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dell’Aquila, via Giovanni Gronchi n.18, L’Aquila, 67100, Italy

bPolitecnico di Torino, DISEG, Department of Structural, Geotechnical and Building
Engineering, Corso Duca Degli Abruzzi, 24, Turin, 10128, Italy

Abstract

Railway concrete bridges are prone to fatigue collapse, being subjected to multiple cyclic
loads during their lifetime. This paper proposes a probabilistic procedure for assessing
the fatigue life of concrete railway bridges. The procedure includes the uncertainties
related to the concrete fatigue model and the concrete strength by highlighting the relevant
uncertainty of existing fatigue models. Therefore, it proposes an enhancement of the
fatigue model proposed by the Fib Code 2010 to reduce the modelling error possibly. The
model has been calibrated on an extensive data set of normal-strength concrete samples
following a Bayesian approach. Parallelly, the parameters have been reduced using a
Bayesian step-wise deletion process. The paper uses the proposed probabilistic model
to estimate the fragility curves in general cases by considering appropriate ranges for
the train velocity, stress ratios and the number of cycles per year. In the second step,
the paper applies the procedure to the fragility estimate of a typical prestressed-concrete
railway bridge. The bridge response has been estimated using a finite-difference (FD)
model. The FD model, simulating train-track-bridge interaction, has been calibrated on
the measured displacement response. The analyses have been referred to different scenarios
when suitable ranges of train velocities and cycles per year are considered.
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1. Introduction

Fatigue represents a potential failure mechanism for structures under
repetitive loadings, such as traffic loads [12]. Steel structures are particularly
prone to fatigue. However, also concrete structures can suffer from fatigue
cracking [46]. Nonetheless, compared to steel, fatigue phenomena in concrete
are less predictable. Current design codes, such as the Eurocodes (EN1992-
1-1, EN1992-2, EN1991-2), include extended rules for fatigue analysis and
design of concrete bridges.

Fatigue significantly affects the life cycle of concrete. Multiple experimen-
tal investigations proved that the fatigue life of concrete decreases dramat-
ically with an increase in the maximum tensile stress level [48]. Currently,
there are two main approaches for predicting the fatigue life of concrete
structures, a mechanics-based and an empirical method. Both methods suf-
fer from several flaws, which compromise the successful application of these
methods to concrete structures. The mechanics-based approach is based on
fracture mechanics. It aims to analyze crack initiation and propagation. The
most widely used fatigue crack growth model was proposed by Paris, which
relates the crack growth rate and stress-intensity factor range [44]. In steel
structures, Miner’s rule is applied for fatigue evaluation considering the lin-
ear damage accumulation [22]. In concrete structures, ASHTO, AREMA,
BBK 04, BS 5400, Eurocode 2, fib Model Code 2010, and SIA D 1033 spec-
ifications recommend that fatigue damage in concrete structures should be
estimated using the Palmgren–Miner rule [40].

However, the prediction of crack propagation in concrete is a complex
phenomenon, influenced by multiple factors, including concrete strength, re-
inforcing steel strength, and bonding behaviour [60]. Experimental fatigue
tests on concrete samples highlight a wide scatter of cycles to failure under
the same conditions. The discrepancy between cycles to failure of concrete
specimens with identical load conditions under fatigue can be huge, span-
ning from 100 to 100000 cycles [49]. The high scattering of experimental
data compromises the successful application of mechanics-based models. Be-
sides, the scholar does not possess adequate knowledge of structural defects,
which can trigger crack propagation. Therefore, mechanics-based approaches
cannot be considered feasible methods in engineering practice.

Fatigue phenomena in concrete generally demand an empirical approach.
The complexity for treating and interpreting experimental results and the
significant time-cost of fatigue tests fed elementary approaches based on S-N
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curves [31] see Eurocode 2 [53] and Model Code 2010 [59]. These design
methods indicate the expected number of cycles to failure for specific maxi-
mum stresses. However, the S-N curve approach has several flaws.

• S-N curves are successfully applied to steel structures. However, the
huge dispersion of fatigue results for concrete does not allow a straight-
forward deterministic approach. There are several S-N curves for con-
crete calibrated on experimental data. Still, fatigue models from liter-
ature or code are highly conservative. They are useful for identifying
the conditions where fatigue failure is unlikely to occur. Nonetheless,
these models cannot be considered predictive due to the large modelling
error.

• S-N curves are calibrated on experimental samples loaded under a spe-
cific stress level (S). However, traffic loads on bridge structures lead to
a wide range of stress levels during service life. Therefore, S-N curves
cannot directly predict bridge fatigue life.

• The macroscopic or phenomenological approach does not directly con-
sider the physical mechanism of fatigue damage [33].

Under bending fatigue loads, the stress distribution in the cross-section
is not uniform. Hence, fatigue damage’s progress differs at different cross-
section depths [27]. This phenomenon leads to a stress-redistribution over the
cross-section, which causes a variable stress ratio during the fatigue life. As a
result, the stress levels of concrete and steel change over fatigue cycles. These
phenomena, observed by several scholars [7, 26], are essential and must be
considered when assessing the fatigue life of concrete structures. Nonetheless,
the difficulty in tracking the time evolution of the stress ratio further supports
a macroscopic approach. S-N curves for eccentric compression are calculated
with the initial stress ratio, although it varies as the cycles accumulate and
affects the failure. Therefore, the authors will follow an empirical approach
where the stress ratio is assumed to be constant and equal to the initial one.
At the same time, a probabilistic model for the S-N curves will be used to
predict the cycles to failure. The S-N curves are obtained from experimental
tests and possess information about stress redistribution caused by eccentric
loading.

There is no well-acknowledged procedure for estimating the fatigue life
of concrete structures. Many researchers agree on the need for a proba-
bilistic approach to fatigue. In some studies, fatigue uncertainty is related
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to the randomness of the material properties [36, 58, 37]. Multiple prob-
ability density functions have been considered, such as the log-normal or
Birnbaum-Saunders [38, 42, 47]. Recent papers highlight that fatigue re-
sults follow a Weibull distribution, with two or three parameters [49, 1, 9].
Castillo and Fernández-Canteli [10] proved that Weibull and Gumbel are the
only distributions applicable to fatigue based on the weakest-link hypoth-
esis, compatibility conditions and asymptotic properties. Different fatigue
models have been developed based on one of these distributions by giving
a physical meaning to the distribution parameters or relating them to some
other empirical parameters fitted through experimental tests [49]. The con-
crete fatigue behaviour is highly different in tension and compression. This
investigation focuses on fatigue performance under compression since fully
prestressed concrete girders are selected as reference structures. Accordingly,
the probabilistic fatigue model is based on compressive fatigue tests.

To the authors’ knowledge, there is no research on the effect of fatigue
model uncertainty on the fatigue life prediction of concrete railway bridges
under repetitive loading. This paper introduces the concept of fatigue life and
proposes a probability-based method for estimating the fragility curves due to
fatigue. The reliability analysis includes all uncertainties related to concrete
strength, fatigue model, expected load conditions, and predictive model of
the bridge response. After a theoretical introduction, the procedure supports
a discussion based on extensive parametric analyses. Then, the proposed
method is applied to an ordinary railway concrete bridge. Estimating the
fragility curves has required the development of predictive models of fatigue
and bridge response.

Fatigue models of technical provisions are deterministic and not suitable
for reliability analyses. Furthermore, probabilistic fatigue models from the
literature are characterized by a significant modelling error, undermining the
usefulness of reliability analyses. Consequently, there is a need for a more
accurate probabilistic model of concrete fatigue, allowing its use within cur-
rent technical standards. Following the general procedure in [21], the present
paper proposes a probabilistic model derived from the Fib Model Code 2010
to predict the number of fatigue cycles to failure. The model is formulated
by adding suitable correction terms to the predictive equation from the Fib
Model Code formulation. The correction terms include explanatory functions
calibrated and selected through a Bayesian approach using the experimental
data collected by [57]. The accuracy of the proposed models is compared
with that of a linear model and the one proposed by the Fib Code 2010. The
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stress level is estimated from a finite difference model of the bridge response,
which models the Train-Track-Bridge Interaction (TTBI).

It must be remarked that the fatigue performance of concrete and steel
reinforcements determines the fatigue life of a concrete bridge. In some tests
on RC beams subjected to fatigue loads, failure stems from fatigue fracture of
steel reinforcements. An RC beam should be considered a serial system since
failure might occur if either concrete or steel reaches the fatigue cracking.
However, this paper will focus on the sole concrete contribution to fatigue
to prove the significant uncertainty related to its estimation. Isolating the
concrete contribution to fatigue will allow assigning the related uncertainty
in the fatigue life estimate to the sole concrete.

