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Abstract. The convergence of meta-heuristic optimization algorithms
is not mathematically ensured given their heuristic nature of mimicking
natural phenomena. Nevertheless, in recent years, they have become very
widespread tools due to their successful capability to handle hard con-
strained problems. In the present study, the Particle Swarm Optimiza-
tion (PSO) algorithm is investigated. The most important state-of-art
improvements (inertia weight, neighbourhood) have been implemented
and an unfeasible local search operator based on self-adaptive Evolu-
tionary Strategy (ES) algorithm has been proposed. Firstly, the current
PSO-ES has been tested on literature constrained benchmark numerical
problems compared with PSO which adopts the traditional penalty func-
tion approach. In conclusion, some constrained structural optimization
truss design examples have been covered and critically discussed.

Keywords: structural optimization,self-adaptive evolutionary strategies
(ES), structural benchmark, multistrategy particle swarm optimization

1 Particle swarm optimization introduction

A mathematical problem involving the minimization of at least one objective
function (OF) f(x) is denoted as an optimization problem, which may be con-
strained or not, depending on parameters gathered in a design vector x defined
in a search space Ω. In recent years, metaheuristic algorithms and evolution-
ary algorithms (EAs) have been successfully employed in many engineering ap-
plications and structural optimization design tasks [1–8]. They do not require
information from the OF gradient, a characteristic of the time and computa-
tionally expensive gradient-based approaches. In the EAs field, J. Holland firstly
developed the population-based genetic algorithm (GA) [9, 10], which mimics
the Darwinian Theory and genetics phenomena. R. Eberhart and J. Kennedy in
[11] proposed the particle swarm optimization (PSO) algorithm in 1995, another
famous population-based approach which mimics the food search behaviour of
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animals in the natural environment like fish schooling or birds flockings. In the
mechanisms of the algorithm, each particle of the swarm act as an intelligent
agent and explore the search space in order to improve the optimum solution
of the optimization problem. At the beginning, the PSO has been able to solve
unconstrained optimization only, and then different strategies have been later
adopted to even solve constrained ones. In the next sections, after a brief re-
view of the PSO, a particular focus on the novel multistrategy method has
been discussed. Eventually, some literature constrained mathematical bench-
mark problems have been successfully solved by the enhanced PSO. In the final
part, real-world structural optimization problems have been solved, comparing
performance with other techniques.

2 The Particle Swarm Optimization (PSO) algorithm

The PSO algorithm is based on a population of N of intelligent agents whose
position in the search space identifies a trial solution of the optimization problem.
To explore the search space, the particles of the swarm flies independently, even
if a global intelligent movement appears considering the entire swarm during the
iterative optimization approach. The standard PSO formulation is based on the
classical mechanics perspective, therefore each particle i in every generation k is
fully characterized by its position kxi and velocity kvi in the search space. The
next position of the particle is influenced by two kind of information gathered
from the swarm: a self-memory allow the particle to remember its best visited
position which acts as local attractor denoted as pbest kxPb

i . On the other hand,
a global attractor denoted as gbest kxGb is based on information shared among
the particles of the entire swarm. To prevent the explosion of the velocity, this
term has been clamped by an upper bound vmax = γ(xu − xl)/τ , considering a
time unit τ = 1 to make it consistent with a physical velocity and γ ∈ [0.1, 1] as
suggested in [12]. The position and the velocity of each particle follow the below
adjusting rules:

(k+1)vi =
kvi + c1

(k+1)r1i ∗
[
kxPb

i − kxi

]
+ c2

(k+1)r2i ∗
[
kxGb

i − kxi

]
, (1)

(k+1)xi =
kxi + τ (k+1)vi (τ = 1), (2)

where the symbol ∗ denotes the element-wise multiplication [13], whereas c1 and
c2 denoted the cognitive and the social acceleration factor. To introduce a certain
level of randomness in the above quite-deterministic update rules, two uniform
sampled random scalars between 0 and 1, (k+1)r1i and

