
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Sentinel 2 High-Resolution Land Cover Mapping in Sub-Saharan Africa with Google Earth Engine / Belcore, Elena;
Piras, Marco. - (2023), pp. 27-36. (Intervento presentato al  convegno 9th International Conference on Geographical
Information Systems Theory, Applications and Management tenutosi a Prague, Czech Republic)
[10.5220/0011746500003473].

Original

Sentinel 2 High-Resolution Land Cover Mapping in Sub-Saharan Africa with Google Earth Engine

Publisher:

Published
DOI:10.5220/0011746500003473

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978785 since: 2023-05-25T12:47:24Z

SCITEPRESS - Science and Technology Publications



Sentinel 2 High-Resolution Land Cover Mapping in Sub-Saharan 
Africa with Google Earth Engine 

Elena Belcore a and Marco Piras b  
DIATI, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy 

Keywords: Land Cover, Machine Learning, Sentinel-2, Google Earth Engine, Sub-Saharan, Natural Hazard, Climate 
Change. 

Abstract: This work aims to develop an efficient methodology for high-resolution spatial and thematic land cover maps 
of sub-Saharan areas based on Sentinel-2 data. LC mapping in these areas is complicated due to their land 
morphology, climatic conditions and homogeneity of surface spectral responses. Two pixel-based supervised 
classification approaches are compared in Google Earth Engine. The aggregated method classifies each image 
and then aggregates the results on frequency bases at pixel level. The stacked method classifies all the images 
together in a single stacked database. Additionally, the influence of linear atmospheric correction models on 
the overall accuracy (OA) is assessed, and the best-performing approach is compared to existing Land Cover 
(LC) maps of the area. 16 Sentinel-2 images (level 1C) from 2017 and 2019 were atmospheric and 
topographically corrected and classified into nine classes. The results show similar performances for the 
analysed approaches, with a slightly high OA for the aggregated classification (0.97). The atmospheric 
correction has little impact on the results. 

1 INTRODUCTION 

Sub-Saharan Africa is exceptionally vulnerable to 
Climate Change-induced phenomena, such as floods, 
erosion, and droughts, which have dramatically 
increased in the past years. The Dosso region in 
southwest Niger is no exception (Bigi et al., 2018; 
Oguntunde et al., 2018; Teodoro and Duarte, 2022). 
In 2021, 200,000 people were affected by floods in 
Niger. One of the most recent disastrous events 
occurred in October 2022, when flooding caused by 
heavy rains claimed nearly 200 lives and affected 
more than a quarter of a million people.  

In such scenarios, to plan against natural disasters, 
continuous and detailed monitoring of the area is not 
negligible (Tiepolo et al., 2018), and updated 
information regarding the Land Cover (LC) is crucial 
to land management, as these maps provide users with 
information related to terrestrial ecosystems and 
livelihoods (Li et al., 2020). Classification of Sub-
Saharan areas is one of the most challenging due to 
the landscape complexity and the low spectral 
variability within the covers. Moreover, the sand dust 
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b  https://orcid.org/0000-0001-8000-2388 

particulates in the atmosphere may alter the spectral 
response of the Earth surface and further exacerbate 
the difficulty of the classification. One of the most 
significant problems in the optical remote sensing of 
Sub-Saharan regions is that reflectance from soil and 
rock during the dry season is often much greater than 
that of the sparse vegetation making it difficult to 
separate the vegetation. Some specific problems 
involved with remote sensing of arid vegetation 
include multiple scattering of light (nonlinear mixing) 
between vegetation and soil (Huete, 1988). Moreover, 
the local architecture, such as Nigerienne 
architecture, consists of tiny houses with flat roofs 
built using local clays and not plastered, which results 
in hardly spectral separable build-up areas and bare 
soils, even from very high resolution (VHR) imagery 
(Belcore et al., 2022), Figure 1.  

Similarly, in some villages and suburbs, the roads 
are unpaved. As a consequence, the spectral response 
of buildings is the same as roads and bare soil. The 
strong seasonality adds further complexity to the 
classification as the frequent cloud cover during the 
rainy season and sand presence in the air may alter the 
spectral values of sensed data.  
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These reasons contribute to the LC data scarcity 
in Sub-Saharan Africa. Indeed, to date, few very high-
resolution LC maps of sub-Saharan areas exist. 
Examples are the Africa LC by ESA and FROM-
GLC10 (Li et al., 2020). Although these LC maps are 
incredibly complex to realise, most do not provide 
good thematic detail. Because of their nature, the 
training datasets are hardly updatable due to the large 
amount of time and manual work this task requires.  