Several papers on TTBI, like [19], with experimental validation, prove
that elementary approaches based on beam models for the track and the
bridge with viscoelastic coupling can accurately seize the experimental dis-
placement response with a minor error, compared to more advanced models
of the TTBI [4]. The growth of the model complexity leads to increased
model parameters being calibrated. The growth in complexity can add sig-
nificant uncertainty to the mathematical model and dramatically increase
the computational effort. Besides, sophisticated models can only be created
with great effort and do not allow parametric studies or stochastic simula-
tions due to the high computational cost. To develop and validate a general
procedure for estimating the fatigue life of concrete railway bridges, the pa-
per presents an elementary finite difference model of the TTBI, which can
be easily used for parametric analyses and Monte Carlo simulations. The
governing equations of the track and the bridge, modelled as Euler-Bernoulli
beams, are coupled by a distributed layer of springs representing the bal-
last. The two equations are solved under a moving load excitation using a
Runge–Kutta family and the finite-difference method for the temporal and
spatial discretization, respectively. The authors validated the mathematical
model of the TBBI against the displacement response of rail bridges with a
ballasted sub-structure.

In conclusion, the novel contributions of this article can be summarized
as follows:

• Probabilistic improvement of the fatigue model in the Fib Code 2010
for estimating the fatigue life of concrete railway bridges. The proba-
bilistic correction is obtained by adding suitable explanatory functions
to the deterministic predictive equation. The model aims to reduce the
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modelling error for the reliability analysis.

• Development of a finite difference model to evaluate the structural re-
sponse of a non-classically damped Euler-Bernoulli beam under a mov-
ing load excitation. The model has been validated with the experimen-
tal displacement response of a ballasted bridge under train loads. The
model parameters have been optimized using a genetic optimization
algorithm.

• Assessing the effects of stress levels, fatigue model uncertainty, traf-
fic intensity, and train velocity on the fatigue life of concrete railway
structures.

• Application of the proposed method to a short-span ordinary concrete
bridge.

The paper has the following organization. After the introduction section,
the paper presents the probabilistic framework for estimating the fragility
curves and the fatigue life. The third section describes the TTBI model
used to estimate stress levels, while the fourth section presents and discusses
the proposed probabilistic fatigue model. The fifth section presents para-
metric analyses, where multiple fragility curves are estimated by varying the
stress levels, the train velocity, the expected train traffic, and the fatigue
model’s standard deviation. In the sixth section, the proposed procedure
for the fragility curve assessment is applied to a full-scale railway bridge.
This section discusses the practical implications of estimating the fatigue life
following the proposed method.

2. Fragility curves and fatigue life estimation

The output of fatigue tests is the number of cycles to failure. Fatigue
tests do not provide the strength reduction of concrete samples due to cyclic
loads. Therefore, the limit state function for fatigue failure mechanisms
cannot be written in terms of static or kinematic variables. Fatigue failure
may occur if the load cycles exceed the predicted number of cycles to failure.
Accordingly, the limit state function can be written as the difference between
the predicted number of cycles to failure, representing the capacity, and the
expected number of load cycles, expressing the demand.
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The limit state function can be formulated as

g (r,p, ŝ, ny,Θ) = C (r, ŝ,Θ)−D (r,p, ŝ, ny,Θ) (1)

where C (r, ŝ,Θ) is the number of cycles to failure obtained from the prob-
abilistic fatigue model, D (r,p, ŝ, ny,Θ) is the cumulated expected number
of cycles at a given year obtained from the probabilistic demand model. In
detail, r collects the material properties of the bridge (e.g., concrete resis-
tance), p collects all information regarding the load excitation (train length,
train weight, train velocity, number of trains per years, e.g.), ŝ indicates the
reference stress ratio used to homogenize the number of load cycles of the ca-
pacity and demand models, ny is the number of years. The stress ratio is the
ratio between the maximum or minimum stress and the material resistance.

Theoretically, It would be possible to calibrate two probabilistic models,
one for the capacity and one for the demand. The probabilistic capacity
model has been calibrated on experimental compressive fatigue tests. Con-
versely, the demand model is assumed deterministic since the authors do not
possess experimental data associated with multiple train transits from per-
manent structural monitoring. Therefore, the lack of an adequate number of
experimental data for the bridge response does not allow the calibration of
a probabilistic demand model.

The limit state function can be used to compute the fragility of a given
structure. Fragility functions define the conditional probability of meeting or
exceeding a prescribed limit state for a given value of the demand measure. If
the demand is expressed in terms of the number of cyclic loads per year, the
increasing number of years can be considered as a suitable intensity measure
for fragility estimation. The events associated with a limit state function
less or equal to zero define the failure related to the considered phenomenon.
Rigorously, following Equation (1) the fragility of a given structure can be
written as

F (r,p, ŝ, ny,Θ) = P [{g(r,p, ŝ, ny,Θ) ≤ 0} |ny] (2)

Empirical fragilities are estimated using direct Monte Carlo simulations
[2]. The failure probability is obtained by dividing the number of simulations
associated with exceeding the number of cycles to failure and the total num-
ber of simulations.The expected fatigue life in years (n̂y) can be obtained
from the fragility curves:

Find n̂y : β(r,p, ŝ, ny) = β̂ (3)
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where β̂ is the reference reliability threshold provided by the code. Table 1

Table 1: Target β-values for elements (lifetime), ISO 2394:1998 [54].

Relative costs of Consequences of failure

safety measures small some moderate great

Low 0 1.5 2.3 3.1
Moderate 1.3 2.3 3.1 3.8
High 2.3 3.1 3.8 4.3

provides target β-values for structural elements (lifetime) according to ISO
2394:1998 [54].

Compared to steel, fatigue in concrete has minor consequences of failure:
the steel reinforcement prevents the dramatic consequences of brittle failure
due to the crack opening. Therefore, fatigue failure in concrete structures
has no direct consequences on global collapse. The cracks can trigger cor-
rosion phenomena and further cracking due to the increment in the stress
level. However, fatigue cracks in concrete structures with shear and bend-
ing reinforcement have no direct consequences on global collapse. Parallelly,
the costs of safety measures would be high. As discussed in the following
sections, it is possible to prevent fatigue cracks by reducing the stress values
inside the structure. This can only be achieved by replacing the structure or
adopting invasive structural interventions. Therefore, the reliability target
corresponding to high relative costs for safety measures and minor conse-
quences of failure is 2.3; see Table 1.

This paper uses β̂ = 2.3 to estimate the fatigue life of railway-reinforced
concrete bridges. The fatigue life cannot be considered the expected duration
of a structure before it collapses. The occurrence of fatigue cracking does
not lead to failure in structures with adequate steel reinforcement. Therefore,
the fatigue life can be considered a time limit beyond which it is appropriate
to verify the integrity of concrete through extensive tests and, in the case
of cracks, adopt adequate safety measures to limit the consequences of the
fatigue cracks (corrosion, e.g.).

2.1. Capacity model

The limit state function compares the expected number of cycles to failure
and the expected number of cyclic loads. Following [21], the number of cycles
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to failure, i.e. the capacity, can be written as:

T [C (r, ŝ,Θ)] = T
[
Ĉ (r, ŝ)

]
+ γ (r, ŝ,θ) + σε, (4)

where T (·) is a variance stabilizing transformation, C(r, ŝ,Θ) is the total
number of cycles to failure, whileΘ = {θ, σ} are unknown model parameters.
On the right side of Equation ((4)), Ĉ (r, ŝ) is the capacity according to a
deterministic fatigue model; generally a physics-based model dependent on
the specific engineering problem [13, 3, 2, 5, 39], γ (r, ŝ,θ) is a correction term
based on pieces of evidence from the experimental data. The product σε is
the model error, with model standard deviation σ and normally distributed
random variable ε. The model is based on three assumptions: additivity (i.e.,
the additivity of σε); homoskedasticity (i.e., the independence of σ from r
and ŝ); normality (i.e., the normality of ε). Through a suitable choice of
T (·), such assumptions can be approximately satisfied in the transformed
space within the range of the data used to calibrate the model. Following
the traditional approach of the fatigue model, the logarithm to base ten is
chosen as variance stabilizing transformation.

2.2. Demand model

The demand model gives the expected number of cycles cumulated at
a given year ny. By assuming a probabilistic model of the number of load
cycles per year, the demand model can be written as follows:

D (r,p, ŝ, ny,Θ) = ny [Dy (r,p, ŝ,Θ)] (5)

The expected number of load cycles per year (Dy (r,p, ŝ,Θ)) cannot be di-
rectly obtained from the database collecting the details of the train traffic
of the past years. The traffic load includes many train loads, typologies and
velocities. Therefore, the load cycles caused by the traffic load vary in am-
plitude and stress level. However, according to existing fatigue models, the
number of cycles to failure always refers to a given stress level, generally
expressed as the ratio between the maximum stress and material resistance.