(k+1)r2i, have been con-
sidered to increase the domain exploration. The algorithm termination is usually
set as the achievement of a priorly set number of iterations kmax. However, it is
not easy to priorly estimate the correct number of maximum iteration because
it is strongly problem-oriented [14]. Therefore, some other approaches can be
based directly on the monitoring of the variation of the OF during the itera-
tions. A stop criterion could be based on a predefined number of stagnations,
which means that the OF registers small variations within a certain threshold
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level for a certain number of iterations. [15] improved the standard PSO formu-
lation introducing the inertia weight term kw applied to the previous iteration
velocity to manipulate the inertial effect of each particle to the movement The
hyperparameters of the PSO need to be fine tuned to reach the best perfor-
mances. For example the population size defines the level of exploration of the
search space and it is suggested to be a number comprise between 20 and 100
when the design vector size is less than 30 [12]. In the following implementations,
as suggested in literature e.g. by [12], acceleration factors can be set as constant
scalars equal to 2 and inertia weight . A fundamental aspect of the PSO is the
information sharing among the agents, defined by the particles interconnection
topology, also known as neighbourhood. If the information of every particle is
shared with the entire swarm, it is denoted as fully connected or gbest topology.
However, this strategy particularly suffers of premature entrapment convergence
to local optima. Therefore, lbest models have been proposed to slow down the
convergence ensuring enough exploration. Among the different implementations
illustrated in [16], in this study, the ring topology has been adopted. Defined a
neighbourhood radius and considering a particles indexing order, the informa-
tion are shared only among the particles who belong to their neighbourhood. In
[17], an example of multi-population PSO involves a dynamic topology adjust-
ment during iterations.
Constraint handling in EAs is a challenging task especially because of unfeasible
trial solutions. Numerous strategies have been developed and in [18] have been
reconducted to five main typologies: penalty functions-based methods, meth-
ods based on special operators and representations, methods based on repair
algorithms, methods based on the separation between OF and constraints, and
hybrid methods. Due to its simplicit, the most adopted method is the penalty
approach (death, static, dynamic or adaptive) which delivers an unconstrained
version of the problem ϕ(x) = f(x) + H(x) with H(x) as a penalty function
[19]. For the preservation of swarm diversity and optimization performances, it
is necessary to select the best approach to deal with constraints. Indeed, the
death penalty approach does not represent at all the ideal solution because it
brings a dreadful loss of information from unfeasible points [18]. In the struc-
tural optimization field [20] the static and dynamic penalty functions are the
most widespread used constraint handling techniques. The static penalty func-
tion Hs(x) depends on HNV C the number of constraints that are violated by
each particle and HSV C the sum of all violated constraints:

Hs(x) = w1HNV C(x) + w2HSV C(x) ; HSV C(x) =

np∑
p=1

max{0, gp(x)} (3)

with w1 and w2 as static control parameters usually set to w1 = w2 = 100
[21]. In this study, w1 = 0 and 1000 < w2 < 10000 have been assumed for
penalty-based PSO adopted as a comparison with the enhanced multistrategy
PSO. The dynamic penalty approach attempted to improve the static version by
allowing a more relaxed constraint handling at the beginning and an increasingly
penalty value approaching to the end of the kmax iterations, according to a kh
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is a dynamic penalty factor [21]:

min
x∈Ω

{f(x) + khHd(x)} with kh =
√
k (4)

Hd(x) =

np∑
p=1

θp(x)[max{0, gp(x)}]γp(x) ; 10 < Hd(x) < 1000 (5)

Usual values of the above factors are reported in [21]. A careful calibration of the
penalty is crucial because an high value will reduce exploration and diversity,
whereas a too low value will not contrast properly the constraint violation.

