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Abstract: Laser-induced graphene (LIG) has garnered tremendous attention in the past decade as a
flexible, scalable, and patternable alternative for fabricating electronic sensors. Superhydrophobic and
superhydrophilic variants of LIG have been demonstrated by previous studies. However, stability
analysis of the superhydrophobic surface property has not been explored. In this study, we use
an infrared nanosecond laser to fabricate reduced graphene oxide (rGO)-based strain sensor on a
carbon fiber reinforced polymer (CFRP) composite substrate. The fabricated sensor is characterized
to determine its gauge factor using a three-point bend test demonstrating a gauge factor of 40. The
fabricated LIG exhibits excellent superhydrophobic properties with a high contact angle (>160◦). Both
superhydrophobicity and piezoresistivity of the LIG under water immersion are studied for 25 h,
demonstrating high stability. The obtained results could be of interest to several sectors, especially
for maritime and high humidity applications.

Keywords: superhydrophobic; laser-induced graphene; strain sensors; carbon fiber composites;
nanosecond laser

1. Introduction

Fiber-reinforced polymer composites are progressively replacing conventional ma-
terials such as metals, alloys, and ceramics in aerospace, infrastructure, and maritime
industries [1–3]. This is due to their mechanical properties, such as superior strength, high
elastic modulus, thermal insulation, lightweight footprint, and corrosion resistance [4–6].
However, due to their complex structure, composite materials are prone to various struc-
tural failures in their matrix phase, reinforcing phase, and debonding [7,8]. Additionally, for
composites, failure accumulation occurs over some time. Therefore, performing structural
health monitoring of the composite material is crucial to schedule timely maintenance and
prevent any catastrophic failure while in application [9].

Commercially available strain gauges are generally based on metallic and semicon-
ductor materials. Although these strain gauges are cost-effective and represent the com-
mercial grade, they suffer from critical limitations such as poor mechanical flexibility,
low sensitivity, and inability to function in extreme conditions such as those underwa-
ter [10,11] As an alternative, piezoresistive materials such as carbon nanotubes (CNT) and
Graphene/Graphene-oxide based materials are currently being investigated to fabricate
strain sensors [12–14]. Ming Lei et al. fabricated a waterproof, flexible, and wearable strain
sensor using CNT/Carbon-black [15]. In comparison to the chemical-based sensor fabrica-
tion approach, laser material processing for surface texturing/chemical modification has
attracted tremendous interest recently as a cost-effective approach [16,17]. Rapid fabrica-
tion along with the possibility for selective surface patterning with laser represents a more
scalable approach [18–20]. In this frame of reference, laser-induced graphene (LIG) from
polymer precursors such as polyimide (PI) are being increasingly studied as an alternative
means to fabricate strain sensors [21–24].
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As strain sensors also involve outdoor applications, the LIG material must be func-
tionally stable under extreme conditions such as high humidity or water immersion [25,26].
Towards this consideration, the natural water repellency of the superhydrophobic surface
could prevent the gradual functional degradation of the sensor under humid conditions. Lu
Wang et al. fabricated by laser processing a porous graphene surface coated with fluorosi-
lane to obtain a superhydrophobic and efficient anti-icing and de-icing surface [27]. Li et al.
directly fabricated a superhydrophobic LIG by performing laser ablation in an argon envi-
ronment [28]. Although the above-mentioned methods achieve excellent water-repellent
properties, the scalability and simplicity in fabrication, at the core of LIG-based sensors and
functional surfaces, remains a challenge. In certain applications, such as electrochemical
sensing, there is a need for the fabrication of miniaturized electrodes [29]. In such cases,
the comparatively large-size features fabricated by CO2 lasers could be disadvantageous,
whereas UV lasers are relatively expensive. In this context, NIR industrial fiber laser sys-
tems with high tunability in laser parameters such as pulsewidth, pulse repetition rate,
average power, and scan speed offer greater flexibility to the fabrication process. These
systems enhance precision surface modification due to their relatively short wavelength,
thanks to their tunable low-pulsewidth in the nanosecond regime.