As highlighted in the description of Equation (1), the number of cycles
for capacity and demand are homogenized to a given stress level, defined by
vector ŝ, collecting the maximum and minimum stress ratios.
The expected number of homogenized cycles per year can be estimated as
follows:

Dy (r,p, ŝ,Θ) =
nt∑
i=1

li
2nv,i

· H (r, si, ŝ,Θ) (6)
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where i indicates the i-th train, nt the total number of trains per year, li the
length of the i-th train, nv,i the number of vehicles of the i-th train, while
Hi (r, ŝ, si,Θ) is an homogenization factor.
The homogenization factor can be expressed in terms of the capacity model.
The number of load cycles can be homogenized to their effect on fatigue,
given the stress level associated with the cycle. The Hi (r, si, ŝ,Θ) factor can
be written as:

Hi (r, si, ŝ,Θ) =
C (r, si,Θ)

C (r, ŝ,Θ)
(7)

where si is the stress ratio associated with the i-th train, while ŝi is the
reference stress ratio. The proposed homogenization approach does not ex-
plicitly consider the load sequence’s effect since it adopts a linear scaling
based on the stress level. This approach follows current design codes, which
estimate the fatigue life under variable amplitudes using the Palmgren–Miner
(P-M) [43] rule and assumes a linear scaling between lifetimes measured for
uniform cyclic loading scenarios. Nonetheless, the load sequence effect ob-
served in compression by Holmen [23] and Petkovic et al. [45] showed that
the well-known P–M rule might lead to inaccurate fatigue life estimations,
as recently confirmed by [6]. Therefore, future research efforts will include
the load sequence effect for predicting the fatigue life of concrete structures
under generally variable fatigue loading scenarios.

2.3. Discussion

The proposed probabilistic framework for estimating the fatigue life of
concrete railway bridges might merit the discussion of the following aspects:

• Considered sources of uncertainty;

• Homogenization approach;

• Number of cyclic loads estimation.

The paper only considers the uncertainty of the fatigue model and material
resistance, which affect the capacity and the demand through the homoge-
nization factor. The scholar could also treat the expected train traffic per
year as a vector of random variables. It could be possible to estimate the
variation of the railway traffic between years by modifying Equation (5). The
demand at a given year could be obtained by multiplying the expected de-
mand per year by a time-dependent factor that amplifies or reduces the
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trainload during the lifetime. However, train traffic does not exhibit a signif-
icant variation across the years. This fact will be confirmed in the following
sections by showing the traffic variation of a sample bridge in the period
2017-2021.

The managing bodies of the Italian railway network distinguish three
traffic categories:

• nt,d <40-Low traffic

• 40 ≤ nt,d ≤ 100-Moderate traffic

• nt,d > 100-High traffic

where nt,d is the expected number of trains per day. The results shown
in the following sections prove that the effect of the traffic load per day
can be negligible if the fatigue model has significant uncertainty. Therefore,
modelling the train traffic as a vector of random variables could be considered
unnecessary for this research. The paper will show that the fatigue model is
the weak link of the entire framework. Therefore, refining the load estimate
has no significant effect on improving the accuracy of the prediction.

The entire framework is based on a homogenization approach. This aspect
represents an element of originality. It derives from the existing fatigue
model’s limitation, which does not predict the number of cycles to failure
if the stress level changes during the loading phase. Experimental fatigue
tests impose a constant stress level during the cycles. Experimental fatigue
tests with a variable load protocol would add additional scatter to the results,
which are already difficult to interpret. Therefore, the capacity model can
only give the number of cycles to failure for a given stress level. Parallelly, the
train traffic causes load cycles variable in amplitude. Therefore, if a reference
stress level is assumed for the capacity estimation, expressed by the vector
ŝ, each load cycle caused by the train must be set equivalent to the reference
stress level. Specifically, each load cycle causes specific stress values in the
bridge cross-section. The fatigue model can be used to set an equivalence
between the number of load cycles and stress levels based on the number of
cycles to failure corresponding to the stress due to the i-th train transit (si)
and the reference one (ŝ), assumed in the analyses.

The computing of the number of load cycles is based on the geometric
details of the train; see Equation (6). Figure 1 shows a schematization of the
train model. Experimental investigations, see [19], proved that a load cycle is
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generally associated with the transit of two train axes corresponding to two
vehicles. As shown in the next section, this evidence supports modelling two
train axes with an equivalent concentrated force. The succession of almost

Figure 1: Schematization of the train loads.

equally spaced concentrated forces generates a cyclic excitation to the bridge
with frequency fdominant, [28]:

fdominant =
nv,i

li
(8)

where nv,i and li are defined after Equation (6). As remarked by several
scholars [20], the dynamic amplification factor in railway bridges is close
to unit and generally below 2. The dynamic amplification depends on the
adimensional velocity of the train, defined as:

α =
fdominant

f1
(9)

where fdominant is defined in Equation (8), and f1 is the first natural frequency
of the bridge. Interestingly, in low and medium-span bridges, the dynamic
effect of the loads does not cause an increment in the number of load cycles
due to the interaction between the excitation frequency (fdominant) and the
modal parameters of the bridge. After the last train vehicle left the bridge,
the bridge did not significantly manifest oscillation, as confirmed by the
experimental tests used to validate the proposed bridge model. Therefore,
the number of load cycles can be estimated from the train characteristics,
while the stress level (s), caused by the train, is from the mechanical model
of the bridge.

3. Bridge modeling

The stress level vector of the i-th train collects the maximum and mini-
mum stress ratios reached during the load cycles:

si = {Sc,max.i, Sc,min,i} (10)
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Sc,max,i =
σc,max, i

fc
(11)

Sc,min,i =
σc,min, i

fc
(12)

where fc is the concrete resistance, σc,max, and σc,min are the maximum and
minimum stresses during the load cycles corresponding to the i-th train tran-
sit. The concrete resistance is considered a random variable:

fc = fcm + σcε (13)

where fcm is the mean concrete strength referred to as the concrete resistance
class of the bridge. At the same time, the product σcε expresses the resistance
scatter, with standard deviation σc and normally distributed random variable
ε. For the sake of simplicity, a constant value for σc is adopted. Specifically,
based on the extensive investigation by Shimizu et al. [51], the adopted
coefficient of variation for fcm is equal to 0.20.

The maximum and minimum stresses should be obtained from a TTBI
model as follows:

σc,max,i = M(pi) (14)

where M is the TTBI model, and pi, following the notation in Equation (1),
collects the information of the i-th train. The bridge model (M) is obtained
from the separate modelling of the bridge and the track. Therefore, this
section is divided into four subsections dedicated to the track and bridge
modelling and to the temporal and spatial discretization of the governing
equations. Appendix A details the TTBI model.

4. Probabilistic Fatigue model

This section proposes a novel probabilistic fatigue model of concrete de-
rived from the Fib Model 2010 by adding suitable correction terms. Recent
models for concrete fatigue are generally validated against high-strength con-
crete data [32, 52, 17, 18, 24, 29, 34, 35]. However, most of the reinforced
concrete railway bridges are made of normal strength concrete. Therefore,
following [32], the probabilistic fatigue model is developed using a database
of 219 tests of normal-strength concrete samples. The test results are taken
from the scientific literature [50, 56, 25, 30, 23].

The paper considers reference structures for estimating the fatigue life
of a fully prestressed concrete girder. Therefore, these structures experience
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cyclic eccentric compressive loads during their service life. Therefore, the-
oretically, the probabilistic fatigue model should be calibrated on eccentric
compressive tests. However, the lack of experimental tests on eccentric com-
pression forced the authors to collect a database including pure compression
tests. Nonetheless, the major difference in the concrete fatigue behaviour
depends on the stress sign between tension and compression rather than the
occurrence of eccentric compression. No tension is supposed to occur in the
structure due to the full prestress condition.

Figure 2: Histogram plot of the experimental data of fatigue tests used for the model
calibration, following [32].

Figure 2 shows the histogram plots of the test data in terms of the num-
ber of cycles to failure (C), concrete strength (fck), and maximum (Sc,max)
and minimum (Sc,min) stress levels. The number of cycles to failure reaches
107 in some concrete specimens, while most fail at nearly 104. The concrete
strength is between 20 and 70 MPa, although the largest percentage of sam-
ples has a 44MPa compression strength. The maximum stress level is quite
significant for all specimens. There are no data for Sc,max < 0.5. This fact
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represents the main limitation of existing databases of fatigue tests. Most
structures experience a maximum stress level lower than 0.5, not excessively
exploiting the material potential. Therefore, the proposed fatigue model, like
the literature ones, will be extrapolated to estimate the number of failure cy-
cles when moderate stress levels occur. Moreover, testing concrete specimens
with a stress level lower than 0.5 would require extremely time-consuming
experimental tests.

4.1. Model formulation and calibration

The model for concrete fatigue follows the structure in Equation (4):

log [C (r, ŝ,Θ)] = log
[
Ĉ (r, ŝ)

]
+ γ (r, ŝ,θ) + σε, (15)

The correction term γ (r,θ) is selected as a linear combination of n dimen-
sionless explanatory functions hi(r) and reads:

γ (r, ŝ,θ) = θT · h (r, ŝ) . (16)

The considered set of explanatory functions h (r) = {h1 (r) , .., hn (r)} is ob-
tained by combining the three variables affecting Ĉ (r): Sc,max, Sc,min, col-
lected in ŝ, and fck in r. r collects the material properties of the bridge (e.g.,
concrete resistance).

