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ARTICLE

Coherent structures at the origin of time
irreversibility in wall turbulence
Giovanni Iacobello 1✉, Subharthi Chowdhuri 2, Luca Ridolfi 3, Lamberto Rondoni 4,5 &

Stefania Scarsoglio 6

Time irreversibility is a distinctive feature of non-equilibrium phenomena such as turbulent

flows, where irreversibility is mainly associated with an energy cascade process. The con-

nection between time irreversibility and coherent motions in wall turbulence, however, has

not been investigated yet. An Eulerian, multiscale analysis of time irreversibility in wall-

bounded turbulence is proposed in this study, which differs from previous works relying on a

Lagrangian approach and mainly focusing on homogeneous turbulence. Outcomes reveal a

strong connection between irreversibility levels and coherent structures in both turbulent

channel and boundary layer flows. In the near-wall region, irreversibility is directly related to

the inner spectral peak originating from small-scale turbulent structures in the buffer layer.

Conversely, stronger irreversibility is found in correspondence to the outer spectral peak

originating from larger turbulent flow scales far from the wall. Our results represent a first

effort to characterize Eulerian TI in wall-bounded turbulent flows, thus paving the way for

further developments in wall-turbulence modeling and control accounting for broken tem-

poral symmetry.
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T ime irreversibility (TI) is a fundamental property of non-
equilibrium systems, which are typically dissipative1,2. In
steady state, TI appears as an asymmetry of the statistical

properties of a signal when the time direction is reversed2–6. TI
plays an important role in revealing key features of nonlinear
dynamical systems, such as long-range nonlinearity and non-
Gaussianity, and is inherently associated with entropy production
in statistical mechanics and thermodynamics3,7. Owing to its
importance in non-equilibrium systems, TI has been investigated
through the lens of time-series analysis in many scientific
areas7–11.

Turbulent flows represent a paradigmatic example of dis-
sipative, highly-nonlinear, and far-from-equilibrium systems12,13.
A distinctive feature of turbulent flows is the presence of a broad
range of scales—from the largest, inertial, scales to the smallest,
dissipative, scales – across which energy is redistributed13. The
presence of a separation between the large flow scales (where
energy is injected) and the smallest scales (where energy is dis-
sipated) implies an average flux of kinetic energy as a cascade
process (occurring from large to small length scales in three-
dimensional turbulence)12,13. Specifically, far away from solid
walls and in a range of scales in-between the large and small
scales, the rate at which kinetic energy crosses through the flow
scales – characterizing the cascade process – can be equated to the
turbulent kinetic energy dissipation14, which has been shown to
remain finite even as the viscosity tends to zero (a feature that is
referred to as the dissipative anomaly)12,15. Accordingly, while the
presence of viscosity formally leads to intrinsic irreversibility,
high-Reynolds-number turbulence – owing to its high complexity
and the wide large-to-small scale separation – is mainly driven by
inertial forces that make dissipative effects less evident, thereby
manifesting significant statistical irreversibility that is typically
associated with the energy cascade process12,16–18. In dynamical
systems theory, the dualism between intrinsic and statistical
irreversibility has been widely explored in terms of microscopical
and macroscopic irreversibility, such that a dynamical system can
be microscopically (intrinsically) reversible and macroscopically
(statistically) irreversible18,19.

Several studies have been carried out with the aim to shed light
on time irreversibility in turbulent flows and its connection with
the energy cascade process, with a particular focus on
homogeneous-isotropic turbulence16,20–24 and two-dimensional
(2D) turbulence25–28. In particular, the Lagrangian viewpoint has
been recently adopted as a framework to investigate TI, by looking
at the asymmetry in the statistics of backward and forward dis-
persion of tracer particles16,17,20–22,24,29–31. In contrast, the inves-
tigation of TI in wall-bounded turbulent flows has received much
less attention9,29, although wall turbulence plays a crucial role in
several key engineering and geophysical problems32,33. Wall-
bounded turbulence includes an additional level of complexity with
respect to homogeneous isotropic turbulence due to the inhomo-
geneity and anisotropy of the flow along the wall-normal direction.
This additional peculiarity of wall turbulence implies that statistical
irreversibility in wall turbulence can arise, not only via the energy
cascade process but also due to the complex spatio-temporal
development of wall-induced coherent motion, which constitutes
the backbone of turbulent flows34.

