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Abstract. We consider the dynamical properties of quantum vortices with filled massive cores,
hence the term “massive vortices”. While the motion of massless vortices is described by first-
order motion equations, the inclusion of core mass introduces a second-order time derivative in
the motion equations and thus doubles the number of independent dynamical variables needed
to describe the vortex. The simplest possible system where this physics is present, i.e. a single
massive vortex in a circular domain, is thoroughly discussed. We point out that a massive
vortex can exhibit various dynamical regimes, as opposed to its massless counterpart, which
can only precess at a constant rate. The predictions of our analytical model are validated by
means of numerical simulations of coupled Gross-Pitaevskii equations, which indeed display the
signature of the core inertial mass. Eventually, we discuss a nice formal analogy between the
motion of massive vortices and that of massive charges in two-dimensional domains pierced by
magnetic fields.

1. Introduction
The dynamics of quantum vortices in superfluids has been a vivid research field ever since
1955, when Feynman published his seminal article [1] about the quantum properties of liquid
Helium. The appearance of these topological excitations in a quantum fluid, in fact, constitutes a
signature of its superfluid character, i.e. of the presence of a macroscopic wavefunction associated
to the system [2]. Originally, their observation was limited to superfluid Helium (see Ref. [3] and
references therein), but, following the experimental realization of Bose-Einstein condensation of
ultracold atomic gases [4, 5], quantum vortices started to be observed also in this new class
of superfluid systems [6, 7, 8, 9, 10]. At present, considerable attention is devoted to the
experimental observation of the real dynamics of few-vortex systems [11, 12, 13].

Typically, the Helmholtz-Kirchhoff equations governing the motion of quantum vortices
in quasi two-dimensional (2D) domains do not include any inertial term, and the resulting
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dynamical equations are first-order differential equations. This implies that the velocity of
each vortex depends only on the position of the other vortices in the system and constitutes a
profound difference with respect to the well-known Newton’s law of motion, according to which
the motion of massive particles is governed by second-order differential equations.

Recently, we suggested that, whenever the vortex core hosts massive particles (for which,
in turn, the vortex core constitutes a potential well), the resulting composite object eludes the
standard description in terms of first-order-differential equations. The presence of a non-zero
core mass, in fact, introduces a second-order time derivative in the motion equations and thus
doubles the number of independent dynamical variables which can be associated to each vortex.
Within a time-dependant variational approximation scheme, we derived an effective point-like
dynamical model [14, 15, 16] which accounts for Superfluid Vortex Dynamics and Newtonian
Dynamics on equal footing, and which can be applied to both uniform [14, 15] and non-uniform
[16] background condensate densities. In particular, in the latter reference, we extended the
results of Refs. [17, 18, 19, 20] to the case of a generic power-law trapping potential ∝ rk and to
the case of a non-zero core mass. Indeed, the presence of a massive core resulted in a number of
intriguing dynamical regimes, including, but not limited to, the occurrence of small-amplitude
transverse radial oscillations superimposed to the well-known vortices trajectories [15], and the
reversal of the precession direction [16]. The predictions of our analytical model are confirmed by
extensive numerical simulations of time-dependent Gross-Pitaevskii (GP) equations for realistic
two-component BECs.

The outline of the manuscript is the following: in sections 2 and 3, we review standard
analytical techniques for the study of the dynamics of massless vortices. In section 4, we present
the effective Lagrangian and the dynamical regimes associated to a single massive superfluid
vortex in a circular domain, while in section 5 we focus on two-massive-vortex systems. Section
6 highlights the formal analogy between the motion equations of massive vortices and that of
massive charges in quasi-2D domains pierced by a transverse magnetic field. Section 7 includes
the results of time-dependent GP simulations, which validate the predictions of the analytical
model. Eventually, section 8 is devoted to the concluding remarks and sketches some possible
future research directions.

2. Superfluid vortex dynamics
The state of a superfluid system is typically described in terms of a macroscopic wavefunction
ψ =

√
neiθ, where n and θ are the density and the phase fields respectively. If the system can

be considered incompressible (this is typically the case of superfluid 4He and atomic BECs in
the strongly interacting Thomas-Fermi regime), the spatial variations of n can be neglected.