 
Figure 1: Aerial view of local architecture acquired by a 
drone system in 2021. 

Niger's southern territories are the study area of 
the ANADIA 2.0 project (Anadia 2.0, 2023). It aims 
to create an Early Warning System to face climate 
change effects in Sirba River Basin in the Tillabery 
region, enhance local technicians' knowledge 
regarding floods forecasting, and create an adaptation 
strategy planform two villages along the Sirba River. 
In this area, the need for climatic planning and the 
development of adaptation strategies to climate 
change at the local level is not negligible (Tiepolo et 
al., 2018). Despite this undeniable need for climate 
planning, there is no appropriate risk mapping of the 
area; indeed, subnational risk mapping lacks detail 
(Tiepolo et al., 2018). The data gathered and the 
information provided by this work are directly 
involved in ANADIA 2.0 by feeding the adaptation 
strategy plan and investigating the cause-effect 
relation of floods. 

Aiming to map and monitor the areas potentially 
flooded by the Sirba river, a workflow to produce an 
updated, high-detailed LC map of the site is proposed 
and validated. In this application, the LC map of 
southwest Niger has been realised using nine classes 
over 16 features. The entire process was completed in 
the Google Earth Engine (GEE) platform, and two 
multi-temporal approaches for classification were 
tested and compared.  

2 MATERIALS AND METHODS 

2.1 Study Area 

Sirba River is a tributary of the Niger River and 
crosses Burkina Faso and Niger countries (Figure 2). 
Its basin is prone to floods, and villages along the 
river are vulnerable to life and economic losses 
(Massazza et al., 2019, 2018; Tamagnone et al., 
2019).  

 
Figure 2: Footprint on the classification (red) and detail of 
the Nigerienne branch of the Sirba River. 

2.2 Identification of Classes 

Nine classes describe the classification system, as 
table 1 illustrates.  

2.3 Satellite Imagery Filtering and  
Pre-Processing 

The images acquired by Sentinel-2 (both Sentinel-2A 
and Sentinel-2B satellites) were filtered by location 
and date. The study area includes the segment of 
Sirba River that lies in Niger country for about 100 
km. The period covers all the acquisitions between 
2017 and 2019. An additional filtering parameter 
regards the cloud cover percentage, which must be 
less than 10% over a single scene. Only images 
sensed during the rainy season (from August to 
October) were selected to maximise the classes' 
spectral variability, especially to better distinguish 
between the vegetation classes and the bare soils and 
to identify water. Sentinel-2 level 1C dataset was used 
for this classification since only one image from the 
corrected dataset of Sentinel-2 level 2A satisfied the 
filter mentioned above parameters. The selected 
images of Sentinel 2A-1C level are 16 (Table 2). The  
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dataset was atmospherically corrected by applying 
Dark Object Subtraction (DOS) (Chavez, 1988), 
which is a linear atmospheric correction model that 
performs similarly to radiative transfer models on 
homogeneous surfaces (Lantzanakis et al., 2017). 

Table 1: Classes of the classification in South Niger. 
N Class Description Picture 

1 Water Internal waters 

 

2 Plateaux 

Elevated areas over the 
dry savannah. They 
influence the water 

catchment, the erosion 
process and present 

peculiar plant species. 
 

3 Riparian 
vegetation 

The thickly vegetated 
area along the rivers. It 
is usually composed of 

trees and bushes. 

 

4 Urban areas Villages and main 
roads. 

 

5 Red bare 
soils 

Red soils rich in ferric 
oxides that 

characterised the 
savannah soil 

landscape. 
 

6 Sandy bare 
soils Sand natural deposits. 

 

7 
Vegetation 

of the 
plateaux 

Vegetation on the 
plateaux. It grows 
along the drainage 
canals. It is mainly 

composed of 
herbaceous species. 

 

8 
Irrigated 

agricultural 
lands 

Areas interested by 
intense agricultural 
activity that require 
tillage, and irrigated 

generally through 
channel systems. 

 

9 

Non-
irrigated 

agricultural 
lands and 
pastures 

Areas interested by 
moderate agricultural 
activities that require 

tillage or pastures. 