In order to fill the knowledge gap concerning the connection
between TI and coherent motion, in this work, we investigate
statistical irreversibility in wall-bounded turbulence focusing on
how different flow scales contribute to TI. Characteristic flow
scales, in fact, are associated with coherent structures, and display
complex dynamics, not only in terms of energy cascade but
also through inter-scale interactions such as modulation
phenomena35,36. Specifically, instead of relying on the Lagrangian
viewpoint, we adopt an Eulerian, multiscale framework to

investigate TI. In the Lagrangian framework, characteristic scales
are identified through the average distance between particles,
which is a function of time because particle separation increases
(on average) with time17. It follows that particle motion senses
(Eulerian) turbulent scales of varying sizes at different times due
to particle relative dispersion in the flow, thus making it difficult
to perform a scale-dependent study of TI. The Lagrangian mul-
tiscale analysis is even more challenging in the case of wall tur-
bulence, where the flow dynamics (hence, scales’ features) is
strongly dependent on the distance from the wall, and Lagrangian
dispersion significantly depends on particle wall-normal
position29. The Eulerian framework adopted here, instead,
allows us to carry out a scale decomposition with ease by
exploiting the Fourier transform, as it is typically done in the
study of turbulent signals13,34,37.

Recent works have provided insights on the relation between
Eulerian and Lagrangian TI in turbulent flows, showing a distinct
correlation between Eulerian and Lagrangian TI indicators31,38.
However, they have investigated a turbulent von Kármán flow
adopting an instantaneous Eulerian approach31, rather than
focusing on wall-bounded turbulence through a multiscale
approach. The key aspect of our work, therefore, is the analysis of
statistical TI at different time scales, and how TI relates to orga-
nized motions in the flow. The choice of the flow case represents a
key aspect as well, since wall turbulence has been much less
investigated than homogeneous-isotropic turbulence in terms of
statistical TI. Our multiscale analysis, indeed, is particularly chal-
lenging in wall turbulence due to the complex organization of
turbulent structures arising along the wall-normal direction34.

To perform our investigation, we take advantage of tools of
nonlinear time-series analysis to quantify TI in the Eulerian
viewpoint, by exploiting 1-dimensional velocity signals measured
at various vertical (i.e., wall-normal) coordinates. Specifically, a
parameter-free methodology based on horizontal visibility graphs
(HVGs) is employed as the reference approach to capture tem-
poral asymmetry in the signals39. Visibility networks represent a
widely-used tool for nonlinear time-series analysis40, including
turbulent and vortical flows41, which have recently been exploited
for TI analysis of both steady and unsteady phenomena42–48. The
choice to adopt an HVG-based metric of TI is dictated by ease of
implementation, and by results’ robustness as arbitrarily-defined
parameters are not required39,45. In fact, one of the main obsta-
cles in quantifying TI is providing robust estimates, which is
rarely achievable via traditional time-series symbolization39,49.
Visibility graphs, therefore, allow us to directly quantify TI from
Fourier-filtered signals for the multiscale analysis, thus connect-
ing our findings with previous results from the literature in terms
of velocity spectra.

Nevertheless, like other measures of irreversibility, HVG-based
metrics provide partial information on the system39. This is
inevitable since a single parameter can not fully represent a com-
plex phenomenon. For this reason, aiming to strengthen our
results’ reliability, we extend the analysis to two alternative TI
metrics: a higher-order (lag-reversibility) correlation coefficient4,
and a measure based on the fluctuation theorem7. The results based
on such alternative TI metrics (see Supplementary Note 3) corro-
borate the HVG-based analysis thus advocating its applications.

Since coherent structures exhibit different features along the
wall-normal direction (e.g., in terms of geometry, dynamics, as
well as energetic content34,37), we study the effect of the wall-
normal coordinate on TI levels, exploring the whole range of
wall-normal distances from the near-wall region (where wall-
induced effects are dominant) to the outer flow region (where
wall-induced effects are negligible). By so doing, we are able
to focus on the relation between TI and flow scales while
also accounting for the inhomogeneity and anisotropy of
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wall-bounded turbulence, which affects the spatio-temporal
development of coherent structures. To this aim, experimental
and numerical data of the streamwise velocity are exploited from
both external (turbulent boundary layer) and internal (turbulent
channel) flows at high Reynolds numbers. The streamwise velo-
city component, u, is chosen as the observable for this study since
it is well-known to retain fundamental features of wall-bounded
turbulence mechanisms; for example, u has about twice as much
kinetic energy as the other velocity components, thus making it
one of the key variables to consider in wall turbulence analysis34.
Results for both external and internal wall turbulence reveal
peculiar scale-dependent patterns, where significant TI levels
emerge in correspondence with energetic small and large struc-
tures at characteristic wall-normal coordinates. Present outcomes,
therefore, suggest a connection between TI and the dynamical
processes related to the development of coherent structures in
wall turbulence, thus triggering new studies in turbulence
research.