The number of variables involved in the capacity model is limited by
those reported in the experimental fatigue tests. The variables are three: the
maximum and minimum stress ratios and the concrete compressive strength.
Hence, the authors, rather than checking by hand which combinations be-
tween the three parameters correspond to a significant regressor, adopted
an automatic approach by taking all combinations between them and then
a posteriori selecting the relevant ones with a step-wise procedure. The
explanatory functions should be dimensionless to determine a general, size-
independent model. However, using dimensionless explanatory functions is a
recommendation to achieve a general model, although in some circumstances
selecting dimension variables does not impair the rigour of the procedure.
In this situation, next to the dimensionless stress ratios, the compressive
strength was also included to observe possible phenomena related to its in-
fluence on the fatigue capacity. It is known that compressive strength can
affect the fatigue performance of concrete.

The three variables are multiplied and raised to the i-th, j-th and z-
th power, respectively. The explanatory functions are generated by taking
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all possible combinations between i, j, and z, where {i, j, z} ∈ N and 0 ≤
{i, j, z} ≤ nmax with nmax the maximum model order. All combinations
{i, j, z} are collected in a set S. The generic combination from the set S is a
subset of three (k = 3) distinct elements of S. Therefore, the cardinality of
S is equal to the binomial coefficient.

h (r)ijz = Si
c,maxS

j
c,minf

z
ck | card(S) =

(
3nmax

3

)
(17)

Given a maximum model order (nmax) equal to three, i.e. the maximum
exponent between i, j and z, the number of regressors from Equation 16 is
equal to 84.

The parameters collected into Θ are calibrated using the Bayesian ap-
proach [8]. This method combines the prior knowledge on the parameters,
which is contained in the prior distribution of Θ, f ′(Θ), with the information
provided by the data, which is contained in the likelihood function, L(Θ).
The posterior distribution of the parameters f ′′(Θ) is defined as follows:

f ′′ (Θ) = kL (Θ) f ′ (Θ) , (18)

and it is obtained by dividing the product L(Θ)f ′(Θ) by the evidence k,
which is the following normalizing constant:

k−1 =

[∫
ΩΘ

L (Θ) f ′ (Θ) dΘ

]
, (19)

where ΩΘ is the parameters space. The posterior distributions f ′′(Θ) ob-
tained after the calibration can be used to find a point estimate for the
model by ignoring the epistemic uncertainties in the model parameters. An
alternative approach is used in the present study, which also accounts for the
epistemic uncertainties in the model parameters. This alternative approach
assumes Θ as random variables and find a predictive estimate of C(r, ŝ,Θ)
in agreement with [21] as follows:

C̃ (r, ŝ) =

∫
ΩΘ

C (r, ŝ;Θ) f ′′ (Θ) dΘ. (20)

Since an analytical solution for Equation ((20)) is often missing, it is op-
portune to find a numerical approximation of the distribution of C̃ (r, ŝ) by
sampling from f ′′(Θ) and finding the corresponding realizations of C(r, ŝ;Θ).
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Non-informative priors are chosen in the form of Gaussian distribution
with zero means and large variance for all the parameters. To facilitate the
use of the model and its possible implementation into technical standards,
it should be parsimonious (i.e., with a correction term constructed using
a limited number of explanatory functions n) and as accurate as possible
(i.e., with a small value of standard deviation σ). However, a reduction
of n usually entails a higher value of σ. Therefore, the model has been
reduced by following a step-wise deletion of the parameters. The step-wise
deletion process allows finding a trade-off between parsimony and accuracy
[55]. The stepwise deletion process used in this paper starts with a model that
includes all the candidate explanatory functions and at each step, removes
the explanatory function with the highest coefficient of variation (COV) of
the corresponding θi, as proposed in [21]. Once an explanatory function is
removed, the model is re-calibrated and the deletion process is repeated. The
deletion process ends when either σ grows beyond an undesirable threshold
or the increment of σ is too large compared to the reduction of the model
complexity. Fig.3 shows a workflow of the procedure from the initial to the
reduced model formulation

max

Figure 3: Workflow of the procedure from the initial to the reduced model formulation.
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4.2. Deterministic fatigue model

The deterministic capacity equation is taken from the fib Model Code
2010 [12]:

log
[
Ĉ (r, ŝ)

]
=

{
logN1, if logN1 ≤ 8

logN2 if logN1 > 8
(21)

where N1 and N2 are the numbers of cycles to failure. The two S–N relations
for N1 and N2 if 0 ≤ Sc,min ≤ 0.8) read:

logN1 =
8

Y − 1
(Sc,max − 1) (22)

logN2 = 8 +
8 ln(10)

Y − 1
(Y − Sc,min) log

(
Sc,max − Sc,min

Y − Sc,min

)
(23)

where,

Y =
0.45 + 1.8Sc,min

1 + 0.85Sc,min − 0.3S2
c,min

(24)

Sc,max =
σc,max

fck,fat
(25)

Sc,min =
σc,min

fck,fat
(26)

and fck,fat is the concrete fatigue strength. These expressions can be con-
sidered valid for concrete stored in a constant environment of approximately
20oC, 65% RH. The curves have been verified with experiments up to 107

load cycles to failure. For logN > 8 the curves asymptotically approach the
minimum stress level of the respective curve. In the fib Model Code 2010
[12], the fatigue reference compressive strength fck,fat is obtained from the
characteristic compressive strength fck as follows:

fck,fat = 0.85αcc(t)

[
fck

(
1− fck

25fck0

)]
(27)

with αcc(t) is given by Equation (28) and fck0 = 10MPa.

αcc(t) = exp

{
s

[
1−

(
28

t

)0.5
]}

(28)

The expression for βcc(t) describes the strength evolution with time, where
s depends on the strength class of the cement, see [12].
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Figure 4: Comparison between the experimental data and the S-N curves from the FIB
Model Code 2010.

Figure 4 plots the experimental data used for calibration and the S-N
curves from Eqs.22-23. The plots prove that the Fib Model is highly conser-
vative, being almost the lower envelope of the test data. Therefore, it cannot
be used for fitting purposes, as discussed in the next sections. Even if the
Fib Model is unbiased, the fitting is still unsatisfactory, making it unsuitable
for predictions. Additionally, the model is deterministic and does not allow
estimating the failure probability due to fatigue.

4.3. Proposed model and discussion

The proposed probabilistic fatigue model, derived from the step-wise dele-
tion can be written as:

log [C (x,Θ)] = log
[
Ĉ (x)

]
+ θh+ σε (29)

where θ and h are defined in Table C.9. The θi are identified by the sub-
scripts corresponding to the combinations of the i, j and z coefficients of
Equation (16). The posterior statistics of Θ is reported in Table C.9. Fig-
ure 5 plots the steps of the model deletion process. The left y-axis in the
logarithmic scale shows the coefficient of variations of the θi considered at
the i-th step. The right y-axis plots the standard deviation of the model
error σ. The initial number of coefficients, obtained from Equation (16), is
equal to 64. The high number of regressors can be associated with overfitting
issues. Therefore, to test the absence of overfitting, the dataset in Table 2
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Figure 5: Step-wise model deletion.

has been divided into two subsets, for calibration and validation purposes,
respectively. The calibration set includes 80% of the data, while the test set
has the remaining 20%.

The model calibration with all terms leads to a σ equal to 0.76 until
the 23rd step. At this step, the model error has a significant increment
until stabilizing at 0.78. The further reduction of the model error leads to a
standard deviation close to 0.9-1, observed in the linear model. Therefore,
the authors chose the 34th step for model truncation for two reasons. Further
steps lead to a significant increment of the model error, which would become
close to the one in the first-order model, thus impairing the advantages of
the more advanced formulation. Secondarily, the 34th step is not associated
with overfitting, as proved by the good agreement between the fitting of the
calibration set and the data set. Therefore, the selected model possesses 20
explanatory functions, itemized in Table C.9. The discussion of the model
performance is carried out by comparing it with the predictions of a first-
order one, shown in Equation (30), and a modification of the deterministic
model in Equation (31) to eliminate the bias in the estimates.

log [C (r, ŝ,Θ)] = θ000 + θ100h100 + θ010h010 + θ001h001 + σε (30)

log [C (r, ŝ,Θ)] = log
[
Ĉ (r, ŝ,Θ)

]
+ θ000 + σε (31)

Table 2 compares the performances of the first-order model in Equation (30),
the unbiased Fib Model in Equation (31) and the proposed one. The standard
deviation of the model error reduces from the Fib Model to the first-order and
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Table 2: Comparison between predictive models, where σ is the standard deviation.

Models σ R2 adj-R2

First-order Model 1.230 0.409 0.401
Fib Model 1.580 0.023 0.018
Proposed model 0.781 0.818 0.788

the proposed one, being nearly 1.5, 1.2 and 0.8, respectively. As highlighted
by [41], concrete fatigue evidence a highly scattered response. Therefore, it
is not possible to further reduce the modelling error due to the significant
fraction of σ related to the dataset, which is irreducible.