3 Multistrategy PSO

Considering the Newtonian dynamics-based PSO [11], an enhanced PSO, illus-
trated in Fig. 1, has been implemented with the most well-acknowledged lit-
erature improvements, implementing an additional unfeasible search feature to
boost the optimization performance. The very beginning swarm is random sam-
pled in the domain through the latin hypercube sampling. The OF and the level
of violation of each constraint are then evaluated. From these evaluations, each
particle is associated to a accomplish to a precise goal according to its position
in the domain and its violation value. If it is located in the feasible region, its
goal is to optimize the OF. On the contrary, when it is unfeasible, its goal is to
minimize the envelope of the violation level of the violated constraints. The just
explained mechanism inspired the notation of “multistrategy”, since it breaks

Fig. 1: Enhanced PSO multistrategy flowchart.
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(c) OF - ES operator Gen. 1
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(d) Constraints - ES Gen. 1

Fig. 2: Example Problem g06 [22]; (a) and (b): the objective function and the
constraints violation are depicted as contour plot. The black cross symbol stands
for the unfeasible gbest, whereas the red and green dots indicates the swarm
positions at a certain iteration instant. In (c) and (d), purple dots: local search
population ES search operator; green dots: feasible points.

free from any arbitrary penalty factor or something else, but the PSO relies only
on OF and constraint violations. As depicted in Fig. 1, after the definition of
the aim of each agent of the first population, the swarm evolution cycle can
begin with the usual evolutionary stages such as the Velocity update (1), and
the Position update (2). The pbest (self-memory) of each particle is upgraded
everytime a new better feasible position is explored, as well as the gbest. When
kmax is reached, the evolutionary cycles stop. When the feasible region is very
narrow, the swarm may stagnate without founding a region of feasible design
parameters. However, in the multistrategy approach, the swarm has attempted
to minimize the violations. This means that probably the gbest reaches an unfea-
sible position located enough close to the admissible feasible area of the domain.
This aspect inspired us to enhance the local exploration to attempt to seek the
feasible region. Therefore, after k = kES operator stagnations, the swarm begins a
local exploration adopting another methaheuristic algorithm developed by H.P.
Schwefel and I. Rechenberg, the Evolutionary Strategy (ES) [9, 23]. This EAs is
based on Darwinian Theory of Evolution. A parent population is sampled in the
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nearby of the unfeasible gbest point. Every memeber of the population generates
an offspring by a mutation in its genome which is sampled from a normal Gaus-
sian distribution xi +N(0, σ), ruled by a mutation step σ [23]. Finally, in every
iteration only the best individuals will survive to the next generation among
parents and offspring. The advantage of ES is related to a single parameter σ
which should be tuned. In this study, the self adaptive ES (SA-ES [23]) has been
taken into account. Thus, the genomes encodes the mutation step (x1, ..., xn, σ)
and it is indirectly evolved through the fittest individuals. It is even possible to
consider a self-adaptive mutation step for each single gene (x1, ..., xn, σ1, ..., σn)
[23]. In the current study the uncorrelated steps self adaptive ES has been se-
lected to perform the local search in the nearby of the unfeasible gbest position
xGb,unfea when the swarm stagnates kES operator = 10. The size of the parent
local population has been set to Np = 50, sampled with a multivariate Gaus-
sian centered in the unfeasible gbest position, with standard deviation of each
genome component equal to

σi = |τ ·N(0, 1)| (6)

where τ which is the learning rate parameter assumed as 1/
√

Np. No = 100
offspring have been generated foremost by randomly selected parents with this
mutation scheme:

σi,off = max (0, |σi +N(0, 1)|) . (7)

Next generations have been obtained by updating the covariance of the multivari-
ate Gaussian mixture model. The mating pool is thus composed by parents and
offspring, in a µ+λ-ES strategy, from which the fittest Np elements will survive.
A maximum number of local iterations has been set to kmax,Local = 50, unless a
feasible point has been found, becoming the new gbest for the PSO algorithm.
Fig. 2 depicts an illustrative example of the ES unfeasible local search opera-
tor capabilities. Even though the above unfeasible local search, the admissible
feasible area may have not been discovered after further kmax Unfeas Stagn = 15
stagnations, thus the PSO is completely restarted from the initial LHS sampling
as shown in Fig. 1. On the other hand, if a feasible point is found, the PSO
starts again to evolve setting it as the new gbest. When the PSO stagnates
kmax Feas Stagn = 50 times on the same feasible gbest, the population is restarted
with latin hypercube sampling to attempt to scan again the search space exploit-
ing the available iterations left before the termination criterion. In the following,
the enhanced multistrategy PSO has been applied to some mathematical bench-
mark problems and some real-world structural optimization problems.