Results
Full-signal TI analysis of turbulent boundary layer. A labora-
tory zero-pressure-gradient turbulent boundary layer at friction
Reynolds number Rτ ≈ 14,750 is chosen as the representative
(high Reynolds number) test case for inner flows (see a schematic
in Fig. 1a)35. Streamwise velocity time series, recorded at varying
wall-normal distances y+ (the+ superscript indicates wall-units
normalization by the friction velocity, uτ, and viscosity, ν), are
mapped into directed graphs following the horizontal visibility
algorithm50, as illustrated in Fig. 1b (see Methods). TI is then
quantified as the Kullback–Leibler divergence, Ik, of the back-
ward- (kb) and forward-degree (kf) probability distributions, p(kb)
and p(kf), where the node degree k quantifies the number of links
adjacent to each node (e.g., see Fig. 1b)39,45. Time reversible
signals imply Ik= 0 (where zero is exactly reached for infinitely-
long signals), while growing values Ik > 0 indicate stronger levels
of TI39.

A full-signal (i.e., not scale-dependent) analysis is carried out
first. Figure 2a shows the behavior of eIk ¼ Ik=Ik;max (where Ik;max

is the maximum Ik value along y+), computed from full-length
u(ti) signals. While a slightly-inclined plateau is observed in the
log-layer with a drop in the external region, a eIk peak is observed
in the near-wall region. The emergence of higher TI levels in the
buffer layer (which is known to be a very active flow region) is a
peculiar result, as this (near-wall) region of wall turbulence is
characterized by the development of coherent motion and

bursting events32,34, as well as modulation mechanisms36, whose
complex dynamics can contribute to the generation of statistical
TI.

In order to quantify the degree of reliability of eIk values, a
reliability ratio, Ik,r, is also evaluated following González-Espinoza
et al.48: Ik,r corresponds to the Z-score computed with respect to
the mean and standard deviation of Ik values from an ensemble of
randomly-shuffled u(ti) signals (which are time-reversible). The
maximum and minimum values of the reliability ratio (high-
lighted in Fig. 2a) are Ik,r≫ 1, thus allowing one to ascertain with
extreme confidence that streamwise velocity signals are irrever-
sible. A parametric analysis on the impact of decreasing the time-
series length on the wall-normal behavior of Ik is discussed in
Supplementary Note 1, while the whole behavior of Ik,r as a
function of y+ is reported in Supplementary Note 2.

To shed more light on the origin of TI in full-length u(t)
signals, a conditional analysis is performed with respect to: (i) the
local slope in the time series, ∣du+/dt+∣, and (ii) the velocity
fluctuations u0=σu, where u0ðtÞ ¼ uðtÞ � U (U is the mean
velocity), while σu is the root-mean-square velocity (see Fig. 1a).
Values of eIk conditioned to the local slope ∣du+/dt+∣ for different
y+ coordinates are reported in Fig. 2b. The highest levels of TI are
detected for intense temporal variations in the buffer layer, which
are reminiscent of near-wall bursting events34. This link between
high TI levels and bursting events is confirmed by the conditional
analysis on turbulent fluctuations u0=σu (Fig. 2c), which points
out larger eIk values residing in the range �1<u0=σu < 0 in the
buffer layer. In fact, near-wall bursting events are typically
detected as intervals of u0ðtiÞ starting at u0=σu ¼ �1 and ending
at u0=σu<� 0:2551–53, in very good agreement with intervals of
large eIk in Fig. 2c.

Results from Fig. 2 are also in qualitative accordance with
previous studies where irreversibility was related to (i) the
velocity-gradient tensor perceived by dispersing Lagrangian
particles20, and (ii) an asymmetry between growth and decay of
signal fluctuations (i.e., where local signal slopes are large) in
non-equilibrium systems5,6,54.

Multiscale analysis of TI. A scale-dependent investigation is
carried out here to highlight how different turbulent scales con-
tribute to TI of the streamwise velocity. Accordingly, u(ti) signals
are Fourier-filtered at various cut-off periods Tþ

c ¼ 1=f þc such
that u(ti)= u↑(ti)+ u↓(ti), where u↑ and u↓ indicate the low-pass
and high-pass filtered velocity components of u, respectively (see
Fig. 3a). The HVG-algorithm is then applied to the u↑ and u↓

Fig. 1 Summary sketch of wall turbulence and horizontal visibility graphs (HVGs). a Schematic of the wall-normal structure of a turbulent boundary
layer: (left) vertical profiles of the mean velocity U+(y+) (red line, with Uþ