The ranking between the three models in terms of R2 and adj-R2 is more
evident. The first-order model has an R2 close to 0.4. On the other hand, the
R2 of the Fib-model is extremely low, nearly about 0.023. Conversely, the
proposed model has a satisfactory R2, approximately equal to 0.8. Figure 6

Figure 6: Predicted versus the measured number of cycles to failure for the Fib model,
the first-order and the proposed ones.

compares the performances of the three models by plotting the logarithms
of the number of cycles to failure estimated from the model and those taken
from the dataset. Figure 6 also plots the bisector of the first quadrant. The
higher is the distance from the 1:1 line, the worse the model performance.
The first-order and the proposed model appear quite close to the 1:1 line.
Conversely, the dots of the fib model do not align along the bisector. Instead,
they are likely to arrange along a line with a lower slope than the bisector.
This fact proves the estimated low value for the R2 in Table 2. Additionally,
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it suggests that the elementary correction of the Fib model in Equation (31)
is not enough to achieve a suitable fitting. Therefore, a more sophisticated
model should be used for predictions like the one proposed in this paper.

5. Parametric fragility curves

This section shows a selection of fragility curves related to fatigue failure.
The parameters varied in these analyses are:

• The maximum stress level (Sc,max), see Figure 7 and Table 3;

• The number of expected trains per day (nt,d), see Figs.7-9 and Tabs.3-5;

• The standard deviation of the fatigue model (σ), see Figure 8 and Ta-
ble 4;

• The train velocity (c), see Figure 9 and Table 5.

The stress levels are assumed in the calculations, and they are not obtained
from a specific structure by solving the TTBI equations. Therefore, the
fragility curves are general and can refer to any structure theoretically. Three
values for the expected number of trains per day have been assumed: 40, 100
and 150. These values derive from the classification of the Italian railway
network, based on small (nt < 40), moderate (40 < nt < 100) or high traffic
(nt > 100).

The effect of the train velocity is specific to the structure. Therefore,
the authors used the amplification factor for the stress level obtained from
the case study discussed in the following sections to estimate velocity effects.
Two standard deviations for the fatigue model are considered, one equal to
0.78 from the proposed model, while another equal to 1.5 arising from the
Fib Model. Figure 7 plots the estimated failure probabilities as a function
of the number of years, chosen as intensity measure. The four plots refer to
a maximum stress level equal to 0.1, 0.15, 0.2 and 0.25. Each figure shows
three fragility curves associated with the considered traffic demand levels,
40, 100 and 150 trains per day. The parameters assumed constant in the cal-
culations are the concrete compression strength fck=45, the minimum stress
level (Sc,min = 0.01), the train velocity (c = 100km/h) and the standard
deviation of the fatigue model (σ = 0.78). These values are also reported in
the title of each figure to facilitate the reader.

Figure 7 shows the mean of the fragility curves. The direct inspection of
Figure 7 proves the followings:
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Figure 7: Fragility curves (left y-axis) and reliability indexes (right y-axis) for railway
concrete bridges with variable stress level and train traffic by assuming fck = 45, Sc,min =
0.01, c= 100km/h, nv = 10. The standard deviation of the fatigue model (σ) is assumed
equal to 0.78.
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• The fragility curves do not reach values close to 1 also for significant
intensity measures. This fact depends on the high uncertainty of the
fatigue model. Parallelly, the curves collecting the reliability indexes
prove that the reliability index can be very low for minimal intensity
measures.

• The train traffic reduces structural reliability. However, the effect of
the stress level is enormously more significant than that of the train
traffic, in the considered ranges of variation.

• There is a sharp reduction of the structural reliability between max-
imum stress levels between 0.1 and 0.25. If the stress level is lower
than 0.1, fatigue cracking is unlikely to occur. Conversely, a 10% in-
crement of the stress level causes a boost in the failure probability due
to fatigue. Consequently, the fatigue model and the fragility curves are
highly sensitive to stress levels.

Table 3: Estimated fatigue life in years (n̂y) and associated standard deviation (σy) for
railway concrete bridges with variable stress level and train traffic by assuming fck = 45,
Sc,min = 0.01, c= 100km/h, nv = 10. The standard deviation of the fatigue model (σ) is
assumed equal to 0.78.

Expected Expected number of trains per day (nt,d)

stress level 40 100 150

Sc,max n̂y σy n̂y σy n̂y σy

0.1 30358 7334 12687 2107 7855 1671
0.15 140 28 56 11 44 6
0.2 5 1 2 / 1 /
0.25 <1 / <1 / <1 /

Table 3 lists the estimated fatigue lives for the curves in Figure 7. The
fatigue life reduces dramatically for Sc,max between 0.1 and 0.25. Higher
values of fatigue life are associated with higher uncertainty in the estimate,
expressed in terms of standard deviation. The accurate estimate of the stress
level inside a structure is crucial for predicting the fatigue life, and, accord-
ingly scheduling the inspections for assessing the integrity of concrete (sonic
tests, e.g.). Figure 8 shows the same calculations plotted in Figure 7 by
adopting a higher standard deviation for the fatigue model (σ=1.5). The
uncertainty of the fatigue model does not provide an adequate estimate of
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Figure 8: Fragility curves (left y-axis) and reliability indexes (right y-axis) for railway
concrete bridges with variable stress level and train traffic by assuming fck = 45, Sc,min =
0.01, c= 100km/h, nv = 10. The standard deviation of the fatigue model (σ) is assumed
equal to 1.5, as in the Fib Model.
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the fragility curves. The failure probability is very low, despite considering
high-intensity measures. Parallelly, except for Sc,max = 0.1, the reliability
indexes are far below 4 for ŷ < 1. Table 4 confirms the above aspects. If the

Table 4: Estimated fatigue life in years (n̂y) and associated standard deviation (σy) for
railway concrete bridges with variable stress level and train traffic by assuming fck = 45,
Sc,min = 0.01, c= 100km/h, nv = 10. The standard deviation of the fatigue model (σ) is
assumed equal to 1.5.

Expected Expected number of trains per day (nt)

stress level 40 100 150

Sc,max n̂y σy n̂y σy n̂y σy

0.1 620 216 227 92 155 60
0.15 3 1 1 <1 1 <1
0.2 <1 / <1 / <1 /
0.25 <1 / <1 / <1 /

stress level is higher than 0.1, the expected fatigue life is always lower than
1 year.

Figure 9 plots the fragility curves by varying the expected train traffic
and the train velocity. As anticipated, the results of these plots cannot be
considered general since the stress amplification due to velocity has been ob-
tained from the TTBI model for the case study discussed in the following
sections. However, the considered bridge represents a typical short-span re-
inforced concrete railway bridge. Therefore, the results can be considered
valid for a variety of situations. The calculations in Figure 9 refer to a max-
imum stress level equal to 0.2. The estimated fatigue lives in years, shown
in Table 5, confirm that the effect of velocity are minor compared to those
caused by the train traffic and the stress level. In conclusion, the ranking of
the parameters from the most to the least influential to the fatigue life is:
stress level, train traffic and train velocity.

6. Case study

The authors estimate the fragility curves and the fatigue life for a short-
span prestressed concrete railway bridge. The bridge in Figure 10 is on
the Orte-Falconara railway line, in the municipality of Trevi (Italy). The
viaduct consists of 46 spans of about 20 m in length. Each span consists
of 8 pre-tensioned beams equipped with four crosspieces with rectangular
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Figure 9: Fragility curves (left y-axis) and reliability indexes (right y-axis) for railway
concrete bridges with variable train velocity c and train traffic by assuming fck = 45,
Sc,min = 0.01, Sc,min = 0.2, nv = 10. The standard deviation of the fatigue model (σ) is
assumed equal to 0.78 based on the proposed fatigue model.

Table 5: Estimated fatigue life in years (n̂y) and associated standard deviation (σy) for
railway concrete bridges with variable train velocity c and train traffic by assuming fck =
45, Sc,min = 0.01, Sc,min = 0.2, nv = 10. The standard deviation of the fatigue model (σ)
is assumed equal to 0.78 based on the proposed fatigue model.

Train Expected number of trains per day (nt)

velocity 40 100 150

c [km/h] n̂y σy n̂y σy n̂y σy

30 140 38 60 12 38 8
50 163 28 54 13 42 6
150 139 29 56 11 40 9
250 148 26 59 9 39 8
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cross-sections. The bridge is not particularly sensitive to fatigue under com-
pression since the stress ratio is not as significant as in other structures, like
multi-span continuous bridges, with slender members. However, this case
study represents an application of the above procedure for assessing fatigue
in an ordinary prestressed concrete structure, which is a dominant mid-span
bridge typology in railway networks. This case study is particularly signifi-
cant because it shows that, despite the relatively low-stress ratio, the fatigue
life is insufficient, being shorter than the structural life. As later commented,
the consequence of the high uncertainty of the fatigue model is the reduction
of the fatigue life. The considered fatigue failure mode corresponds to ec-
centric compression. The fatigue failure is expected to appear by the bridge
mid-span, where the maximum stress ratios should appear in the case of a
simply-supported bridge considered in this investigation.

Figure 10: Views of the viaduct and of a sample span.