 
 

Table 2: List of Sentinel-2 images used in the classification. 
Year No. Sentinel Image Identification Code 

2017 
0 20170815T102021_20170815T102513_T31PCR 
1 20170924T102021_20170924T102649_T31PCR 
2 20170926T101009_20170926T102049_T31PCR 

2018 

3 20180815T102019_20180815T102918_T31PCR 
4 20180820T102021_20180820T103538_T31PCR 
5 20180911T101019_20180911T101438_T31PCR 
6 20180911T101019_20180911T102702_T31PCR 
7 20180916T101021_20180916T101512_T31PCR 
8 20180921T101019_20180921T101647_T31PCR 
9 20180924T102019_20180924T102602_T31PCR 
10 20180929T102021_20180929T103112_T31PCR 

2019 

11 20190812T101031_20190812T102016_T31PCR 
12 20190911T101021_20190911T102116_T31PCR 
13 20190921T101031_20190921T102426_T31PCR 
14 20190926T101029_20190926T102551_T31PCR 
15 20190929T102029_20190929T102700_T31PCR 

Knowing that DOS can affect the classification's 
results differently depending on the geographical area 
(and land cover), the classification model was trained 
and applied over the DOS-corrected and non-
corrected datasets. Then the Overall Accuracy (OA) 
of the classifications were compared to check the 
influence of DOS on the final result. 

The topographical correction of the images was 
initially applied to reduce the effects of elevation over 
the plateaux areas (Dorren et al., 2003). The 
topographic correction allows the variation in the 
reflectance derived from the terrain's inclination and 
the sun elevation (Poortinga et al., 2019; Shepherd 
and Dymond, 2010). Nevertheless, the correction 
introduced noise in the dataset because the plateaux 
slopes do not interfere with the soil's spectral 
response. The Digital Terrain Model (DTM) applied, 
USGD 30m DTM, is not resolute and precise enough. 
Thus, the dataset was not topographically corrected. 

 

(a) 

 

(b) 

 

Figure 3: (a) RGB mosaic on sentinel-2, level 1C data, DOS 
applied; (b) RGB mosaic on sentinel 1C data, DOS applied, 
and topographically corrected. The correction excessively 
alters the data over the plateaux and the plane areas. 
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2.4 Features Extraction and Selection  

The feature extraction consisted of the computation 
of 6 spectral features, 4 histogram-based features, 18 
textural (computed on Sentinel band 8A), 2 elevation-
derived features, and 1 edge-detector feature added to 
the 12 spectral bands. Specifically, the Gray Level 
Co-occurrence Matrix (GLCM) texture metrics were 
calculated over a 9x9 neighbourhood (Haralick et al., 
1973), while the histogram-based features were on a 
3x3 filter (Conners et al., 1984; GEE,2022) to help in 
classes discrimination (Drzewiecki et al., 2013; 
Kukawska et al., 2017). Table 3 lists the extracted 
features. 

Table 3: Derivative features calculated for Sentinel-2.  
Feature Formula/note 

Chlorophyll 
IndexRedEdge, CRE (B9/B5)−1 

Enhanced Vegetation 
Index, EVI 2.5*((B9−B5)/((B9+6*B5−7.5*B1)+1)) 

HUE Arctan((2*V5−B3−B1)/30.5)*(B3−B1)) 
Soil Composition Index, 

SCI (B11−B8)/(B11+B8) 

Wetness Index, WET (0.1509*B2)+(0.1973*B3)+(0.3279*B4)+ 
(0.03406*B8)-(0.7112*B11)-(0.4572*B12) 

Triangular Vegetation 
Index, TVI 0.5*(120*(B8-B3))-(200*(B4-B3)) 

Sob Sobel edge extractor 
Var Variance 

Mean Mean 
Skew Skewness 
Kurt Kurtosis 
Entr Entropy 

Asm Angular Second Moment; measures 
the number of repeated pairs 

Corr Correlation; measures the correlation 
between pairs of pixels 

Var Variance; measures how spread out 
the distribution of gray-levels is 

Idm Inverse Difference Moment; 
measures the homogeneity 

Savg Sum Average 
Svar Sum Variance 
Sent Sum Entropy 

Ent Entropy. Measures the randomness of 
a gray-level distribution 

Dvar Difference variance 
Dent Difference entropy 

Imcorr1 Information Measure of Corr. 1 
Imcorr2 Information Measure of Corr. 2 
Maxcorr Max Corr. Coefficient. 