1 ¼ 31:89) and the root-mean-square velocity σþu ðyþÞ (green line), as a function
of the normalized wall-normal coordinate y+ (in a log-scale); (middle) the main vertical layers delimited by conventional y+ limits13; (right) a qualitative
sketch of scale arrangement in the flow. b Sketch of a time series u(ti) (black vertical lines), and HVG links (red and blue colored arrows) for a node tj. Red-
blue number pairs indicate backward and forward degree values, kb and kf respectively, for each node illustrated as a black-filled circle on top of each
vertical line.
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velocity components, thus obtaining the corresponding TI mea-
sures Ik,↑ and Ik,↓, respectively. Figure 3b shows the ratio

r#" ¼ log10
Ik;#
Ik;"

; ð1Þ

as a function of y+ and Tþ
c : blue-shaded areas (r↓↑ < 0, Ik,↓ < Ik,↑)

indicate a greater contribution to TI coming from temporal scales
of u(t) with larger periods than Tþ

c ; green-shaded areas
(r↓↑ > 0, Ik,↓ > Ik,↑) instead indicate a greater contribution to TI
coming from temporal scales of u(t) with smaller periods than
Tþ
c . It should also be pointed out that, in the limiting cases of

Tþ
c � 0 (bounded by Nyquist frequency) and Tþ

c ! 0, all tem-
poral scales will contribute either to Ik,↓ (hence r↓↑≫ 0) or Ik,↑
(hence r↓↑≪ 0).

The transitional line Tþ
tr ðyþÞ for which r↓↑ ≈ 0 (i.e., Ik,↓ ≈ Ik,↑,

see red contour in Fig. 3b) discriminates between the region
where the cut-off filter is Tþ

c <T
þ
tr (such that r↓↑ < 0), and the

region where the cut-off filter is Tþ
c >T

þ
tr (such that r↓↑ > 0). The

Tþ
tr ðyþÞ boundary displays a peculiar behavior, made up of two

bumps emerging far from the wall. The first bump arises at
y+ ≈ 450 in the log-layer, while an additional bump is present at
y+ ≈ 14,500 in the intermittency region (see the sketch in Fig. 1a),
which is the flow layer where the entrainment process occurs
owing to the proximity with the external (non-turbulent) flow13.
The occurrence of bumps in the Tþ

tr ðyþÞ behavior suggests the
presence of relevant phenomena in the flow, leading to higher TI
levels at larger temporal scales (since higher cut-off periods Tþ

c ¼
Tþ
tr are needed to have the balance Ik,↑= Ik,↓, i.e., r↓↑= 0).

Relating TI levels and turbulent flow scales. With the aim to
connect the r↓↑ behavior (specifically, the presence of bumps in
Tþ
tr ðyþÞ) with the underlying structure of the turbulent boundary

layer, we show in Fig. 3c the pre-multiplied energy spectrum of
u; ϕþuu. Two peaks are distinguishable in Fig. 3c around yþSTS � 13
(buffer layer) and yþLTS � 470 (log-layer): they are associated with
the development of organized coherent flow structures commonly
referred to as small turbulent scales (STS) and large turbulent
scales (LTS), respectively, the latter emerging at high Reynolds
numbers35–37.

The Tþ
tr ðyþÞ line (i.e., where Ik,↑= Ik,↓) is also displayed (in red)

in Fig. 3c, showing that both STS and LTS spectral peaks stand
above Tþ

tr ðyþÞ. Hence, for a cut-off filter Tþ
c such that Tþ

c � Tþ
tr ,

the contribution to TI coming from STS and LTS is – in both
cases – enclosed in Ik,↑ since, by definition, Ik,↑ accounts for the
contribution to TI coming from flow scales larger than Tþ

c ¼ Tþ
tr .

By increasing the value of the cut-off period, i.e. Tþ
c >T

þ
tr , a

growing contribution to TI coming from flow scales associated
with STS and LTS is also enclosed in Ik,↓, leading to Ik,↓ > Ik,↑ (i.e.,
r↓↑ > 0). Therefore, the presence of energetic coherent structures
in the flow (STS and LTS) significantly affect the levels of TI of
u(t) at varying wall-normal locations, as captured by the relative
intensity of Ik,↓ and Ik,↑.

