 1 stochastic Runge-Kutta, and weak
order 2 stochastic Runge-Kutta [21]. Time simulation length
was ∆t = 104 s, with a constant time integration step δt ≈ 30
µs. The relatively small time step implies the absence of any
significant difference in the solutions obtained using different
numerical integration methods. For our numerical simulations,
we used the circuit component values reported in [22], and
here summarized in Table II. For the nonlinear voltage-charge
characteristic of the capacitor, it was assumed C3 = Q2 · C1,
where Q = 1 C. Expected quantities where obtained averaging
over one hundred simulations.

Fig. 5 shows the root mean square (rms) value for the output
voltage vRrms =

√
⟨v2R(t)⟩, versus the value of the load

resistance R, for the resistive load case.
For comparison, the output voltage rms value for the har-

vester with matched load, versus the values of the matching
network parameters LS and CP , is shown in Fig. 6. Optimal
values of the parameters maximizing the harvested voltage
are clearly seen. As well as the advantage of the matched
load, which offers a much higher output voltage than the
simple resistive load. It is worth mentioning that the very high
optimum value for the matching inductance: Lopt

S = 303.7273
H, is a consequence of the normalization used, that fixes
L1 = 1 H.

1Since noise is un-modulated, Euler-Maruyama and Milstein numerical
schemes coincide.



Fig. 5. Root mean square value for the output voltage vR, versus the
resistance of the load for the resistive load setup. Parameter D = 50mV,
other parameters value are those of table II.

Fig. 6. Root mean square value for the output voltage vR, versus the matching
network parameters LS and CP . Parameter D = 50mV, other parameters
value are those of table II.

Fig. 7 shows a comparison of the average harvested power
by the harvester with resistive and matched load, versus the
noise intensity. Optimum values of parameters of the matching
network, determined from fig. 6 are: Lopt

S = 303.7 H, and
Copt

P = 23.31 pF. The matched solution offers about nine
times more power with respect to the simple resistive load.

To calculate the power efficiency of the harvester, we
need the average power injected by the noise. This is easily
calculated using stochastic calculus. Here we give the details
for the matched load case, the same procedure can be applied

Fig. 7. Comparison of the average harvested power for the harvester with
resistive load and with matched load, versus the noise intensity. Parameters
of the matching network are Lopt

S = 303.7H, Copt
P = 23.31pF. Parameter

D = 50 mV.

Load vRrms Pout ε
Resistive load 10.1315 V 0.10265 mW 8.21%
Matched load 30.5210 V 0.93153 mW 74.52 %

TABLE III
PERFORMANCES COMPARISON FOR A SIMPLE RESISTIVE LOAD, AND A

MATCHED LOAD.

Fig. 8. Stationary marginal probability density function for the output voltage
pst(vR), for the energy harvester with resistive load. Parameter D = 50 mV.

for the resistive load yielding similar results. For the equivalent
circuit with matched load, the total energy stored in the circuit
is the sum of the energies stored in the reactive elements L1,
C1, LS and CP . Notice that the ideal transformer does not
store energy, it only transfers electrical power from the primary
to the secondary windings. The total energy is

Etot(t) =
1

2
L1i(t)

2 + U(q(t)) +
1

2
LSI(t)

2 +
1

2
CP vR(t)

2

(15)
Differentiating using Itô rule, using (6) and taking expectation
we obtain 〈

dE

dt

〉
= −R1⟨i2⟩ −G⟨v2R⟩+

D2

2L1
(16)

where we used the property of Itô integral: ⟨i(t) dWt⟩ = 0.
Equation (16) implies that the circuit reaches a steady state,

where the power dissipated by the resistors R1 and R, is
balanced by the power injected by noise Pin = D2/(2L1).
Power efficiency is the ratio between the power transferred to
the load and the power injected by noise, that is:

ε =
2L1G⟨v2R⟩

D2
(17)

Table III shows the rms output voltage, average harvested
power and power efficiency for the harvester with resistive
and matched load. Application of a simple matching network
improves the harvester performances by a significant amount.
In particular, both the average harvested power and power
efficiency for the system with matched load are nine times
higher than those for the resistive load.

Finally, we discuss the role of nonlinearity. Fig. 8 and
9 show the marginal probability density function for the
output voltage pst(vR), for the energy harvester with resistive
and with matched load, respectively. The stationary marginal
distribution is calculated from the numerical simulations as



Fig. 9. Stationary marginal probability density function for the output voltage
pst(vR), for the energy harvester with matched load. Parameter D = 50 mV.

follows. We perform a long simulation and we eliminate the
transient period, retaining only the long time behavior. The
probability to find the system in state vR + dvR is calculated
as the fraction of samples in that interval, normalized to
the total number of samples that have been retained. Both
figures show a clear resemblance with a Gaussian distribution,
suggesting that the nonlinearity plays a marginal role. In fact,
the SDEs obtained linearizing the harvester equations around
the origin (the only stable equilibrium point of the underlying
deterministic system) describe an Ornstein-Uhlenbeck process,
and it is well known that the stationary distribution of the
Ornstein-Uhlenbeck process is a normal centered at the origin.
Therefore we conclude that, at least for reasonable values
of the noise intensity, the excitation is not strong enough to
induce significant nonlinear effect in the harvester. To observe
such nonlinear effects, either very strong excitations should be
considered, or a different, softer spring should be used.

VI. CONCLUSIONS

Piezoelectric energy harvesters are micro-scale electro-
mechanical systems designed to transform ambient mechanical
vibrations into electrical energy. As such, they are well suited
to provide a power energy source to electronic circuits, sensors
and actuators wirelessly connected to form a WSAN.

In terms of the harvested energy effectiveness, the
impedance mismatch between the mechanical and the electri-
cal parts of the harvester is the main limiting factor. A possible
workaround is to exploit power factor correction methods
from circuit theory to minimize this effect. In qualitative
terms, interposing a reactive element between the equivalent
electrical source and the load amounts to reduce the lag
between the voltage across and the current through the load,
thereby increasing the absorbed power.

In this work we analyzed a nonlinear piezoelectric en-
ergy harvester for ambient mechanical vibrations exploiting
stochastic methods to account for their non uniform spec-
tral power distribution. The equations of motion have been
derived from the mechanical properties, the characteristic
equations of linear piezoelectric materials and the electrical
circuit description of the load. In the case of random ambient
vibrations described as white Gaussian noise, the resulting
stochastic differential equations have been solved numerically,

and expected quantities have been calculated using Monte-
Carlo simulation techniques.

Our analysis shows that the power factor corrected solution
offers better performances in terms of output voltage, output
average absorbed power and power efficiency. The output
voltage is increased by almost three times, while absorbed
power and power efficiency by almost nine times.
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