Few researchers have taken advantage of the tunability of laser writing parame-
ters to minimize the surface oxidation of exposed LIG to maintain its hydrophobic prop-
erty [30–32]. The hydrophobicity provided by the surface carbon content along with the
rough and hierarchical surface texture of LIG could result in surface superhydrophobicity.
These studies successfully demonstrate a one-step fabrication approach of superhydropho-
bic LIG. However, in most of these studies, the water contact angle (CA) values are on the
lower threshold limit for superhydrophobicity (CA = 150◦). Moreover, to our knowledge,
no study has characterized the stability of fabricated LIG superhydrophobic surfaces under
extreme conditions. Indeed, such characterizations are necessary to ascertain the stability
of the superhydrophobic property for applications.

In this work, an LIG-based strain sensor was fabricated on a polyimide tape directly
adhered onto a carbon fiber composite (CFRP) material, obtaining a gauge factor (GF) of
about 40. Additionally, the laser parameters were selected such that the LIG sensor was
rendered superhydrophobic with high CA (~165◦). Finally, the stability of superhydropho-
bicity was demonstrated by continuous immersion underwater for 25 h, droplet impact
and water-jet impact. The combined properties of high sensitivity with a highly stable
superhydrophobic state could boost the commercial applicational prospects of LIG.

2. Materials and Methods
2.1. LIG Fabrication

An infrared (1064 nm, Nd:YvO4) fiber nanosecond laser system (Datalogic Arex 20 MW,
Bologna, Italy) was used to fabricate LIG. The laser system consists of a galvanometric
optical scan system coupled with an F-theta lens enabling flexible and easy fabrication of
software-designed patterns using the (Lighter MARVIS software). For all the modifications
performed in this study, the scan speed and pulse repetition rate were fixed at 3 mm/s and
22 kHz, respectively. For laser fabrication of the sensor, an average power of 9 W was used.
A Direct Laser Writing (LDW) approach was used to generate LIG from the polyimide
Kapton tape through a thermal decomposition process, as shown in Figure 1. Since the
precursor is in the form of a polyimide tape, the laser-generated LIG is independent of
the base substrate. To demonstrate the fabrication of LIG on various substrates, soda-lime
glass, aluminum alloy (Al 6061), low density polyethylene (LDPE) and silicon were used as
the base substrates.
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Figure 1. Illustration of the laser fabrication process of LIG on polyimide attached on a carbon fiber
reinforced polymer (CFRP) part.

2.2. Surface Morphology and Chemical Composition Analysis

A field emission scanning electron microscope (FESEM, SupraTM 40, Zeiss, Germany),
at an accelerating voltage of 2 kV was used to analyze the surface morphology of the
generated LIG. The system was also equipped with an energy dispersive X-ray analyzer
(EDS, Bruker, Germany). Gold coating was used while taking EDS measurements.

A confocal Raman microscope InVia Renishaw (Renishaw, New Mills, UK) was used to
analyze the laser-induced transformation to the graphene-based material. The measurement
was obtained in high confocality mode, using a laser excitation wavelength of 532 nm at an
average power of 300 uW.

Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed to study the
LIG obtained on a flat polished aluminum substrate in reflection mode with a Shimadzu IR
Tracer 100 FTIR Spectrophotometer along with a Shimadzu AIM-9000 Infrared microscope.

2.3. Sensor Fabrication and Analysis

LIG circuit was laser generated on top of the carbon fiber reinforced composite material
(CFRP, 2.8 mm thick) to fabricate the strain sensor which had an insulating outer layer
as received. Fast-drying silver paint (Ted Pella, Redding, CA, USA) was used as the
contact points which were connected to copper lead wires for four-probe measurements.
Three-point bending tests were performed under flexure to characterize the strain sensing
property of the fabricated LIG sensor. The mechanical sensing tests were performed at
room temperature (22 ± 1 ◦C) using a Zwick Roell Z100 machine with a load cell of 5 kN,
rate of 0.5 mm min−1, edge-to-edge spacing of 10 mm and maximum deformation of the
loading nose at 1 mm. Throughout the bending test, the relative change in resistance
was monitored synchronously using the four probe connections to the digital multimeter
(Keithley DMM6500, Tektronix, OR, USA).