Furthermore, we note that a larger extent of dark-green areas
(i.e., r↓↑ ≥ 1 or Ik,↓/Ik,↑ ≥ 10) emerges in Fig. 3b closer to the
Tþ
tr ðyþÞ boundary at yþSTS than at yþLTS. The different contribution

to TI at various y+ can hence be related to the different intensities
of energetic peaks, as the inner peak at yþSTS is stronger than the
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Fig. 2 Full-signal time irreversibility (TI) results for the turbulent boundary layer. a Wall-normal behavior ofeIk . The maximum and minimum values of
the irreversibility ratio Ik,r= (Ik− μk,r)/σk,r are also highlighted, where μk,r and σk,r are computed from an ensemble of 100 randomly-shuffled u(ti) signals.
Conditional analyses of eIk with respect to y+ and, b the local signal slope ∣du+/dt+∣ or, c u0=σu. Intervals of ∣du+/dt+∣ and u0=σu are binned as 2: 2: 100
percentiles.

Fig. 3 Scale-dependent results for the turbulent boundary layer. a Time series of u0 (black) at y+= 10.5 and y+= 464, and their components u0" (blue)
and u0# (green) obtained for Tþ

c � 170:3. b Ratio r↓↑ as a function of y+ and Tþ
c . c Energy spectra of u0;ϕuuðTþ; yþÞ, pre-multiplied by frequency f and

normalized through U2
τ as ϕ

þ
uu ¼ fϕuu=U

2
τ (contour level range 0.2–2, level step 0.2). Tþ

tr ðyþÞ is shown as a red line, while the two vertical dotted lines refer
to yþSTS � 13 and yþLTS ¼ 3:9
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outer peak at yþLTS. This resonates with the previous results of
Fig. 2 where larger levels of TI were observed in the buffer layer
from a full-signal perspective. This outcome corroborates the key
role of the buffer layer as a region where complex dynamical
processes are at play and which lead to greater TI.

Concerning the intermittency region (see Fig. 1a), previous
works55 found that a characteristic (large) length scale of
entrainment is Λþ

x � 1:7 δþ. The Tþ
tr bump in this region occurs

at T+ ≈ 600 and corresponds to a length scale (using Taylor
hypothesis) of 600Uþ

1 � 1:3 δþ, which is—similarly to STS and
LTS—close to the characteristic flow scale 1.7 δ+ although slightly
smaller. The present result reveals that, despite very low TI levels
are detected from a full-signal analysis in the intermittency region
(see the right tail of Fig. 2a), a significant link between TI and the
entrainment process can be established.

TI analysis of turbulent channel flow. The close relation
between TI and the arrangement of coherent flow motion in the
turbulent boundary layer is further validated here by using a
second test case, consisting of a turbulent channel flow at
Rτ= 200356. Streamwise velocity signals u(x) are extracted from a
direct numerical simulation (DNS) extensively validated by pre-
vious studies56,57. The common assumption of Taylor’s hypoth-
esis is adopted to investigate spatial signals u(x) as equivalent
time series u(t) via HVGs36,37. The use of spatial series here is

related to two main arguments. From one side, the output of
numerical simulations is typically a sequence of (time) snapshots
of the spatial data, thereby, the extraction of long time series from
DNSs is computationally challenging for large Reynolds number
flows. On the other side, the use of spatial series in our work
allows us to provide some insights about the time-space issue –
i.e., to what extent the temporal turbulence dynamics relates to
the corresponding spatial dynamics – in wall turbulence58, spe-
cifically in terms of applicability of Taylor’s hypothesis in the
context of time irreversibility.

Figure 4 reports the same quantities as shown in Fig. 2 for the
turbulent boundary layer, highlighting that results for the turbulent
channel flow are in agreement with those for the turbulent boundary
layer. In particular, in Fig. 4a, we observe a peak of eIk in the buffer
layer (as for the turbulent boundary layer) with values of the
confidence ratio Ik,r > 1 (highlighted by red boxes). However, due to
the lack of an intermittency region for the channel flow, we do not
observe any drop of eIk for yþ ! yþmax ¼ 2003 in Fig. 4a. Moreover,
results from the conditional analysis in the channel flow (Fig. 4b, c)
match those for the boundary layer flow (Fig. 2b, c), with a peak of
eIk for strong local slopes ∣du+/dt+∣ (Fig. 4b) and for u0=σu � �0:5
(Fig. 4c) in the buffer layer.