The nonviscous, incompressible, and irrotational flow associated to such superfluids can be
associated, for quasi-2D systems, to the complex potential

F (z) = χ(r) + iθ(r) (1)

where r = (x, y) and z = x + iy. The real part of the complex potential, χ(r), represents the
stream function, while the imaginary part, θ(r), corresponds to the velocity potential. Both
quantities are strictly linked to the velocity field v(r) of the flow by means of the following
relations:

v = − ~
m
∇× (ẑχ), (2)

v =
~
m
∇θ. (3)

The equivalence between the two descriptions can be understood by recalling that the complex
derivative

F ′(z) =
∂χ

∂x
+ i

∂θ

∂x
=
∂θ

∂y
− i∂χ

∂y
(4)
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is characterized by the well-known Cauchy-Riemann conditions

∂θ

∂x
= −∂χ

∂y
,

∂θ

∂y
= +

∂χ

∂x
(5)

due to its analytic properties. We remark that the possibility to write v as the gradient of
a (scalar) velocity potential ensures that the flow is irrotational (∇ × v = 0), apart from
singularities corresponding to vortex cores, while the description in terms of the stream function
χ ensures that v is incompressible (∇ · v = 0).

Equations (2), (3) and (4) imply that F ′(z) = (m/~)(vy + ivx). In particular, the complex
velocity of a vortex at a point z0 is given by

iż∗0 = ẏ0 + iẋ0 =
~
m

lim
z→z0

[
F ′(z)− 1

z − z0

]
, (6)

where z∗0 is the complex conjugate of z0 and the term −1/(z − z0) removes the (diverging)
self-contribution of the considered vortex from the overall velocity field [21]. The scope of this
formula is rather broad, as it can be used to obtain the motion equations of each vortex present
in the system. Notice that such equations are first-order ordinary differential equations, in
stark contrast to second-order Newton equations which are well-known to model the dynamics
of massive objects.

3. A massless vortex in a circular domain
Let us consider a vortex at position r0 = (x0, y0) in an incompressible superfluid confined in
a circular trap of radius R centered at the origin. The complex potential associated to this
problem reads

F (z) = log

(
z − z0

z − z′0

)
(7)

with z0 = x0 + iy0 and z′0 = x′0 + iy′0, where

x′0 =
R2

x2
0 + y2

0

x0, y′0 =
R2

x2
0 + y2

0

y0 (8)

are the coordinates of the image vortex, a fictitious vortex which originates due to the presence
of the boundary and which ensures that the overall velocity field v is purely tangent to the
boundary itself (i.e. to the circle x2 + y2 = R2). Straightforward computations allow one to
compute the stream function

χ(r) = Re(F ) = log

∣∣∣∣r − r0

r − r′0

∣∣∣∣ (9)

and the phase field

θ(r) = Im(F ) = arctan

(
y − y0

x− x0

)
− arctan

(
y − y′0
x− x′0

)
(10)

whose plots are illustrated in Fig. 1.
A direct application of formula (6) allows one to determine the motion equation for the

vortex, which can be written, in compact form, as

ṙ0 = ẑ × ~
m

r0

R2 − r2
0

. (11)
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Figure 1. Phase field associated to a vortex in a circular domain of radius R. The vortex is at
position r0/R = (x0, y0)/R = (0.5, 0). Black lines are constant-phase lines [see equation (10)],
while white circles are streamlines, i.e. lines along which χ(r) [see equation (9)] is constant.
The phase ranges from −π to π, as visible in the color bar.