4 Numerical benchmark problems

Implemented in Matlab environment, the proposed multistrategy PSO solved
some constrained mathematical benchmark problems whose mathematical state-
ments are reported in [24]. In total, 13 constrained problems have been consid-
ered, the ones with inequalities constraints only. For the sake of comparisons,
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the current multistrategy PSO has been compared with other PSO with clas-
sic penalty approaches proposed by [25]. The code has been adapted for the
static and dynamic penalty approach as in (3) and (4). The penalty factors were
problem-oriented adjusted and calibrated. The size of the swarm is N = 100
with the total maximum iterations of kmax = 500 for all the PSOs implemen-
tations. Tab. 1 presents the results obtained by 50 execution performed in a
independent way and illustrates comparisons such as worst and best obtained
results, mean and standard deviation of the OF for the three different imple-
mented PSOs. The results provided by the enhanced multistrategy PSO are in
very good agreement with the theoretical global minimum solutions and in ac-
cordance with the other PSO penalty-based variants. These results demonstrate
that the current multistrategy PSO implementation is effective to cope with
constrained mathematical problems, without requiring troublesome calibrations
of many arbitrary hyperparameters as it happens for penalty-based techniques.

Table 1: Numerical benchmark examples taken from [24], results for 50 runs.

Problem Algorithm
Real

Optimum
best
OF

worse
OF

mean std. dev.

g01 PSO-ES -15.000 -15.000 -12.002 -14.443 0.8948
PSO-Static -15.000 -12.000 -13.938 1.4333
PSO-Dynamic -15.000 -12.000 -13.920 1.4546

g02 PSO-ES 0.803619 0.803570 0.609630 0.758960 0.0636
PSO-Static 0.801460 0.520130 0.710500 0.0736
PSO-Dynamic 0.793580 0.382850 0.665970 0.0870

g04 PSO-ES -30665.539 -30666.0 -30666.0 -30666.0 2.197E-05
PSO-Static -30666.0 -30665.0 -30665.0 0.8659
PSO-Dynamic -31207.0 -30137.0 -31138.2 252.203675

g06 PSO-ES -6961.81388 -6961.8 -6958.4 -6960.7 0.9752
PSO-Static -6973.0 -6973.0 -6973.0 0.0000
PSO-Dynamic -6973.0 -6973.0 -6973.0 0.0000

g07 PSO-ES 24.3062091 24.426 27.636 25.413 1.1209
PSO-Static 24.034 30.203 28.508 1.4351
PSO-Dynamic 24.477 30.112 27.043 1.8821

g08 PSO-ES 0.095825 0.095825 0.095825 0.095825 6.96E-17
PSO-Static 0.095825 0.095825 0.095825 6.77E-17
PSO-Dynamic 0.095825 0.095825 0.095825 7.10E-17

g09 PSO-ES 680.6300573 680.640 680.980 680.730 0.0794
PSO-Static 680.630 680.720 680.660 0.0175
PSO-Dynamic 680.630 680.730 680.660 0.0189

g12 PSO-ES 1.000 1.000 1.000 1.000 0.0000
PSO-Static 1.000 1.000 1.000 2.12E-15
PSO-Dynamic 1.000 1.000 1.000 0.0000