2.4. Superhydrophobic Surface Characterization

Dynamic contact and sliding angle measurements were used to characterize the
surface wettability of the surface. A contact angle measurement system (DSA 100, KRÜSS
Scientific, Hamburg, Germany) with an inbuilt goniometer stage was used to perform
the measurements.

The droplet bounce on the superhydrophobic surface was taken using the backlight
technique with a high-speed camera (Chronos 1.4, Kron technologies, Burnaby, BC, Canada)
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at a fixed frame rate of 1059 fps. All the static and dynamic measurements in the experiment
were performed with a droplet volume of 6 µL.

3. Results and Discussion
3.1. Surface Material Characterization

Laser-induced graphene (LIG) from polymeric precursors is usually fabricated using
a CO2 or ultraviolet laser [33–36]. The electron microscope images in Figure 2a,b reveal
certain interesting surface modification features. Interestingly, beside the laser-modified
track, a swollen region is observed. The swell is a result of material expansion occurring
at laser fluence below the ablation threshold. Multiple factors could contribute to the
swell formation, such as non-equilibrium cooling of the polymer melt and polymer surface
expansion due to the pressure effect as a result of gaseous and volatile substance release
during the ablation process [37,38]. Furthermore, Figure 2a,b shows random bubbles in
the laser modified region. Such a bubble formation can be attributed to a first order phase
transition generally observed with laser interaction of relatively transparent polymers.
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Figure 2. Field Emission Scanning electron microscope images of the fabricated LIG, (a,b) Side and
top view of the ablated and swollen laser-modified region; (c,d) magnified images of the porous and
fibrous LIG network in the central ablated region.

The bulk boiling and the eventual rapid cooling results in the formation of such
bubble-like features.

Figure 2c,d shows the electron microscope images of the reduced graphene oxide’s
porous and fibrous network structure. This agrees with the LIG generation mentioned in
previous studies which have confirmed a heptagon-pentagon and hexagon hybrid lattice
due to the laser-induced localized temperature and pressure at a short timescale [39,40]. The
formation mechanism of the reduced graphene oxide can be attributed to a photothermal
pyrolysis process [41,42]. In comparison to the UV and CO2 laser wavelengths used
to generally perform LIG fabrication, the polyimide has a relatively lower absorption
cross-section at 1064 nm. Therefore, a multi-pulse incubation effect initiates the thermal
degradation of the polyimide to an amorphous carbon form with a better absorption
cross-section, eventually leading to ablation of the material and formation of LIG [43,44].

The Raman spectra shown in Figure 3 suggest the formation of reduced graphene
oxide. Two higher intensity peaks representing G and D bands, typical to carbonaceous
materials, are observed. The G band at 1580 cm−1 corresponds to the graphitic lattice
stretching of sp2 carbon atoms. The disorder band (D-band) at 1335 cm−1 is attributed to
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the breathing vibrations of the sp2 hybridized carbon [45]. The band mainly arises due to
the restriction of carbon vibrations due to oxygen-containing functional groups acting as
defects to the material structure. Indeed, an Id/Ig ratio of D and G band at 0.99 confirms
that the laser-generated graphene structure has multiple defects. Furthermore, a broadened
2D band is observed in the region from 2700 to 3000 cm−1. This is due to the second order
process of double resonance Raman scattering resulting in two phonon emissions near the K
point of the Brillouin zone and is strongly dependent on the phonon structure of graphene.
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Consequently, unlike the presence of a monolayer graphene, which has a single Raman
shift at 2700 cm−1, the broadening in this study indicates the presence of a multi-layered
structure. Additionally, the oxygen-based functional groups prevent efficient stacking of
the graphene layers, causing a slight shift in the peak appearance [46]. Another interesting
observation regards the Raman shift peak at ~2930 cm−1. Few studies have attributed the
peak due to the presence of C-H bonds. Also, the peak present at 3165 cm−1 is correlated to
the presence of hydroxyl and carboxylic functional groups [47,48]. Herein, it is important to
emphasize that the term laser-induced graphene (LIG) refers to the formation of a reduced
graphene oxide (rGO)-based structure and not a monolayer 2D Graphene. However, with
the piezoresistive sensing properties as a focus, rGO is an affordable alternative for strain
sensing applications even on large scale applications [49,50].