Diss Dissimilarity 
Inertia Inertia 
Shade Cluster Shade 
Prom Cluster prominence 

DSM Digital Surface Model 
 (NASA SRTM 30m) 

Height model, HM DSM-DTM (Global Multi-resolution 
Terrain Elevation 2010) 

 

The feature selection phase is fundamental to 
reducing the computational time of the classification 
without losing accuracy (Belcore et al., 2020).  

In mid-2020, the function SmileRandomForest 
was introduced in the GEE coding platform. Unlike 
its predecessor RandomForest function, it allows the 
computation of the layer importance, which is based 
on the GINI impurity system. Random Forest 
algorithm creates multiple decision trees (i.e. forest) 
using bootstrapped data samples and selects the final 
output based on the majority vote of the individual 
trees (Breiman, 2001). The Gini impurity criterion 
measures the purity or randomness of a set of items 
(Breiman, 2001). It determines the quality of a split 
between classes in a decision tree. The goal is to split 
the data in a way that results in the purest possible 
subset of the classes or values. The Gini impurity of 
a split is calculated as the sum of the probability of 
each class or value being incorrectly classified, given 
a random observation from the set. A split with a 
lower Gini impurity is considered a better split, as it 
results in a more pure subset of the classes or values. 
The feature that results in the lowest Gini impurity is 
selected as the splitting feature, and the process is 
repeated until a stopping criterion is reached. The 
GINI is calculated for each variable of the classifier. 
The variables with high GINI gain (so they have less 
impurity) are more important.  

The features with less than 50 GINI gain were 
removed from the input dataset as resulting of an 
iterative comparison of 5 scenarios (Table 5). The 
parameters considered for the best scenario 
evaluation are the out-of-bag error (oob) and the 
overall accuracy (OA). The threshold value was 
selected according to the maximum accuracy 
achievable. Finally, the features were scaled 
according to their minimum-maximum values. 

2.5 Classification and Multi-Temporal 
Strategies Comparison 

The training dataset comprises 2500 points, 300 
points for each class except for the urban areas class, 
which is constituted of 100 points. The choice of 
unbalancing the training is due to the low percentage 
of urban areas cover. Since the urban areas class 
covers the smallest portion of the study area and the 
Random Forest (RF) classifier tends to promote the 
more represented classes in training, few samples of 
the Urban areas were used to train the classifier. The 
validation dataset is composed of 1800 points, 200 for 
each class. The training and validation dataset were 
manually created using a 2017 map as a ground 
reference.  
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Two different multi-temporal approaches were 
compared: aggregated multi-temporal and stacked 
multi-temporal methods. In the aggregated multi-
temporal, each image was separately classified using 
the machine learning algorithm Random Forest (RF) 
with 100 rifle decision trees per class and 2 as the 
minimum size for terminal nodes.  

The same training dataset was used for each 
image. The results are 16 classifications that were 
aggregated according to the modal value. Only the 
more accurate classifications (equal and greater than 
the OA modal value) were used in the final 
aggregation.  

Differently, the stack multi-temporal approach 
consisted of one classification over a dataset 
composed of all the features from different epochs 
ensembled. In this case, the images were stacked 
together and classified with RF algorithm (200 rifle 
decision trees per class and 4 as the minimum size for 
terminal nodes). Due to GEE's limited available 
memory, only 2018 and 2019 data were considered. 
Figure 4 shows the classification workflow. 

 

Figure 4: The workflow of the classification. Red arrows 
indicate the DOS processing, while the blue ones indicate 
the processing without DOS correction. 

2.6 Accuracy Assessment 

The classifications' accuracy was asses based on the  

error matrix-derived measures: the overall accuracy, 
the producer's accuracy, the user's accuracy, and the 
F1 score (Congalton, 1991).  

2.7 Comparison to Existing LC 
Classifications 

Today there is no official product of LC and use that 
can be considered a shared and trusted reference. 
Despite the large availability of satellite source data, 
no high-resolution harmonised LC product exists. In 
2017 ESA created a land cover classification map of 
Africa at 20m resolution using 180000 Copernicus 
Sentinel-2 images captured between December 2015 
and December 2016 (ESA, 2016). The map is still a 
prototype, and only eleven classes are described (i.e. 
Trees, Shrubs, Grasslands, Croplands, Aquatic 
Vegetation, Sparse Vegetation, Bare Areas, Built-Up 
Snow, and Open Waters). The lack of thematic detail 
is compensated by the 20m spatial resolution, which 
makes it unique in the LC data of Niger. Although it 
is still a partially validated prototype, it was used as 
reference for the validation of the LC map generated 
in this work with the stacked approach. The classes of 
the two LC systems are hardly harmonised, thus, the 
translation required the creation of a target shared 
classification for LC Africa ESA and LC of Sirba 
area, as Table 4 shows. 