5 Structural optimization examples

In this final paragraph, some acknowledged literature structural optimization
benchmark problems have been solved by the proposed multistrategy PSO. The
PSO-ES has been compared in the following with other penalty PSO implemen-
tations [25]. To make a more complete comparison with a completely different
and independent approach, the GA from Matlab Optimization Toolbox has been
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also analysed. In particular, a spring design and two different spatial truss op-
timization problems have been considered [26]. They are configured as a size
optimization task, where the main goal is usually to reduce the self-weight w
of the structure respecting the safety constraints, which is related to the cost
[7]. Denoting with ρi the unit weight, the purpose is to find the optimal cross-
sectional areas Ai of every i-th structural element which are lower and upper
bounded (box-type hyper-rectangle domain) Ai ∈ [ALB

i , AUB
i ]. In general, two

inequality constraints are considered: the assessment of the maximum allowable
stress σadm (strength constraint) and the assessment of the codes admissible
displacement δadm (deformation limitation). For the truss problem, the general
optimization problem statement is:

min
x∈Ω

f(x) =

Nel∑
i=1

ρiLiAi

s.t. ALB
i ≤ Ai ≤ AUB

i

σi ≤ σadm

δ ≤ δadm

(8)

in which the structure is composed by Nel members of actual length Li. The
structural steel mechanical properties are expressed in imperial units, i.e. the
unique unit weight for each member equal to ρi = ρ = 0.1 lb/in3 and the
Young’s modulus of 107 psi.

5.1 Tension/compression spring optimization benchmark

The first problem is referred to a well-acknowledged continuous constrained engi-
neering problem which aims to find the minimum weight of a spring, as depicted
in Fig. 3 (a). Under the action of an axial force F , some inequality constraints
are posed by considering respectfulness of requirements related to the minimum
deflection, on shear stress and on surge frequency. The design vector is composed
of three parameters: the wire diameter (x1 = d), the mean coil diameter x2 = D
and the number of active coils x3. The design parameters are bounded in the
following intervals: 0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3 and 2.0 ≤ x3 ≤ 15.0 The
problem formulation is stated as [27]:

min
x∈Ω

f(x) = (x3 + 2)x2x
2
1

s.t. g1(x) = 1− x3
2x3

7.178x4
1

≤ 0

g2(x) =
4x2

2 − x1x2

12.566(x2x3
1)− x4

1

+
1

5.108x2
1

≤ 0

g3(x) = 1− 140.45x1

x2
2x3

≤ 0

g4(x) =
x2 + x1

1.5
− 1 ≤ 0

(9)
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Fig. 3: (a) Spring problem. (b) Ten bars truss problem.

Table 2: Results for 100 runs of tension/compression spring design.

In Tab. 2, the comparison results are illustrated. The theoretical optimal solution
of the above-mentioned problem is reported in the first column of Tab. 2. All
the considered algorithms provide great performances on this simple benchmark
problem which has only three design parameters, even the penalty approaches.
It is worth noting that the mean and the standard deviation of the proposed
multistrategy PSO-ES appear to be lower than the other algorithms, demon-
strating the reliability of the proposed method to solve engineering optimization
tasks.

5.2 Ten bars truss design optimization

As depicted in Fig. 3 (b), a planar ten bars truss cantilever structure is now
considered. The cantilever span is 720in (1in = 25.4mm) and 360 in depth with
elements numbered from 1 to 10. The loads are two downward equal forces of 100
kips (1kips = 4.4482kN). The cross section areas to be optimized are considered
as continuous variables within the admissible range [0.1, 35] in2. The maximum
admissible stress is σadm = ±25 ksi, whereas the maximum displacement has
been set to δadm = ±2 in for every structural node. The population of the
PSO has been set to 50 individuals and the stopping criterion has been set to
a maximum number of iterations of 500 both for PSO-ES and GA. Since their
dreadful results, for the penalty-based PSO the swarm size has been increased to
500 particles. 100 runs have been independently performed in total, calculating
the mean and standard deviation of the OF. Tab. 3 illustrates the optimiza-



10 Marco Martino Rosso et al.

Table 3: Results for 100 runs of the optimization of the truss with 10 elements.

tion results comparing PSO-ES with static penalty and dynamic penalty PSO
and, finally, with GA. The penalty approaches provide underwhelming results,
demonstrating their unsuitability when solving structural optimization tasks.
Conversely, the proposed multistrategy PSO-ES algorithm delivers excellent re-
sults in agreement with another completely independent implementation such
as the GA.