3.2. Piezoresistive Properties

After the characterization of the material properties of the fabricated LIG, its piezo-
resistivity was characterized for strain sensing applications. A standard three-point bending
test as shown in Figure 4a was employed to investigate the ability of the LIG fabricated
in this work to sense flexural strain along with continuous measurement of resistance
change. From the test results, the gauge factor (GF) of the sensor was calculated using the
following formula.

GF = (∆R/R)/ε (1)

where ∆R is the change in resistance, R is the zero-strain resistance, and ε is the applied
strain during the bend test. Figure 4b shows the plot of normalized resistance change
corresponding to applied strain.
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Figure 4. (a) Relative resistance change vs applied flexural strain, (b) Three-point bend test setup
during measurement, (c) Strain-gauge connected to the multimeter, (d) Close view of the LIG
sensor circuit.

The obtained data show a linear trend up to the measured strain of 0.16%, and a linear
fit provided a GF of 40. It is worth mentioning that the commercial strain sensors typically
display a GF < 5, which confirms the good sensitivity of the fabricated LIG sensor.

3.3. Superhydrophobic Property

In addition to the good strain sensing performance of the fabricated LIG, the laser
parameter for the strain sensor was primarily selected to result in the ultrahydrophobic
property of the fabricated LIG sensor, here termed SH-LIG. Figure 5a shows a 6 µL wa-
ter droplet on the fabricated superhydrophobic surface. The droplet maintains a high
contact angle (165◦) and low roll-off (5◦) from the surface, an indication of an extreme
superhydrophobic surface. Additionally, as demonstrated in Figure 5b and the video in
the supplementary information, the impinging water droplets are totally repelled from the
surface as a result of minimal surface interaction, causing the water droplets to rebound and
exit the surface. It is worth mentioning that the contact angle values obtained in the single-
step laser processing in this study stand better than previous studies on superhydrophobic
LIG fabrication with water contact angles closer to 155◦.
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The laser ablation of the polyimide tape generates the LIG, which is directly deposited
over the substrate itself. The unmodified polyimide tape can then be peeled off, rendering
the pristine substrate with the specific laser patterned SH-LIG. The SH-LIG can be generated
on different substrates as shown in Figure 6. Topographical surface analysis was performed
over the SH-LIG on different substrates to determine the surface roughness, which is an
important parameter to define superhydrophobic surfaces. Table 1 shows the measured
average surface roughness (Sa) of the SH-LIG region over the substrates. Noticeably, the
average surface roughness of SH-LIG modification varies drastically between the different
substrates. This effect can be attributed to the difference in the material properties of the
substrates. Although the average surface roughness varies noticeably, all the samples
exhibited excellent superhydrophobic property with static contact angles above 160◦ and
roll-off angles below 5◦ for all the samples.
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Table 1. Profilometer analysis of average surface roughness of SH-LIG on various substrates.

Substrate Roughness [Sa (µm)]

Al 6061 6.22

Silicon 1.81

Glass 4.58

Therefore, in terms of surface morphology, eventhough the microtexture varies on
different samples, the excellent superhydrophobicity can be considered a result of the
hierarchical micro/nano surface feature of LIG. The laser-modified micro-scale roughness
along with the porous and fibrous nano-scale complex graphene oxide network provides
an excellent surface feature to facilitate ultrahydrophobicity. Apart from the topograph-
ical analysis, the surface elemental compositional analysis was performed using energy
dispersive X-ray spectroscopy. EDS analysis was performed on the glass, aluminum, and
silicon substrates. Table 2 shows the quantitative information of the SH-LIG on different
substrates. The corresponding EDS spectra are shown in Figure S1.