Figure 11 details the cross-section of each span. The beams are 1.40 m
high. The upper and lower wings are 1.20 m and 0.70 m wide, respectively.
The eight beams have a shear reinforcement by the supports. Therefore the
thickness of the core of the beam varies from 16 to 33cm. The prestressing
reinforcement is arranged in the lower wing, and, according to the design
drawings of the time, it consists of 29 cables arranged in 3 rows, sheathed
at the support. The crosspieces are also prefabricated and are therefore
born integral with the beam. They have a rectangular cross-section with
a 40cm width and a height equal to the beams. There is a 20 cm thick
reinforced concrete slab with 1.40 cantilevered elements, which support the
side walkways to the railway line and the parapets. The total width of
the deck is about 12.40 m and bears two running tracks. Table 6 lists the
geometrical characteristics of the bridge cross-section.

6.1. Experimental tests and model calibration

The displacement response of the bridge under a train transit is used
to calibrate the parameters of the FD model. The experimental equipment
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Figure 11: Cross-section of the Orte-Falconara bridge. The dimensions are in meters.

consisted of two easels supporting a laser sensor. The laser sensors are Micro-
epsilon optoNCDT 1420. The sampling rate is 1000Hz. The C-Box/2A
controller (Micro-epsilon) synchronizes and digitizes the two signals, which
are acquired by a personal computer from an Ethernet cable. A lead-acid
battery provided power to both the laser sensors, the controller and the
personal computer. The two lasers measured the displacement response of
the 3rd and 6th beam intrados. Figure 12 shows the experimental setup for
the Orte-Falconara bridge.

Figure 12: View of the sensors layout and experimental setup in the Orte-Falconara bridge
(1st case study) for the bridge deflection measurement using laser sensors under the train
transit.

The train loads are eccentric and cause minor torsional effects. Since the
authors are modelling the bridge like an EB beam, they purged the response
from the torsional response by extracting the mean value, also shown in
Figure 13.

As proven by [27], under eccentric compressive tests, the strains on cross
sections keep nearly perfect linear distributions. Therefore, the EB model

29



can be considered reasonable since it assumes the planarity of the cross-
section deformation. Besides, as recently highlighted by [4], the modelling
of the ballast contribution is particularly relevant when estimating the load
effect of the bridge. Therefore, the authors developed a TTBI model where
the bridge and the rail are modelled by EB beams coupled with a layer of
springs representing the ballast. Additionally, the choice of an analytical
rather than a Finite Element model relies on the computational cost. Rapid
analyses to calculate the empirical fragilities demand a particularly efficient
structural model. The main limitation of the model is neglecting the effect of
load eccentricity on stress redistribution among the eight longitudinal beams.
Therefore, future studies will be based on more accurate structural models
than the archetypal one used in this paper.

Following [4], the experimental time history is used to calibrate the stiff-
ness and damping parameters of TTBI model (EIb, kf , cf ). The known pa-
rameters are listed in Table 6. The calibration is carried out using a genetic
optimization algorithm [11]. The genetic algorithm performs iteration of pa-
rameters with the goal of minimizing the following objective function: The
optimum parameters are defined as:

X̂ = argmin
X

corr(ds,s,ds,m) (32)

obj(p) =

∑N
i=1 | [wb,ei − wb,si(p)]∆ti|∑N

i=1 |wb,ei∆ti|
(33)

where N is the number of data points, p is the parameter vector containing
the ballasted track parameters, wb,ei and ∆ti are the experimental deflection
of the bridge, and wsi(p) is the simulated beam deflection. Note that the
objective function is defined as the normalized integral of the difference be-
tween experimental and simulated displacement. This gives a measure of the
discrepancy between experimental data and model simulation.

p = {EIb, kf , cf} = {12600 kN ·mm2, 490.49 MPa, 14.50 MPa · s} (34)

Equation (34) gives the optimum parameters, while Figure 13 compares the
experimental and simulated displacement response. The comparison is very
satisfactory. The displacement peaks are almost corresponding. Additionally,
the oscillations damp after each train load, as observed in the experimental
data. Therefore, the calibrated FD model can be reliably used to predict the
stress level inside the bridge.
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Table 6: Input parameters of the optimization algorithm.

Input parameters
Description Label Value Unit
Beam length L 19.85 m
Discretization step ∆x 0.5 m
Concrete specific mass ρc 2500 kg/m3

Cross-section area of the bridge Ac 6.67 m2

Ballast specific mass ρb 2000 kg/m3

Cross-section area of the rails Ar 0.01 m2

Steel specific mass ρs 2000 kg/m3

Cross-section area of the ballast Ab 5.67 m2

Bending stiffness of the bridge EcIc 12600 kN·mm2

Young’s modulus of steel Es 210000 Mpa
Cross section area of the rails Ir 833·104 mm4

Velocity of the train c 110 km/h
Locomotive’s length Lv 5 m
Car’s length Lv 22 m
Locomotive weight Pl 300 kN
Car’s weight Pc 600 kN
Number of locomotives 2
Number of cars 7
Train velocity c 109 km/h

Figure 13: Comparison between the experimental and simulated displacement response
obtained with the optimized parameters.
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6.2. Demand model

The demand model in Equation (6) is estimated from the 2017-2021 database
collecting the information of the trains that crossed the considered bridge.
Figure 14 shows the histogram plots of the most relevant information re-
ferred to in 2017 in terms of train weight, length, number of vehicles and
velocity. The values cannot be approximated by continuous probability den-
sity functions, as proven by attempting a fitting of the weight, length and
vehicles using a Weibull probability distribution. A single train transit, as
later shown, will be used for calibrating the train-track bridge interaction
model. Conversely, the database corresponding to the trains passed in 2017
is used for estimating the demand model related to a given year following
Equation (6).

Figure 14: Histogram plot and fitting Weibull probability distributions of the main infor-
mation about the train transits in 2017.

The information collected in the database has been correlated in Fig-
ure 15 to show the dependence between the axis weight and the number of
axes (Figure 15(a)) and the axes weight and the number of cycles per year
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Figure 15: Histogram plot of the number of axes/axes weight and number of cycles per
year/axes weight data.

(Figure 15(b)). Figure 15(a) proves that, in most cases, there are 25 axes with
an approximate 20ton weight. However, the are multiple situations where dif-
ferent axes weights are associated with a very different number of cycles per
year. This fact endorses the use of the discrete model in Equation (6) based
on the database of train traffic.

7. Fatigue life assessment

Figure 16 shows the fragility curves for the considered bridge in Figure 10.
It plots the estimated failure probabilities as a function of the number of
years, chosen as the intensity measure. The two figures have been obtained
by varying the standard deviation of the fatigue model, set equal to 0.78 and
1.5 following the above calculations. The reference stress levels used for nor-
malization are s = {Sc,max, Sc,min} = {0.01, 0.18} Therefore, the parameters
assumed constant in the calculations are the concrete compression strength
fck=45, and the standard deviation of the fatigue model (σ = 0.78). These
values are also reported in the title of each figure to facilitate the reader.
Figure 16(c)-(d) shows the same results in (a)-(b) using the number of cycles
as intensity measure. Table 7 lists the estimated fatigue life by assuming the

Table 7: Estimated fatigue life in years (n̂y) and associated standard deviation (σy) for
the considered case study bridge by assuming two values for the standard deviation of the
fatigue model.

σ n̂y σy

0.78 10 2
1.5 1 <1
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Figure 16: Fragility curves (left y-axis) and reliability indexes (right y-axis) for the con-
sidered case study, by assuming two standard deviations for the fatigue model (σ) cor-
responding to the proposed one (a) and the Fib Model (b). The plots in (c) and (d)
correspond to the ones in (a) and (b) where the intensity measure is the number of cycles.
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two standard deviations. According to the proposed model, the fatigue life
equals ten years with a two-year standard deviation. Conversely, the fatigue
life obtained with σ = 1.5 is equal to 1 year. The above results highlight the
following aspect. If the stress level (Sc,max) exceeds the asymptote 0.1, the
fatigue life is far below the nominal life of a railway concrete bridge. This
is also valid if the proposed fatigue model with a lower standard deviation
is used. Therefore, the evaluation of the stress level inside a concrete bridge
should be as accurate as possible since the fatigue life is extremely sensitive
to the stress level.

The proposed fatigue life assessment can be used to schedule in-depth
tests to check the integrity of concrete structures. Additionally, structural
health monitoring systems for concrete bridges subjected to repetitive load-
ings, like railway bridges, should include adequate sensing solutions for the
continuous tests of the concrete integrity. The fatigue damage can trigger
dangerous phenomena which can lead to a significant reduction of structural
reliability. Therefore, this model can support more efficient maintenance
planning and management savings related to cost savings and lifetime exten-
sions.

8. Conclusions

This paper proposes a general probabilistic framework for estimating the
fatigue life of concrete structures applied to prestressed concrete railway
bridges. The proposed approach is general and can be applied to other
engineering problems, such as the fatigue degradation of wind power plants
under wind actions. The fatigue life is obtained from the empirical estimates
of the fragility curves following a direct Montecarlo approach and a homog-
enization strategy based on S-N curves. The fragility curves plot the failure
probability as a function of the number of years chosen as the intensity mea-
sure for the fragility estimate. Failure is reached when the number of cycles
obtained from the demand model at a given year exceeds the number of cycles
to failure obtained from a probabilistic fatigue model. The paper highlights
the limits of available fatigue models, which are deterministic and affected
by a high modelling error when fitting experimental data.