5.3 Truss optimization with twenty-five bars

The last problem is depicted in Figure 4 (a), and it consists of a twenty-five bars
three-dimensional truss tower structure with ten numbered structural nodes and
under two different load cases. The footprint is a square shaped of side 200in,
which tapers to 75 in at an elevation of 100 in, and finally reaches the maximum
elevation from the ground at 200in. Since the cross section areas have been gath-
ered into 8 groups as shown in Fig. 4 (b), the 8 design parameters are considered
as continuous variables whose upper and lower bounds are defined by the interval
[0.01, 3.40] in2. The maximum admissibile stress is σadm = ±40 ksi, whereas the
maximum displacement is δadm = ±0.35 in in every direction. The population of
the PSO has been set to 50 individuals and the stopping criterion has been set
to a maximum number of iterations of 500 both for PSO-ES and GA. Since their
dreadful results, for the penalty-based PSO the swarm size has been increased
to 500 particles. 100 runs have been independently performed calculating the
mean and standard deviation of the OF. Tab. 4 summarizes the results compar-
ing PSO-ES with static and dynamic penalty PSO and, finally, with GA. Even
in this last example, the penalty approaches provide underwhelming results,
demonstrating their unsuitability when solving structural optimization tasks.
Conversely, the proposed multistrategy PSO-ES algorithm delivers excellent re-
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Fig. 4: (a) Twenty-five bars truss problem. (b) Eight bar groups representation.

Table 4: Results for 100 runs of the optimization of the truss with 25 elements.

sults in agreement with another completely independent implementation such
as the GA.

6 Results analysis summary and discussion

Similarly to [28], in this last paragraph, the main outcomes and critical obser-
vations are finally discussed. Tab. 1 demonstrated the strength of the proposed
PSO to deal with mathematical benchmark with inequality constraints. 50 inde-
pendent runs have been performed and basic statistics have been extracted. On
average, the mean value of the multistrategy PSO-ES approaches to the theo-
retical solutions in a more reliable way, since the standard deviations appear to
be lower than the other penalty-based PSO. Indeed, these latter sometimes stall
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quite far from the theoretical solutions and often with almost nil standard de-
viation. This fact demonstrates the penalty-based PSO tendency to be trapped
in local optima. The multistrategy PSO has been finally tested on structural
optimization real-world case studies. Tabs. 2, 3 and 4 reported the results for
100 independent runs. These values demonstrated the dreadful performances of
the penalty-based PSO algorithm to deal with this kind of problem. Conversely,
the multistrategy PSO-ES behaves excellently, approaching very close to the ref-
erence solutions in a reliable way. For the sake of comparison, another EA has
been tested in order to produce a valuable comparison with another completely
different technique rather than the currently adopted PSO ones. Nevertheless,
this last comparison further consolidates the multistrategy PSO-ES effectiveness
to reach the optimal solution. Futhermore, this comparison with GA contributed
pointing out the reliability of the proposed method, because the solutions pro-
vided lower standard deviations with respect to the GA in two problems out of
three.

7 Conclusions

In the current study, the state-of-art improvements of the PSO have been im-
plemented with a multistrategy approach [15, 16]. In addition, in place of the
penalty functions method to cope with constraint handling, the information of
violation was used to govern the optimization. When PSO excessively stagnates
in the unfeasible region, the swarm begins a local search based on a self-adaptive
ES, increasing the nearby exploration, hopefully close to the feasible region. This
feature powers up the current algorithm with respect to other PSO. Moreover,
outstanding results for real-world structural optimization benchmarks have been
obtained. In all the problems, the PSO-ES provide solutions closer to the thereti-
cal one and in a reliable way, demonstrated by the less standard deviation with
respect to the GA or the other PSO implementations. The hybridisation of the
PSO with machine learning and probabilistic approaches, e.g. estimation distri-
bution algorithm (EDA) [29], may represent very promising future studies to
further improve the capabilities of swarm-based algorithms.
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