Table 2. EDS composition information of different SH-LIG substrates.

Atomic %

Element Al 6061 Silicon Glass

Al 40.5 - -

Si - 69.2 18.7

C 28.5 23.3 45.9

O 29.1 7.4 35.5
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The EDS analysis confirms the presence of carbon as a major elemental component in
all the samples. For all the samples, the pristine samples had a carbon content of below 8%.
By nature, carbonaceous materials are hydrophobic. The hydrophobic surface chemistry
in combination with a hierarchical surface texture renders the surface ultrahydrophobic.
Further, to analyze the surface functional groups responsible for the superhydrophobic
nature, FTIR spectroscopic analysis was performed. Therefore, the SH-LIG is substrate-
independent as demonstrated in Figure 6.

Interestingly, the fabricated SH-LIG was substrate-independent. Figure 6 shows the
water droplets with high contact angles on SH-LIG on various substrates. In all the cases,
the contact angle was greater than 160◦ and the roll-off was below 5◦. FTIR spectroscopy
was performed on the fabricated samples to analyze the surface chemical composition of
the SH-LIG surface and understand its origin. To compare the effect of laser parameters
on the resulting chemical composition of the SH-LIG, another laser-processed sample that
used high average laser power (16 W) was prepared. Figure 7 represents the FTIR spectrum
of both the samples mentioned above.
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The FTIR spectrum collected from the SH-LIG shows an absorbance peak at 1290 cm−1

which is attributed to the presence of C-O bonds in alcohol or C-O-C functional group [51].
The absorption at ~1630 cm−1 corresponds to the C=C stretching in the aromatic rings [52].
Additionally, the absorption at 1690 cm−1 is associated with the typical C=O stretch of the
carbonyl group [53]. Further, the absorption at ~2880 and 2960 cm−1 corresponds to the
stretching of CH2 and CH3 groups, respectively [54]. In comparison, the FTIR spectra of
the sample modified at high average power do not show the presence of any significant
peak at corresponding wavenumbers. This could be a result of the strong photothermal
effect at high temperatures leading to strong oxidation and thus superhydrophilicity of the
fabricated LIG [55].

An important aspect of superhydrophobic surface functionality lies in the stability of
the property, especially in extreme environments. Therefore, SH-LIG was fabricated on
both glass and composite materials to test their stability during immersion under water
for 25 h. In the case of the composite material, an identical line circuit pattern with silver
paste contacts, similar to the one used in the three-point bend test, was prepared to test
the resistance change with immersion time. However, an 8 mm × 8 mm area of SH-LIG
was generated on a glass substrate to measure the variation in water contact angle with
immersion time. As shown in Figure 8, the dynamic contact angle measurements demon-
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strate the stability of the SH-LIG even after continuous immersion underwater for 25 h. An
important aspect of the dynamic contact angle measurement is the contact angle hysteresis
(CAH), which is the difference between advancing and receding contact angles. In this
study, even after 25 h of immersion, the CAH is ~6.8◦, thus maintaining a stable super-
hydrophobicity. This demonstrates the high stability of the superhydrophobic property,
which is a combined effect of the hydrophobic carbonaceous LIG and the hierarchical and
fibrous surface morphology efficiently trapping air and repelling water penetration [56–59].
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Figure 8. Dynamic contact angle measurements on the SH-LIG modified area and electrical resistance
measurements performed on a SH-LIG conduction line circuit (green line) at different time intervals
up to 25 h.

From Figure 8, the stability in superhydrophobicity is further confirmed by the circuit
resistance measurements performed on a SH-LIG conduction line circuit of 2.5 cm length, at
various time intervals on the LIG fabricated on the composite material which was immersed
underwater. The resistance values remain almost the same after 25 h due to the stability of
its superhydrophobic property.