That of the complex potential constitutes a very powerful analytical framework for the study
of superfluid vortex dynamics and its remarkable “elegance” originates from the link with the
theory of analytic functions. Yet, this elegance is associated with an intrinsic rigidity, meaning
that such framework is not suitable to incorporate the inertial effect ensuing from the possible
presence of core mass. In view of this generalization (which will be describes in section 4
as suitable), we present here an alternative approach which goes under the name of “Time
Dependent Variational Lagrangian” [22, 23, 15]. One starts from the customary Gross-Pitaevskii
field Lagrangian

L[ψ] = T [ψ]− E [ψ] (12)

where

T [ψ] =
i~
2

∫ (
ψ∗(r, t)

∂ψ(r, t)

∂t
− ∂ψ∗(r, t)

∂t
ψ(r, t)

)
d2r, (13)

E [ψ] =

∫ (
~2

2m
|∇ψ(r, t)|2 + Vtr |ψ(r, t)|2 +

g

2
|ψ(r, t)|4

)
d2r (14)

(see section 7 for the detailed meaning of the various parameters) and makes a time-dependent
variational ansatz, in this case

ψ =
√
neiθ (15)

where the density field n is uniform in the region x2+y2 < R2 except for the region (r−r0)2 < ξ2

where it is zero (ξ is a cut-off length-scale introduced to ensure the convergence of the integrals)
and the phase field is given by equation (10). Then one substitutes this time-dependent
variational ansatz into field Lagrangian (12) and, upon integrating away the field degrees of
freedom and neglecting constant terms, obtains an effective classical Lagrangian which depends
only on the position r0 and on the velocity ṙ0 of the vortex:

L = ~nπ(ṙ0 × r0 · ẑ)
r2

0 −R2

r2
0

− ~2nπ

m
log

(
1− r2

0

R2

)
. (16)

One has thus reduced the original problem to that of a point particle. Notice, in passing, that
Lagrangian (16) may be found under different, but equivalent, forms (see, for example, Refs.
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[15, 16]) differing due to a total time derivative. The ensuing Euler-Lagrange motion equation
is independent of this specific “gauge choice” and reads

0 = ẑ × ṙ0 +
~
m

r0

R2 − r2
0

(17)

and manifestly coincides with the one previously determined within the complex-potential
framework [see equation (11)]. It is clear that equation (17) corresponds to a uniform circular
motion whose center is the point (0, 0), whose radius is r0 and whose precession rate is

Ω0 =
~

m(R2 − r2
0)
. (18)

4. Introduction of core mass
The presence of massive particles trapped in the vortex core can be incorporated in the
Lagrangian model. In Refs. [14], [15] and [16] these particles were assumed to constitute a
different BEC. The latter can be described in terms of a Gaussian wavefunction

ψb =

√
Nb

πσ2
e−
|r−r0(t)|

2

2σ2 eir·α0(t) (19)

[where Nb is the number of component-b atoms, σ is the typical width of Gaussian and α0

is a time-dependent variational parameter which allows for non-zero translational velocities
ṙ0 = (mb/~)α0], or super-Gaussian functions [24], while in Ref. [25] they were classical objects
(mimicking tracer particles used as vorticity tracers in liquid-Helium experiments). Regardless
of the microscopic origin of these core-filling particles, as long as they stay tightly trapped in
the vortex core, their effective Lagrangian is

Lb =
1

2
Mbṙ

2
0 (20)

where Mb = Nbmb is their total mass (mb being the component-b atomic mass). Notice the use
of the same dynamical variable r0 to denote both the position of the vortex in ψa and that of the
component-b inertial particles, an approximation justified by the assumed immiscibility of the
two components. The total Lagrangian associated to these “massive vortices” can be therefore
written as

L = La + Lb (21)

where La corresponds to Lagrangian (16) and Lb to Lagrangian (20). Notice that, due to the
rotational invariance of the system, the (third component of the) angular momentum

Lz = (r0 × p0) · ẑ = naπ~(R2 − r2
0) +Mb(r0 × ṙ0) · ẑ (22)

constitutes a conserved quantity (p0 = ∂L/∂ṙ0 represents the canonical momentum).
The Euler-Lagrange motion equation associated to Lagrangian (21) reads:

Mbr̈0 = 2naπ~
[
ẑ × ṙ0 +

~
ma

r0

R2 − r2
0

]
(23)

where we have introduced the subscript “a” to quantities associated to the wavefunction
featuring the vortex. Notice that, as opposed to equations (6) and (11), equation (23) is
manifestly a second-order differential equation. This constitutes a remarkable difference, as the
presence of mass effectively doubles the number of independent dynamical variables associated
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Figure 2. Left panel: three possible trajectories for a massive vortex in a circular trap. Green

curve is obtained for the initial conditions r0(0)/R = (0.5, 0) and ṙ0(0) = (0, r0Ω
(−)
0 ), where