Figure 5 shows the energy spectra (black contours) together with
the ratio r↓↑ (colored area), where Ik,↓ and Ik,↑ are evaluated for
different cut-off periods Tþ

c ¼ λþx =U
þ (where λx is the wavelength

along x). Figure 5 is in excellent agreement with outcomes from
Fig. 3b, c, highlighting larger green-shaded areas in correspondence
of the spectral peak in the buffer layer at yþSTS. The notable difference
is the absence of bumps at larger y+, due to two main reasons. First,
the intermittency region is absent in a channel flow, hence the
rightmost bump of Fig. 3b does not appear in Fig. 5. Second, the
bump in correspondence of yþLTS does not emerge because very
large-scale flow motions extend much further towards higher y+ in
channel flows than in boundary layers, although their spectral
energy similarly decreases for yþ ! yþmax

59. This statement is
supported by scaling arguments of r↓↑ in the log-layer. In fact, the
transitional (red) line Tþ

tr in Fig. 5 follows the same yþ3=7 scaling law
(see dashed yellow lines in Fig. 5) found for the size of very large-
scale motion in internal wall-bounded turbulence59. This outcome
further corroborates the strong connection between time irreversi-
bility and the spatio-temporal development of coherent structures in
the flow.

Discussion
The present study provides a novel perspective into the statistical
irreversibility of high-Reynolds-number turbulent flows, that
complements previous works looking at broken temporal

Fig. 4 Full-signal time irreversibility (TI) results for the turbulent channel flow. a Wall-normal behavior ofeIk . The maximum and minimum values of the
irreversibility ratio Ik,r are also highlighted. Conditional analysis ofeIk with respect to y+ and b the local signal slope ∣du+/dt+∣= U+∣du+/dx+∣, and c u0=σu.
Intervals of ∣du+/dt+∣ and u0=σu are binned as 2: 2: 100 percentiles.

Fig. 5 Scale-dependent results for the turbulent channel flow. Colored
areas corresponds to the ratio r↓↑, while the black contours refers to the
pre-multiplied energy spectra ϕþuu (contour level range 0.25–2, level step
0.25). The two yellow dashed lines refer to the λþx � yþ3=7 scaling59, in
terms of time scales Tþ ¼ λþx =U

þ.
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symmetry in the statistics of Lagrangian tracers. In particular, this
work represents a first effort to characterize TI from an Eulerian
viewpoint in wall-bounded turbulent flows, which have been
much less investigated than other flow configurations from the TI
point of view. Exploiting tools of nonlinear time-series analysis,
we are able to quantify TI from Eulerian data by explicitly
highlighting the contributions to TI coming from various flow
scales, as well as the effect of the wall-normal (spatial) coordinate,
revealing non-trivial TI patterns.

Our findings—relying on the visibility graph-based approach
and corroborated through additional methodologies, as reported
in Supplementary Note 3—point out that broken temporal
symmetry in the streamwise velocity is significantly linked to the
underlying (space-dependent) organized flow structure of wall
turbulence. In fact, we show that the scale-dependent TI levels
follow non-monotonic trends at all wall-normal coordinates,
highlighting a non-trivial contribution to TI from smaller and
larger scales. We find that TI in the proximity of the wall is
dominated by small turbulent scales associated with the inner
spectral-energy peak, thus suggesting a connection between TI
and the dynamical process related to the near-wall (regeneration)
cycle34. This claim is partially supported by the large TI levels
detected in this work in correspondence with burst events in the
buffer layer (see Figs. 2b, c and 4b, c). Moving away from the wall,
the largest contribution to TI shifts from small to large turbulent
scales, which appear at a high Reynolds number and make a
significant contribution to the turbulent kinetic energy and
Reynolds stress production34,37. Moreover, significant levels of
time irreversibility in the intermittency region of turbulent
boundary layers are associated with the characteristic scale of the
entrainment process.

It is important to underline here that results from full velocity
signals (Figs. 2a and 4a) do not highlight the specific contribution
to TI from different flow scales, but they point out that TI levels
are larger in the buffer layer. The scale-dependent analysis (Figs. 3
and 5), instead, is able to reveal the origin of TI levels in terms of
flow scales at various y+, e.g., highlighting the role of large tur-
bulent scales in the log-layer that is not clearly detectable through
the full-signal analysis.

In this picture, TI patterns in the near-wall region are in
agreement between the turbulent boundary layer (external flow)
and the turbulent channel (internal flow), while dissimilarities
emerge far from the wall due to intrinsic differences in the flow
features of external and internal wall turbulence (e.g., the absence
of an intermittency region in internal flows). Overall, the out-
comes for both turbulent channel and turbulent boundary layer
flows indicate that TI patterns are not limited to a particular flow
case, but are a distinctive feature of wall-bounded turbulent flows
at high Reynolds number.