Table 4: Conversion classes between ESA Africa LC and 
here developed LC map. 

Common classes ESA Africa LC Present LC 

1- Vegetation 1- Trees, 2 - Shrubs, 
 6 - Sparse vegetation 

3 - Forest and 
bushes, 8- Plateaux 

vegetation 

2- Grassland 3 - Grasslands 
10 – non-irrigated 
agricultural lands 

and pastures 

3- Cropland 4 - Cropland 9 – Irrigated 
agricultural lands 

4 - Bare areas 7- Bare areas 
5 – Red bare soils,  

6 - Sandy soils,  
2 - Plateaux 

5 - Built-up 8- Built-up 4 – Urban areas 

6 - Waters 5 Aquatic vegetation, 
10 - Open waters 1 – Water bodies 

3 RESULTS  

3.1 Feature Extraction and Selection  

Figure 5 shows the results of the GINI importance 
analysis. The bands per image (initially 44) were 
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reduced to 16 according to the maximum achievable 
accuracy (Table 5) computed by considering five 
scenarios with reduced input features. Scenario 3 
revealed better OA (0.85) and a little out-of-bag error 
(0.070).   

Table 5: Tests run over five scenarios that differ in the 
number of input features in the classification selected 
according to their importance value (see Figure 5). 

 GINI threshold oob OA 
Scenario 1 none 0.081 0.846 
Scenario 2 >40 0.069 0.846 
Scenario 3 >50 0.070 0.854 
Scenario 4 >60 0.084 0.849 
Scenario 5 >80 0.081 0.842 

3.2 Classification and Multi-Temporal 
Strategies Comparison 

The aggregated multi-temporal classification was 
performed separately in 16 images with 16 features 
for each. Table 6 provides the OA values calculated 
for each classification. Classifications with OA less 
than 0.94 were not used for the modal aggregation. 
The stacked multi-temporal classification was 
realised using as the input dataset the features from 
different epochs together.  

The period considered was 2018 and 2019. The 
input features of the stack multi-temporal 
classification were 76. 

 
Figure 5: GINI importance (y) of the extracted features (x). 

The GINI importance was computed for the 76 
bands to optimise the process further. Four scenarios 
for the slimming out were considered (Table 7). Still, 
the best results in terms of OA are provided by 
scenario number 1, which does not remove any 
feature from the classification.  

Table 6: OA achieved on each classification. The underlined 
classifications were excluded from the aggregation. 

Classification no. OA 
1 0.97 
2 0.95 
3 0.96 
4 0.85 
5 0.94 
6 0.83 
7 0.85 
8 0.92 
9 0.95 
10 0.95 
11 0.92 
12 0.95 
13 0.95 
14 0.94 
15 0.95 
16 0.96 

Table 7: Tests run over 5 scenarios that differ in the number 
of input features in the classification selected according to 
their importance value. The parameters considered for the 
best scenario evaluation are the out-of-bag error (oob) and 
the overall accuracy (OA). 
 GINI threshold oob OA 
Scenario 1 none 0.019 0.960 
Scenario 2 >9 0.020 0.958 
Scenario 3 >10 0.020 0.955 
Scenario 4 >20 0.023 0.951 

 
The atmospheric correction's influence on the 

classifications was checked by comparing the 
accuracy of the same classification model applied to 
corrected and non-corrected input datasets. The DOS 
has little impact on the aggregated multi-temporal 
classification's goodness: it shifts the OA from 0.971 
(non-corrected dataset) to 0.975 (corrected dataset). 
Similarly, the DOS showed little influence on the 
stacked method too. Indeed it shifts the OA from 
0.955 (non-corrected) to 0.960 (corrected), Table 8. 

Table 8: DOS influences over the classifications. 