Ω
(−)
0 is the dimensionful version of equation (26), red curve is obtained for small perturbations

of the initial conditions. In both cases, µ = 4 × 10−2. For larger values of the core mass,
inequalities (27) and (35) may be violated and the insuing dynamical instability results in a
collision with the circular boundary (see the blue line, obtained for µ = 0.5). Right panel: plot
of inequalities (27) and (35). The uniform circular orbits exist and are dynamically stable in
the common region, i.e. for µ < µω.

to the system. It it worth mentioning that equation (23) has the classic form of a singular
perturbation, with the small parameter Mb multiplying the highest derivative.

Equation (23) features some notable dynamical regimes (see, e.g., the left panel of Fig. 2).
One of them is represented by uniform circular orbits, i.e. solutions of the type:

r0(t) = r0 (cos(Ω0t), sin(Ω0t)) (24)

where the precession frequency Ω0 depends both on the radial position r0 and on the core
mass Mb. Introducing, for convenience, the dimensionless quantities r̃0 := r0/R, Ω̃0 :=
Ω0/[~/(maR

2)], and µ = Mb/Ma = (Nbmb)/(Nama) = (Nbmb)/(naπR
2ma), two solutions are

possible [15]:

Ω̃
(+)
0 =

1 +
√

1− 2µ/(1− r̃2
0)

µ
(25)

Ω̃
(−)
0 =

2/(1− r̃2
0)

1 +
√

1− 2µ/(1− r̃2
0)
. (26)

Notice that, in the limit of vanishingly small core mass (i.e. for µ→ 0), Ω̃
(+)
0 diverges as ∼ 2/µ

and thus becomes unphysical, while Ω̃
(−)
0 → 1/(1− r̃2

0) , which indeed corresponds to precession
rate (18) when written in dimensionful form. We remark that uniform circular orbits exist
provided that the core mass is sufficiently small, i.e. for

µ < µΩ :=
1

2
(1− r̃2

0). (27)

To study the dynamical stability of these uniform circular orbits, one begins with moving from
the lab frame xOy to a new reference frame x′Oy′ rotating at frequency Ω0 with respect to the
previous one. The transformation is given by

x0 = x′0 cos(Ω0t)− y′0 sin(Ω0t), y0 = x′0 sin(Ω0t) + y′0 cos(Ω0t) (28)
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(of course, the velocities transform accordingly). In this rotating frame the vortex coordinates
read r′0 := (x′0, y

′
0) and the Lagrangian can be written as

L′ = L(r′0, ṙ
′
0) + Ω0Lz(r

′
0, ṙ

′
0) +

1

2
MbΩ

2
0r
′
0

2
(29)

where L(r′0, ṙ
′
0) and Lz(r

′
0, ṙ

′
0) correspond to equations (21) and (22), respectively, but now with

all the original (unprimed) laboratory dynamical variables replaced by those in the (primed)
rotating frame. In this reference frame, the previously discussed uniform circular orbits (24)
constitute fixed points.

Performing the Legendre transform, one can easily prove that the Hamiltonian associated to
Lagrangian (29) reads

H ′ = H(r′0, p
′
0)− Ω0Lz(r

′
0, p

′
0) (30)

where H is the Hamiltonian associated to Lagrangian (21), i.e.