Following [32], the authors used a database of fatigue tests on normal-
strength concrete samples to calibrate a probabilistic capacity model. The
proposed model, calibrated following a Bayesian approach, exhibits a good
fitting of the experimental data with R2 approximately equal to 0.8. However,
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it is impossible to reduce the standard deviation below 0.8 without overfitting
issues. The fatigue model is obtained by correcting the Fib Model 2010
with 30 regressors, selected following a model deletion process based on the
coefficient of variation values [21]. The demand model used for predicting the
number of load cycles per year is obtained from a homogenization approach
by uniforming the number of cycles to the stress level using the probabilistic
fatigue model. The stress level inside the structure is estimated from an
analytical train-track-bridge interaction model, calibrated on experimental
data.

The entire procedure is applied to derive fragility curves in general cases
by varying the stress level, the train traffic, the train velocity and the fatigue
model uncertainty. The significant uncertainty of the fatigue response signif-
icantly reduces the expected fatigue life. If the stress level (Sc,max) exceeds
the asymptote 0.1, the fatigue life is far below the expected lifetime of a con-
crete railway bridge. This result is also valid if the proposed fatigue model
with a lower standard deviation is used. The train traffic reduces structural
reliability. However, the effect of the stress level is enormously more sig-
nificant than that of the train traffic in the considered ranges of variation.
Therefore, the evaluation of the stress level inside a concrete bridge should
be as accurate as possible since the fatigue life is extremely sensitive to the
stress level.

The fatigue damage can trigger dangerous phenomena, leading to a sig-
nificant reduction of structural reliability. Therefore, the proposed fatigue
life assessment can be used to schedule in-depth tests to check the integrity
of concrete structures. Fatigue’s contribution to the cracking of concrete rail-
way bridges is very hard to quantify. So it is difficult to get the real fatigue
failure cycles in actual bridges. The main model limitation originates from
this observation. Accordingly, the model has never been validated against
the fatigue collapse of real bridges. Future studies will consider other fatigue-
related failure modes in reinforced concrete structures, such as fatigue of the
steel rebars and concrete fatigue in tension.

9. Data Availability Statement

All data, models, or code that support the findings of this study are
available from the corresponding author upon reasonable request.
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Appendix A. Train-track-bridge interaction model

Appendix A.1. Mathematical model of the track

As is well known, the deflection wr(x, t) of a track with constant mass
per unit length ρsAr, where ρs is the specific mass of steel and Ar is the
cross-section area of the rails, and constant bending rigidity EsIr, where Es

is Young’s modulus of steel and Ir is the cross-section inertia of the rails, can
be described by an Euler-Bernoulli beam model. The equation of motion can
be written as: [15]

ρsArẅr(x, t) + EsIrwr,xxxx(x, t) = qr(x, t) + fr(x, t) (A.1)

where the two dots, ẅ, indicate the second time derivative of w, and wr,xxxx

is the fourth derivative of w with respect to the spatial coordinate x. The
distributed force qr(x, t) results from the viscoelastic bedding counteracting
the displacement of the track:

qr(x, t) = qb(x, t) = kf [wr(x, t)− wb(x, t)] + cf [ẇr(x, t)− ẇb(x, t)] (A.2)
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where kf and cf represent the stiffness and damping of the viscoelastic Win-
kler bedding, while wb is the deflection of the beam representing the bridge
substructure. The excitation function fr(x, t) captures the effect of the inter-
action forces between the rails and the vehicles. The train can be modelled
by a series of moving concentrated forces with identical intervals, and each
car is modelled by a single concentrated force, as shown in Figure 1. Thus, a
train composed of Nv cars can be considered as Nv moving forces, which are
numbered as Pk(1, 2, . . . , Nv). Assuming the first force enters the bridge at
the initial time, the time of the k-th load entering the bridge can be expressed
as:

tk = (k − 1)Lv/c (A.3)

whereLt is full length of the train.

fr(x, t) =
Nv∑
k=1

Pkδ [x− c(t− tk)] (A.4)

P =

{
Pl

2
,

(
Pl

2
+

Pc

2

)
, Pc, . . . , Pc, . . . , Pc,

Pc

2

}
(A.5)

where Ll is the length of the locomotive, Pk is the concentrated force related
to the k-th car, P is the vector collecting all values of Pk. Pc and Pl are loads
of cars and locomotives. The boundary conditions for a pinned-pinned track
can be written as:

Left boundary: wr(0, t) = 0 wr,xx(0, t) = 0 (A.6)

Right boundary: wr(L, t) = 0 wr,xx(L, t) = 0 (A.7)

where L is the bridge length.

Appendix A.2. Mathematical model of the bridge

The bridge can be described by Euler–Bernoulli beam. The EB has a
constant mass per unit length (ρcAc + ρbAb), where ρc is the specific mass
of concrete, Ac is the cross-section area of the beam, ρb is the specific mass
of the ballast and Ab is the cross-section area of the ballasted track, and
constant flexural rigidity EcIc, where Ec is Young’s modulus of concrete and
Ic the cross-section inertia of the beam. The vertical displacement wb(x, t)
of the bridge is governed by the following partial differential equation [20]:

(ρcAc + ρbAb)ẅb(x, t) + EcIcwr,xxxx(x, t) = qb(x, t) (A.8)
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The boundary conditions for a pinned-pinned track can be written as:

Left boundary: wr(0, t) = 0 wr,xx(0, t) = 0 (A.9)

Right boundary: wr(L, t) = 0 wr,xx(L, t) = 0 (A.10)

Appendix A.3. Spatial discretization

The equations of motion of the bridge–soil and the track subsystems can
be written in matrix form as:[

(ρcAc + ρbAb) 0
0 ρsAr

]{
ẅb(x, t)
ẅr(x, t)

}
+

[
EcIc 0
0 EsIr

]{
wb,xxxx(x, t)
ẅr,xxxx(x, t)

}
+

+

[
−kf kf
kf −kf

]{
wb(x, t)
wr(x, t)

}
+

[
−cf cf
cf −cf

]{
ẇb(x, t)
ẇr(x, t)

}
+

{
0
fr

}
(A.11)

Figure 1 illustrates the mathematical model of the TTBI. The spatial dis-
cretization is obtained using the finite difference method, by approximating
the fourth derivative with the approximate fourth derivative matrix. The
beam is divided into n elements with a ∆x length. The two coupled partial
derivative equations in Equation (A.11) can be discretized into the following:[

(ρcAc + ρbAb)∆xI 0
0 ρsAr∆xI

]{
ẅb(t)
ẅr(t)

}
+

[
EcIcD4 − kf∆xI kf∆xI

kf∆xI EsIrD4 − kf∆xI

]{
wb(t)
wr(t)

}
+

+

[
−cf∆xI cf∆xI
cf∆xI −cf∆xI

]{
ẇb(t)
ẇr(t)

}
+

{
0
fr

}
= 0

(A.12)

where I{n×n}, 0{n×n} are the identity and null matrices, D
{n×n}
4 is the ap-

proximate fourth matrix derivative defined in Equation (A.13), wb(t)
{n×1}

and wr(t)
{n×1 collect the vertical deflection of the bridge and track models

discretized inN segments, f {n×1
r discretizes the moving force vector described

in Equation (A.1).

Matrix D
{n×n}
4 must satisfy the boundary conditions. The D

{n×n}
4 matrix

is four-banded matrix. The authors imposed the boundary conditions of a
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simply supported beam by replacing the coefficients in bold:

D
{n×n}
4 =

1

∆x4



4 −4 1 0 0 0 0 0
... 0

−7/2 6 −4 1 0 0 0 0
... 0

1 −4 6 −4 1 0 0 0
... 0

0 1 −4 6 −4 1 0 0
... 0

. . . . . . . . . . . . . . .

0
... 0 0 1 −4 6 −4 1 0

0
... 0 0 0 1 −4 6 −4 1

0
... 0 0 0 0 1 −4 −4 −7/2

0
... 0 0 0 0 0 1 −4 2


(A.13)

The bold coefficients yield a null bending moment and displacement in both
the extremes of the beam.

Equation (A.12) can be re-written using the conventional notation for
multi-degrees of freedom dynamic systems:

Mẍ(t) +Cẋ(t) +Kx(t) = f(t) (A.14)

where M {2n×2n}, C{2n×2n} and K{2n×2n} are the mass, damping and stiffness
matrices, while f(t) is the forcing term. The displacement vector has the
following definition: x{2n×1} = {wb(t)

{n×1},wr(t)
{n×1}}.