It is worth noting here that the full-signal time irreversibility
behavior shown in Figs. 2a and 4a display a wall-normal trend
similar to the skewness of the spatial derivative ∂u/∂x reported in
previous works60,61, with important implications. Such a simi-
larity suggests that ∂u/∂x can be reinterpreted as a surrogate
measure of TI, although ∂u/∂x is computed at a fixed time.
However, the TI reinterpretation of ∂u/∂x is conditional to the
applicability of Taylor’s hypothesis, which allows the conversion
of spatial signals u(x) into equivalent time series u(t), and vice
versa. This point is crucial because an unconsidered use of spatial
asymmetry metrics to quantify TI may lead to inconsistent out-
comes, especially for non-canonical flow setups9. For the flow
cases considered in this study, the application of classical Taylor’s
hypothesis—namely, when the convection velocity equals the
mean velocity—led to consistent outcomes from time- and spa-
tial-series, as discussed for the turbulent channel flow case, but
caution is still needed. In this sense, refined formulations of

Taylor’s hypothesis—e.g., accounting for modulation mechan-
isms in wall turbulence36—could help to shed more light on the
duality between temporal and spatial asymmetries and will be
explored in future works.

Another thought-provoking similarity appears between the
vertical behavior of Ik (Figs. 2a and 4a) and the vertical behavior
of the Corrsin integral parameter in wall turbulence (as reported,
e.g., by Jiménez34); the latter is the ratio between the characteristic
timescale of energetic turbulence eddies and the characteristic
timescale due to the mean shear34. The qualitative similarity
between these two quantities could suggest a key role played by
mean shear in the mechanisms leading to higher TI levels, thus
turning the spotlight on the consideration of other phenomena
(than the energy cascade) affecting statistical TI and stimulating
further research on TI in shear flows.

Furthermore, it should be pointed out that different metrics
need to be examined and compared in order to provide reliable TI
outcomes (as done in this study; see Supplementary Note 3).
Since TI can be quantified using different tools4,39, the choice of
the methodologies can be problem dependent but should rest
upon the method interpretability and robustness (e.g., avoiding
subjective binning or symbolization procedures whenever possi-
ble). In light of this, visibility graphs represent a versatile and
robust approach that deserves further consideration for the
investigation of turbulence signals41, even beyond the streamwise
velocity component considered here. In this regard, the com-
parison of the results from different observables (e.g., different
velocity components) deserves further investigation with the goal
of providing a more comprehensive picture of TI in wall turbu-
lence, a topic left to be explored in future works.

In conclusion, the key finding of the present Eulerian analysis
is the emergence of distinctive, scale-dependent, patterns of TI in
wall turbulence, originating in correspondence with the devel-
opment of small and large energetic structures at various, char-
acteristic, wall-normal distances. To the best of our knowledge,
present results are new in the context of turbulence research and
represent a conceptual advancement in the characterization
of statistical TI in wall turbulence, specifically by providing
further insights on the relation between TI and the multi-scale
arrangement of turbulence at various wall-normal distances.
This work leaves some issues open – e.g., what is the role of
mean shear and what is the impact of Taylor’s hypothesis in
TI quantification – that can trigger new studies in turbulence
research.

Methods
Horizontal visibility graphs and TI quantification. Given a time series u(ti)
evaluated at discrete times ti, a horizontal visibility graph representation of u(ti) is
obtained, (i) assigning each time ti to a network node, and (ii) linking two nodes ti
and tj when the conditions

uðtiÞ>uðtlÞ ^ uðtjÞ>uðtlÞ; ð2Þ

are satisfied for all tl such that ti < tl < tj50. Consecutive data points, u(ti) and u(ti+1),
are always linked by construction (i.e., the index l can be null). The resulting graph
is stored as a binary adjacency matrix Aij, whose entries are Aij= 1 if and only if
nodes i (corresponding to datum u(ti)) and j (corresponding to datum u(tj)) are
linked with each other as per Eq. (2). Horizontal visibility networks are typically
constructed as undirected graphs, namely the link direction is not taken into
account, and Aij=Aji for any node pair (i, j). In this work, however, we consider
directed graphs, namely explicitly differentiating between forward-in-time links
Aij= 1 (i.e., when tj > ti) and backward-in-time links Aji= 1 (i.e., when tj < ti).
Figure 1b shows an exemplifying discrete signal, where HVG links for node tj are
represented by colored arrows.