H(r0, p0) =
(p0 − kA)2

2Mb
− n2

aπ
2R2~2

Mb

(
1− R2

2r2
0

)
− naπR

2~
Mb

r0 × p0

r2
0

· ẑ +
~2naπ

ma
log

(
1− r2

0

R2

)
(31)

but with all original laboratory canonical variables replaced by those in the rotating frame
[we have introduced the symbols k = h/ma, and A := mana(y0, −x0)/2, the latter being an
effective vector potential which corresponds to an effective syntehtic gauge field [15, 16]]. After
defining the vector v′ = (r′0, p

′
0) of canonical variables in the rotating frame, it is straightforward

to verify that the set of Hamilton equations v̇′ = E∇H ′, where E is the standard symplectic
matrix, admits a class of fixed points v∗′ corresponding to uniform circular motions (24) in the
lab frame. As is well known from Dynamical-System Theory, the fixed point is stable provided
that the eigenvalues of the corresponding Jacobian matrix

J (v∗′) = EH|v′=v∗′ (32)

where H := (∂2H ′)/(∂v′i∂v
′
j) is the Hessian matrix associated to Hamiltonian (30), have no

(positive) real part. Lengthy but straightforward computations lead to the four eigenvalues

λ1 = 0, λ2 = 0, λ3 = +iω, λ4 = −iω (33)

where

ω =
~

maR2

2

µ

√
1− µ 2− r̃2

0

(1− r̃2
0)2

. (34)

It worth mentioning that the occurrence of two zero eigenvalues is due to the presence of a
conserved quantity, namely Lz, or, in other words, to the fact that all the points lying on
the circumference r′0 = const constitute equivalent fixed points. One can readily verify that
eigenfrequency (34) is real provided that

µ < µω :=
(1− r̃2

0)2

2− r̃2
0

. (35)

The same results can be obtained by studying the effective potential associated to the motion
along the radial direction [15, 16]. The plot of inequality (27) and inequality (35) is illustrated
in the right panel of Fig. 2, which clearly shows that, for this system, if a uniform circular
motion exists, than it is also dynamically stable.
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5. Two-massive-vortex systems
The arguments developed in sections 3 and 4 can be easily generalized to the case of many-vortex
systems. In this section, we focus on two-vortex systems. In the massless case, the dynamics of
two-vortex systems confined in 2D circular domains can be completely determined within the
complex-potential framework. One starts from

F (z) = q1 log

(
z − z1

z − z′1

)
+ q2 log

(
z − z2

z − z′2

)
(36)

where q1 and q2 can take the values ±1, z1 and z2 are the positions of the two real vortices, and
z′1 and z′2 are the positions of their images [see equation (8)], and uses formula (6) to determine
the motion of each vortex (notice that one obtains first-order differential equations). Figure 3
illustrates the phase field and the streamlines associated to this system in the case of same-signed
vortices (left panel) and opposite-signed vortices (right panel).

Figure 3. Phase field associated to two-vortex states in a circular domain of radius R. Left
(right) panel corresponds to same-signed (opposite-signed) vortices. In both cases, vortices are
at position r1/R = −r2/R = (0.5, 0). Black lines are constant-phase lines, while white circles
are streamlines, i.e. lines along which χ(r) is constant. The phase ranges from −π to π, as
visible in the color bar.

As already mentioned, the presence of core mass and the inertial effects it comes with cannot
be incorporated in this description. It is indeed preferable to develop the Time-Dependent-
Variational-Lagrangian scheme. Following the same steps described in sections 3 and 4, one can
write the effective point-like Lagrangian associated to the system

L =
2∑
j=1

(
Mb,j

2
ṙ2
j

)
+

2∑
j=1

[
qjkmana

2
(ṙj × rj · ẑ)

r2
j −R2

r2
j

− manak
2

4π
log

(
1−

r2
j

R2

)]
− V (r1, r2)

(37)
where

V =
manak

2

4π
q1q2 ln

(
R2 − 2r1 · r2 + r2

1r
2
2/R

2

r2
1 − 2r1 · r2 + r2

2

)
(38)

is the two-vortex interaction term.
The relevant Euler-Lagrange motion equations read

Mb,j r̈j = qjkmanaẑ× ṙj+mana
k2qj
2π

[
qi
rj − ri
|rj − ri|2

+ qj
rj

R2 − r2
j

+ qi
R2ri − r2

i rj
R4 − 2R2rirj + r2

i r
2
j

]
(39)
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and they can be conveniently used to obtain the vortices’ trajectories (see, e.g., Sec. III.B of
Ref. [15]).