 No DOS DOS 
OA of Aggregated multi-temporal 0.971 0.975 
OA of Stack multi-temporal 0.955 0.960 

3.3 Accuracy Assessment 

The error matrices give the performance of the 
classification. Both multi-temporal approaches 
resulted in high accuracy values. For what concerns 
the aggregated approach, Table 9 shows that the 
User's and Producer's accuracies are always above 
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0.95. The Plateaux class is less accurate, although its 
F1 score reaches 0.95. The model correctly identifies 
sandy bare soils and irrigated land classes. 

Table 9: Error matrix of the aggregated multi-temporal 
classification. 
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Water 200 0 0 0 0 0 0 0 0 

Plateaux 0 189 0 0 0 0 11 0 0 

Forest bushes 0 0 200 0 0 0 0 0 0 

Urban areas 0 0 7 193 0 0 0 0 0 

Red bare soils 0 8 0 0 188 0 0 0 4 

Sandy bare soil 0 0 0 0 1 197 0 0 2 

Vegetation 
(plateaux) 0 0 0 0 0 0 200 0 0 

Irrigated 
agricultural 

lands 
0 0 0 0 0 0 0 200 0 

Non-irrigated 
lands and 
pastures 

0 0 6 5 1 0 0 0 188 

TOT 200 197 213 198 190 197 211 200 194 

PA 1.00 0.96 0.94 0.98 0.99 1.00 0.94 1.00 0.97 

UA 1.00 0.94 1.00 0.96 0.94 0.98 1.00 1.00 0.94 

F1 1.00 0.95 0.97 0.97 0.96 0.99 0.97 1.00 0.95 
OA= 0.98 

Table 10: Error matrix of the stacked multi-temporal 
classification. 
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Water 183 0 0 0 0 0 0 0 0 

Plateaux 0 180 0 0 0 0 10 0 0 

Forest bushes 1 0 191 0 0 0 1 3 0 

Urban areas 0 0 6 161 0 0 0 0 0 

Red bare soils 0 9 0 2 174 0 0 0 8 

Sandy bare soil 4 0 0 0 0 178 0 0 1 

Vegetation 
(plateaux) 0 1 0 0 0 0 195 0 0 

Irrigated 
agricultural 

lands 
3 0 6 0 0 0 0 171 0 

Non-irrigated 
lands and 
pastures 

0 0 8 4 0 0 0 0 177 

TOT 191 190 211 167 174 178 206 174 186 

PA 0.96 0.95 0.91 0.96 1.00 1.00 0.95 0.98 0.95 

UA 1.00 0.95 0.97 0.96 0.90 0.97 0.99 0.95 0.94 

F1 0.98 0.95 0.94 0.96 0.95 0.99 0.97 0.97 0.94 

OA= 0.96 

 

Regarding the stacked classification, the accuracy 
values are slightly lower than the ones on the 
aggregate multi-temporal classification. Table 10 
shows that the plateaux class reaches 0.947 of the F1-
score, which is the less accurate class along the non-
irrigated lands and pastures. The overall accuracy is 
0.96, with only 0.05 points of difference from the 
aggregated methods. 

Although the high accuracy value, some salt-and-
pepper effect is present all over the scene; thus, some 
post-processing operations were carried out for 
aesthetic reasons. Specifically, erosion (size 4) and 
dilation (size 3) were realised in class Urban areas 
(Figure 6). 

 
Figure 6: Example of the aggregated multi-temporal 
classification (left) and the stacked multi-temporal 
classification (right). 

3.4 Comparison to Existing LC 
Classifications 

The pixel by pixel comparison reveals an overall 
accuracy of 0.203 and the pixel-based confusion 
matrix  is   described  in  Table  11.  From  a   visual  

Table 11: Error matrix of the ESA LC Africa (reference) 
and Sirba Classification. To facilitate the reading, the 
values are reported in square kilometres. 
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Vegetation 1068 1497 101 1568 56 97 4387 

Grassland 2451 8908 105 34992 1103 787 48348 

Cropland 7819 29140 1503 10711 1792 722 51686 

Bare areas 36 1407 2 11037 19 113 12614 

Built-up 58 4 66 59 584 12 783 

Waters 10 0 101 4 0 1109 1224 

Total 11442 40956 1879 58369 3554 2841 
OA 

0.203 
PA 0.093 0.218 0.800 0.189 0.164 0.390 
UA 0.244 0.184 0.029 0.875 0.745 0.906 
F1 0.135 0.200 0.056 0.311 0.269 0.546 
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interpretation of the results, the water class 
(specifically the Sirba river) is better identified by the 
aggregated LC than the ESA LC (Figure 7). 