The amount of links of each node is referred to as degree centrality k(ti). Here,
we distinguish between forward-degree kf and backward-degree kb (commonly
referred to as out- and in-degree40) as the number of links pointing towards
increasing and decreasing time, respectively (Fig. 1b). Lacasa et al.39 proposed to
quantify TI in a time series as the Kullback–Leibler divergence of the backward-
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and forward-degree distributions:

Ik ¼ ∑
kb ;kf

pðkbÞ log
pðkbÞ
pðkf Þ

; ð3Þ

where p(kb) and p(kf) are the marginal probability distributions of kb and kf,
respectively. The degree of reliability of Ik can be assessed by evaluating the
irreversibility ratio

Ik;r ¼
Ik � μk;r
σk;r

; ð4Þ

where μk,r and σk,r are the mean and standard deviation, respectively, of Ik values
calculated from an ensemble of signals obtained through a random (null) model48.
As random signals by definition privilege no direction, Ik,r≫ 1 signifies that a time
series is TI with extreme confidence48.

It should be noted that, in general, the Kullback–Leibler divergence is not a
symmetric measure, namely ∑pðkbÞ log pðkbÞ=pðkf Þ

� �
≠∑pðkf Þ log pðkf Þ=pðkbÞ

� �
.

However, switching the position of p(kb) and p(kf) in Eq. (3) does not significantly
change the outcomes and hence our conclusions (as also reported in previous
studies39,45). Moreover, Ik is not an additive measure due to the non-linearity of the
Kullback–Leibler divergence, thereby the sum Ik,↑+ Ik,↓ (obtained through high-
pass and low-pass filtering of the signal) is, in general, not equal to Ik (obtained
from the full signal).

Turbulent boundary layer experiments. The boundary layer was experimentally
obtained in the wind-tunnel facility of the University of Melbourne62. The friction
Reynolds number is Rτ= δUτ/ν ≈ 14,750, where δ= 0.361 m and Uτ= 0.626 m s−1

are the boundary layer thickness and the friction velocity, respectively, while
ν= 1.532 × 10−5 m2s−1 is the kinematic viscosity of air. The value of the Reynolds
number of the experiment is large enough to ensure a wide range of temporal
scales, thereby allowing very-large-scale motions to develop35. Further details of the
experiments can be found in ref. 35.

The time series of uðtiÞ ¼ u0ðtiÞ þ U – where U(y) is the local (time-averaged)
mean velocity, while u0 are turbulent fluctuations (Fig. 1a)—were recorded at 41
wall-normal coordinates y, while fixing the streamwise and spanwise coordinates, x
and z, respectively. Wall-units normalization is indicated through the+ superscript
such that u+= u/Uτ and y+= yUτ/ν. Time series were collected for three
acquisition cycles of 120 s at sampling frequency fs= 20 kHz, thereby, results are
intended to be averaged over the three acquisition cycles.

Turbulent channel numerical simulation. Data from a direct numerical simu-
lation of a turbulent channel flow at Rτ= 2003 are used as a representative case
of internal flow. The resulting dataset is available online on the webpage of the
Fluid Dynamics Group of Universidad Politecnica de Madrid (see Data avail-
ability statement)56. The simulation is run on a smooth-wall channel setup with
periodic boundary conditions in the streamwise (x) and spanwise (z) directions.
The domain size is 8πδ × 2δ × 3πδ in the streamwise, vertical, and spanwise
directions, respectively, where δ is the half-channel height. The numerical grid
consists of 6144 and 4608 uniformly-spaced grid points in the streamwise and
spanwise direction, respectively, while a non-uniform grid with 633 points is
used in the wall-normal direction. Further details can be found in Hoyas and
Jiménez56.

Spatial series u(x) are used in this work to quantify TI, where Taylor’s
hypothesis Δx=−U(y)Δt is used to transform the spatial signal into time
series13,34. In this regard, the spatial resolution Δx+= 8.2 is equivalent to the
sampling time step of the turbulent boundary layer. It should be noted here that,
the application of Taylor’s hypothesis does not affect the computation of Ik from
spatial signals U(x) in the channel flow because the horizontal visibility algorithm is
insensitive to constant re-scaling of the horizontal axis (more generally, it is
insensitive to affine transformations)50. One time snapshot from the database is
used, thereby ensemble-averages of the results are only performed along the
spanwise (homogeneous) direction z, over 288 uniformly-spaced locations. Further
increases in the averaging sample size do not substantially change the discussed
outcomes.

Data availability
All the data analyzed in this paper are openly available at locations referenced herein.
Turbulent boundary layer: https://doi.org/10.26188/5e919e62e0dac; turbulent channel
flow: https://torroja.dmt.upm.es/turbdata/.

Code availability
Horizontal visibility graphs (HVG) are built using an in-house MATLAB code, which
is available online at the following repository: MATLAB Central File Exchange, code
reference “72889-fast-horizontal-visibility-graph-hvg-for-matlab”, Retrieved April 11,
2023.
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