6. Electromagnetic equivalence
The equations describing the motion of massive vortices are formally equivalent to the ones
describing the motion of massive charges in 2D domains pierced by magnetic fields. To explicitly
show this nice mapping, we rewrite motion equation (23) as

Mbr̈0 = kṙ0 × (−manaẑ) +
mana

2π
kk′

r0 − r′0
|r0 − r′0|2

(40)

[where k = (+1)h/ma, r
′
0 = r0R

2/r2
0 is the position of the image vortex, and k′ = −k its

strength] and motion equations (39) as

Mb,1r̈1 = k1ṙ1 × (−manaẑ) +
mana

2π

[
k1k
′
1

r1 − r′1
|r1 − r′1|2

+ k1k2
r1 − r2

|r1 − r2|2
+ k1k

′
2

r1 − r′2
|r1 − r′2|2

]
(41)

Mb,2r̈2 = k2ṙ2 × (−manaẑ) +
mana

2π

[
k2k
′
2

r2 − r′2
|r2 − r′2|2

+ k2k1
r2 − r1

|r2 − r1|2
+ k2k

′
1

r2 − r′1
|r2 − r′1|2

]
(42)

where kj = qjk, and qj ∈ {−1, +1}. These equations are manifestly formally equivalent to
Newton second law Mb,j r̈j = Fj for a particle of mass Mb,j and “charge” kj in an electromagnetic
field. The force Fj applied on the j-th vortex, in fact, can be regarded as the sum of two
contributions: a Lorentz-like force kj ṙj×(−manaẑ) which is perpendicular to the vortex velocity
ṙj (and hence does not do work), and a Coulomb-like force kjE(rj), whereE(rj) can be regarded
as the superposition of the “electric fields” generated by all the remaining “charges” (be them
real or virtual) present in the system. We remark that, as opposed to the familiar Coulomb force
in standard electrostatic problems, which decays as r−2

12 (where r12 is the inter-vortex distance),
in the present case the Coulomb-like force decays as r−1

12 because of the reduced dimensionality
of the system. We also recall that one should write the motion equations only for real vortices,
i.e. the ones associated to unprimed variables rj and ṙj . The image vortices, instead, do
not have an independent dynamics, their position being determined, at any time, by equation
(8). Within this formal analogy, the superfluid density mana constitutes (the magnitude of) an
effective magnetic field [B := −manaẑ = ∇×A, where the vector potential A was introduced
in Hamiltonian (31)] which pierces the plane on which vortices move, while the inter-vortex
interactions (as well as the possible presence of geometric boundaries) result in an effective
electric field.

7. Massive quantum vortices in two-component BECs
In this section, we benchmark the predictions of motion equation (23) against numerical
simulations of couple GP equations

i~
∂ψa
∂t

=

[
− ~2

2ma
∇2 + Vtr + gaa|ψa|2 + gab|ψb|2

]
ψa (43)

i~
∂ψb
∂t

=

[
− ~2

2mb
∇2 + Vtr + gab|ψa|2 + gab|ψa|2

]
ψb, (44)

where ψa =
√
nae

iθa and ψb =
√
nbe

iθb are the macroscopic wavefunctions representing the state
the two condensed components (normalized to Na and Nb, the number of atoms in the two
condensed species, respectively), ma and mb are the two atomic masses, Vtr is the hard-wall
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circular confining potential, and gij =
√

2π~2aij/(mijdz) are the intra- and inter-component
interactions in 2D. Parameters mij = 1/(m−1

i +m−1
j ) represent the effective masses, aij the

intra- and inter-component scattering lengths (typically of the order of tens of Bohr radii
a0 = 5.29 × 10−11 m), and dz constitutes the effective width of the quasi-2D atomic cloud.
The simulations are carried out assuming that component-a (-b) is made up of 23Na (39K)
atoms. The scattering lengths are aaa = 52 a0, abb = 7.6 a0 and aab = 24.2 a0, implying that
gab/
√
gagb ≈ 1.3, so that the immiscibility condition is met, meaning that the component-b core

is tightly localized in the component-a vortex.
After generating the initial condition for the real-time dynamics [this is obtained by means of a

suitable imaginary-time propagation in a frame rotating at frequency Ω
(−)
0 = ~/(maR