 
Figure 7: Sirba River area classified according Sirba LC 
(top) and ESA LC (bottom). 

4 DISCUSSION  

Both classification methods show very positive 
results. The little influence of DOS on the results 
might be caused by the short span and the very similar 
meteorological condition of the analysed dataset. 
Also, the RF, which is slightly sensitive to non-
normalised datasets, might contribute to such results. 
Although DOS has little influence on the results, it 
was maintained in the classification workflow 
because of its lightweight processing time. More 
complex atmospheric correction models can require 
more computational power and processing time. 
Thus, further and more detailed analysis needs to be 
realised in this direction.  

The GINI importance analysis allows the 
lightening of the classification process and improves 
the classification's performance. Although this was 
not true for the stacked classification, reducing the 
dataset reduces the OA. It is worth underlining that 
the importance analysis was applied twice in this 
case. The DOS correction has little influence on the 
final accuracy results for both multi-temporal 
approaches. This is an unexpected result since most 
relevant literature underlines the importance of 
atmospheric correction in multi-temporal approaches, 
especially in stacked ones.  

Little distance also emerges from the comparison 
of the two multi-temporal approaches. The 
aggregated multi-temporal classification overcomes 
the stacked one for only 0.015 of OA (regardless of 
the atmospheric correction). The F1 score of some 
classes of the aggregated multi-temporal approach is 
1 (water and irrigated lands). In the stacked multi-
temporal approaches, the F1 score shows some 
differences: irrigated land class is not one of the most 
accurate classes, but bare soil is. This method seems 
to misclassify the irrigated class, which is often 
confused with forest or water. Despite some little 
differences, in this case, the two approaches are 
perfectly exchangeable for this specific application. 
Again, there is a little difference in terms of time to 
apply one or the other.  

Nevertheless, there is a strong possibility of 
running out of memory in additional features or a vast 
area. Indeed data from 2017 were taken out. In this 
specific application, the aggregated multi-temporal 
classification method was applied because of the 
slightly higher accuracy and the less scarcity of salt-
and-pepper effect all over the scene.  

The pixel-by-pixel comparison between the LC 
ESA map and the aggregated LC reveals low overall 
accuracy (0.203) despite the two classifications 
having similar spatial resolutions (10m and 20m). 
The primary issue regards the confusion between 
Grassland, Cropland and Bare areas. Most pixels 
classified as Grassland in Sirba LC are considered 
Bare areas in the ESA Africa LC (Table 11). 
Similarly, most of the croplands of the Sirba LC are 
classified as Grassland in the ESA LC. Indeed the F1 
score of Cropland is only 0.056. Such results are 
ascribable to the nature of the definitions of pastures, 
grasslands and bare soils. In fact, pastures are 
considered Agricultural land in ESA LC and 
Grassland in Sirba LC. This is clearly detectable from 
the visual comparison between the classifications 
(Figure 7). Sirba River and most seasonal ponds and 
lakes are detected in Sirba LC and not in ESA LC 
because of the dataset of the classifications. Sirba LC 
is a rainy season LC (only summer months in 2017-
2019), while ESA LC is based on one-year 
observations. This also influences the vegetation 
class, which is captured at its maximum during the 
rainy season. A good overlap is present between the 
other classes. It is worth underling that the ESA 
Africa LC is a prototype, and it was validated using 
Crowdsourcing only for Kenya, Gabon, Ivory Coast 
and South Africa. The analysis and the methodology 
applied for the classification demonstrate that the 
textural information facilitates segmentation and 
classification. 
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Similarly, the aggregated multi-temporal approach 
proposed to reduce the variability of the images led to 
high-accuracy classification. Selecting a limited 
period for the satellite classification allowed the 
maximisation of the seasonal characterisation. It 
increased the separability of some hard-to-map 
classes (e.g. Nigerienne urban areas from bare soils 
and pastures and water).  

5 CONCLUSIONS 

Regardless of the application of atmospheric 
correction, the classification provides a suitable LC 
map for flood planning. It follows that, with some 
specific actions, it is possible to overcome the main 
mapping difficulties and obtain LC maps with high 
thematic detail in sub-Saharan areas. The model 
proposed in this paper can be applied to classify other 
sub-Saharan river areas semi-automatically since it is 
developed in GEE.  
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