Appendix A.4. Temporal discretization

The temporal discretization requires the formulation of Equation (A.14)
into the state space. The continuous-time state space model of Equation (A.14)
can be written in the classical form:

ẋ(t) = A(t)x(t) +Bu(t) (A.15)

where x(t), A(t) and B and u(t) are defined after [14] using the mass
M {2n×2n}, damping C{2n×2n} and stiffness K{2n×2n} matrices, and the forc-
ing term f(t){2n×1}.
Equation (A.15) is then transformed in the following discrete form:

ẋk = Akxk +Buk (A.16)

where k indicates the time step. Equation (A.16) is solved using the Dormand-
Prince method based on an explicit Runge-Kutta temporal discretization [16].
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Appendix B. Database of fatigue tests
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Table B.8: Database of normal strength concrete fatigue tests taken from [50, 56, 25,
30, 23], where fc is the concrete average strength in MPa, and Cexp is the experimental
number of cycles to fatigue.

Ref fc Scmin Scmax Cexp Ref fc Scmin Scmax Cexp Ref fc Scmin Scmax Cexp

[50]

31.578 0.100 0.900 20

[30]

44.100 0.205 0.745 2086412

[23]

34.440 0.080 0.800 955
31.578 0.100 0.800 140 44.100 0.205 0.745 2399938 34.440 0.070 0.700 6026
31.578 0.100 0.700 900 44.100 0.205 0.745 2613966 34.440 0.060 0.600 49545

[56]

54.300 0.180 0.900 3 44.100 0.205 0.745 2722074 34.440 0.320 0.800 2432
54.300 0.192 0.960 4 44.100 0.205 0.745 3431626 34.440 0.280 0.700 32137
54.300 0.192 0.960 100 44.100 0.205 0.745 5030371 34.440 0.560 0.800 18365
54.300 0.168 0.840 1050 44.100 0.205 0.745 6753051 34.440 0.080 0.800 298
54.300 0.168 0.840 2000 44.100 0.205 0.745 6864359 34.440 0.070 0.700 1683
54.300 0.160 0.800 3000 44.100 0.205 0.745 6983932 34.440 0.060 0.600 11535
54.300 0.160 0.800 6300 44.100 0.205 0.745 7099046 34.440 0.320 0.800 757
54.300 0.140 0.700 8200 44.100 0.205 0.745 8641716 34.440 0.280 0.700 6166
54.300 0.149 0.746 32000 44.100 0.205 0.745 8855233 34.440 0.560 0.800 2254
54.300 0.149 0.746 40000 44.100 0.205 0.745 8949525 34.440 0.080 0.800 89
54.300 0.139 0.693 650000 44.100 0.205 0.745 9038576 34.440 0.070 0.700 441

[25]

41.000 0.095 0.633 1200000 44.100 0.205 0.745 14437766 34.440 0.060 0.600 2667
41.000 0.100 0.667 1050000 44.100 0.205 0.745 15794286 34.440 0.320 0.800 140
41.000 0.105 0.700 750000 44.100 0.205 0.745 25043787 34.440 0.280 0.700 1462
41.000 0.113 0.750 320000 44.100 0.205 0.845 36 34.440 0.080 0.800 298
41.000 0.271 0.713 4000000 44.100 0.205 0.845 40 34.440 0.070 0.700 1683
41.000 0.285 0.750 1400000 44.100 0.205 0.845 46 34.440 0.060 0.600 11535
41.000 0.285 0.750 1000000 44.100 0.205 0.845 69 34.440 0.320 0.800 757
41.000 0.304 0.800 800000 44.100 0.205 0.845 79 34.440 0.280 0.700 6166
41.000 0.323 0.850 220000 44.100 0.205 0.845 85 34.440 0.560 0.800 2254
41.000 0.492 0.820 1400000 44.100 0.205 0.845 90 34.440 0.080 0.800 89
41.000 0.520 0.867 600000 44.100 0.205 0.845 100 34.440 0.070 0.700 441
41.000 0.540 0.900 46000 44.100 0.205 0.845 110 34.440 0.060 0.600 2667
41.000 0.540 0.900 320000 44.100 0.205 0.845 170 34.440 0.320 0.800 140
41.000 0.668 0.867 2000000 44.100 0.205 0.845 250 34.440 0.280 0.700 1462
41.000 0.672 0.873 4100000 44.100 0.205 0.845 290 36.408 0.070 0.700 5260
41.000 0.683 0.887 2200000 44.100 0.205 0.845 310 36.408 0.060 0.600 44157
41.000 0.693 0.900 1500000 44.100 0.205 0.845 410 36.408 0.320 0.800 4498
41.000 0.708 0.920 3100000 44.100 0.205 0.845 500 36.408 0.280 0.700 76384
41.000 0.708 0.920 230000 44.100 0.205 0.845 540 36.408 0.560 0.800 70795
41.000 0.732 0.950 200000 44.100 0.205 0.845 640 36.408 0.060 0.600 6699
41.000 0.774 0.880 2100000 44.100 0.205 0.845 960 24.026 0.070 0.700 6546
41.000 0.792 0.900 2000000 44.100 0.205 0.845 980 24.026 0.060 0.600 95499
41.000 0.792 0.900 3200000 44.100 0.205 0.845 1160 24.026 0.320 0.800 5395
41.000 0.810 0.920 160000 44.100 0.205 0.845 1420 24.026 0.280 0.700 539511
41.000 0.836 0.950 70000 44.100 0.205 0.845 1440 24.026 0.560 0.800 67453

[30]

44.100 0.205 0.745 643132 44.100 0.205 0.845 1600 24.026 0.060 0.600 7345
44.100 0.205 0.845 1065 44.100 0.205 0.845 2071 30.996 0.070 0.700 85704
44.100 0.050 0.805 483 44.100 0.205 0.845 3269 30.996 0.080 0.800 6501
44.100 0.050 0.685 51464 44.100 0.205 0.845 3851 30.996 0.090 0.900 1067
44.100 0.050 0.585 2746629 44.100 0.205 0.845 4181 30.996 0.360 0.900 4898
44.100 0.200 0.880 93 44.100 0.205 0.845 5332 30.996 0.630 0.900 81283
44.100 0.200 0.840 1293 44.100 0.205 0.845 8813 30.996 0.080 0.800 925
44.100 0.200 0.780 66573 44.100 0.205 0.845 9283 33.784 0.070 0.700 7112
44.100 0.200 0.740 921298 44.100 0.205 0.845 30896 33.784 0.060 0.600 58749
44.100 0.200 0.680 47435120 44.100 0.205 0.845 34522 33.784 0.320 0.800 3793
44.100 0.350 0.890 1257 44.100 0.205 0.845 46784 33.784 0.280 0.700 80353
44.100 0.350 0.850 120420 44.100 0.205 0.845 296961 33.784 0.560 0.800 95940
44.100 0.400 0.910 105 44.100 0.205 0.845 438430 33.784 0.060 0.600 3565
44.100 0.400 0.875 52650 44.100 0.050 0.805 483 44.362 0.070 0.700 4140
44.100 0.400 0.835 63841047 44.100 0.050 0.685 51464 44.362 0.060 0.600 48084
44.100 0.205 0.745 330 44.100 0.050 0.585 2746629 44.362 0.320 0.800 3828
44.100 0.205 0.745 1960 44.100 0.200 0.880 93 44.362 0.280 0.700 78163
44.100 0.205 0.745 11439 44.100 0.200 0.840 1293 44.362 0.560 0.800 85310
44.100 0.205 0.745 11874 44.100 0.200 0.780 66573 44.362 0.060 0.600 3428
44.100 0.205 0.745 12874 44.100 0.200 0.740 921298 35.000 0.070 0.700 8147
44.100 0.205 0.745 23747 44.100 0.200 0.680 47435120 35.000 0.060 0.600 44259
44.100 0.205 0.745 39902 44.100 0.350 0.890 1257 35.000 0.280 0.700 67764
44.100 0.205 0.745 44463 44.100 0.350 0.850 120420 35.000 0.070 0.700 1524
44.100 0.205 0.745 70226 44.100 0.400 0.910 105 35.000 0.060 0.600 21878
44.100 0.205 0.745 79891 44.100 0.400 0.875 52650 35.000 0.280 0.700 6209
44.100 0.205 0.745 115213 44.100 0.400 0.835 63841047 35.000 0.070 0.700 5358
44.100 0.205 0.745 117166

[23]

36.900 0.000 0.900 129 35.000 0.060 0.600 527
44.100 0.205 0.745 146791 36.900 0.000 0.800 465 35.000 0.280 0.700 4385
44.100 0.205 0.745 287607 36.900 0.000 0.700 1959
44.100 0.205 0.745 534687 36.900 0.000 0.600 16904
44.100 0.205 0.745 924911 36.900 0.000 0.500 167109
44.100 0.205 0.745 1025416 36.900 0.360 0.900 245
44.100 0.205 0.745 1178148 36.900 0.320 0.800 2032
44.100 0.205 0.745 1474009 36.900 0.280 0.700 31696
44.100 0.205 0.745 1562788 36.900 0.720 0.900 465
44.100 0.205 0.745 1630797 36.900 0.640 0.800 25293
44.100 0.205 0.745 1953890 36.900 0.600 0.750 981748
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Appendix C. Posterior statistics of Θ
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