2)Ω̃
(−)
0 [see

equation (26)] and then perturbing the phase field of ψb so to impose a non-zero radial velocity
and thus trigger the small-amplitude radial oscillations], we switched to real-time propagation.
The position of the phase singularity and the density minimum in ψa is recorded at every
iteration. The comparison between this “experimental” trajectory (blue dots) and the one
obtained from equation (23) for the same microscopic parameters and initial conditions (red
solid line) is shown in Fig. 4. Remarkably, the presence of small-amplitude radial oscillations,

Figure 4. Comparison between the trajectory predicted by equation (23) (red line) and the
trajectory extracted from time-dependent GP simulations (blue dots) [see equations (43) and
(44)]. We used the following microscopic parameters Na = 90 × 103, Nb = 2 × 103 (hence
µ = 0.04), R = 50µm. The initial position is at (x0, y0)/R = (0.57, 0) and the unperturbed

precession frequency reads Ω
(−)
0 = ~/(maR

2)Ω̃
(−)
0 = 1.68 rad/s. The ending time of both

trajectories is 1.5 s.

which constitute the signature of the inertial effect ensuing from the core mass, is confirmed by
our numerical experiments. Yet, from a more quantitative point of view, the frequency of these
radial oscillations differs from the one predicted by the analytical model. With reference to Fig.
4, one can count ≈ 12.5 cycles as regards the red curve, and ≈ 10 cycles for the blue curve
(both trajectories are obtained for the same simulated interval, i.e. ∆t = 1.5 s), corresponding,
respectively, to ≈ 52 rad/s and ≈ 42 rad/s. While the first value well corresponds to the
one predicted by equation (34), i.e. ≈ 54 rad/s, the second differs of ≈ 20%. This difference
may be ascribed to a number of phenomena that are indeed present in GP simulations (finite
compressibility, emission of sound waves, relative motion between the vortex and its massive
core), but are neglected by our analytical model.
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8. Conclusions and future perspectives
We have investigated the dynamical properties of quantum vortices with filled massive cores.
Traditionally, quantum vortices are regarded as phase singularities with no inertial mass and
their motion is typically described by first-order differential equations, meaning that the velocity
of each vortex is uniquely determined, at any time, by the positions of all other vortices in the
system. The introduction of core mass constitutes a singular perturbation: the number of
independent dynamical variables doubles and the motion equations become of second order.
We have analyzed, in quiet detail, the simplest possible system where this physics is present,
i.e. a massive quantum vortex in a circular region. We have show, in particular, that the
presence of inertial mass is responsible for the onset of small-amplitude radial oscillations. This
prediction was confirmed by means of numerical simulations of coupled time-dependent GP
equations. Eventually, we have pointed out the nice formal analogy between the dynamics of
massive quantum vortices and that of massive charges in a 2D domain pierced by a magnetic
field.

Possible future research directions include the study of massive-vortex dynamics on curved
surfaces, thus generalizing the analysis developed in Refs. [21, 26, 27, 28] to the case of non-
zero core mass, the introduction of an inter-component coherent coupling [29, 30] which may
result in time-dependant core masses, component-selective potentials [31, 32], dissipation [33],
the extension to three-dimensional systems [34, 35] and to miscible components [36, 37, 38].
Also, we are going to investigate the properties of massive-vortex lattices and their associated
Tkachenko-like oscillation modes [23]. In this regard, it is worth mentioning that regular arrays
of quantum vortices can be regarded as an effective “optical lattice” for the b component,
whose quantum properties may be further investigated within an effective (Bose)-Hubbard model
[39, 40]. This possible research direction is rather suggestive also in view of the fact that the
motion of precession which vortex necklaces are well known to have [23] can be regarded as an
effective synthetic gauge field for component-b neutral atoms. Therefore, the wide spectrum
of intriguing physical phenomena that are disclosed by Hubbard-like rings pierced by artificial
gauge fields [41, 42, 43, 44, 45, 46, 47] may be observed in an optical-lattice-free setup.
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