Figure 9 shows the effect of total internal reflection by the trapped thin air layer,
also termed plastron, on the SH-LIG, causing a shiny appearance of the superhydrophobic
region on water immersion. On the other hand, the circuit resistance of the SH-LIG prepared
on the composite material stays almost constant, with a negligible variation of less than
1%. This further confirms the remarkable stability of the fabricated SH-LIG under complete
immersion conditions.
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High-speed camera images in Figure 10a,b, show the droplet bounce behavior before
and after water immersion for 24 h. Indeed, the droplet bounce characteristics provide
a direct means to examine the surface’s ultrahydropohibc property due to the energy
exchange involved on surface impact. The contact time of the droplet (6 µL) on the
superhydrophobic surface from impact (1.0 m/s) to lift-off is considered as the analysis
parameter in this study.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 14 
 

Figure 9 shows the effect of total internal reflection by the trapped thin air layer, also 
termed plastron, on the SH-LIG, causing a shiny appearance of the superhydrophobic 
region on water immersion. On the other hand, the circuit resistance of the SH-LIG 
prepared on the composite material stays almost constant, with a negligible variation of 
less than 1%. This further confirms the remarkable stability of the fabricated SH-LIG under 
complete immersion conditions. 

 
Figure 9. Depiction of highly reflective plastron (thin air film) layer over the superhydrophobic LIG 
on silicon surface (a) before immersion (b) after immersion. 

High-speed camera images in Figure 10a,b, show the droplet bounce behavior before 
and after water immersion for 24 h. Indeed, the droplet bounce characteristics provide a 
direct means to examine the surface’s ultrahydropohibc property due to the energy 
exchange involved on surface impact. The contact time of the droplet (6 µL) on the 
superhydrophobic surface from impact (1.0 m/s) to lift-off is considered as the analysis 
parameter in this study. 

 
Figure 10. (a) Impact and bounce of water-droplet on the SH-LIG before immersion and (b) after 
immersion in de-ionized water for 24 h. 

In coherence with the droplet bounce behavior on artificial ultrahydrophobic 
surfaces, the drop spreads like a thin sheet to a maximum diameter, recoils, and leaves the 
surface for both the tested surfaces [60,61]. For the freshly prepared SH-LIG, the droplet 
lifts off within 11.2 ms; for the immersed SH-LIG, the droplet lift-off occurs within 12.1 
ms. The contact time is similar for both surfaces and relates to the droplet bounce behavior 
on conventional biomimetic ultrahydrophobic surfaces. Such surfaces with reduced 
contact time have the potential for pagophobic applications [62]. The SH-LIG surfaces 

Figure 10. (a) Impact and bounce of water-droplet on the SH-LIG before immersion and (b) after
immersion in de-ionized water for 24 h.

In coherence with the droplet bounce behavior on artificial ultrahydrophobic surfaces,
the drop spreads like a thin sheet to a maximum diameter, recoils, and leaves the surface for
both the tested surfaces [60,61]. For the freshly prepared SH-LIG, the droplet lifts off within
11.2 ms; for the immersed SH-LIG, the droplet lift-off occurs within 12.1 ms. The contact
time is similar for both surfaces and relates to the droplet bounce behavior on conventional
biomimetic ultrahydrophobic surfaces. Such surfaces with reduced contact time have the
potential for pagophobic applications [62]. The SH-LIG surfaces fabricated in this study
demonstrate stable water-repellence properties, bolstering the applicational prospects of
substrate-independent laser-based graphene oxide devices.

4. Conclusions

In summary, a DLW approach was used to fabricate reduced graphene oxide from a
polyimide-based precursor. The rGO on a CFRP composite performed as an excellent strain
gauge with GF ~40, which is much higher than that of commercial strain gauges with GF
below a value of 5. Further, the rGO could be prepared on various substrates ranging from
metals to polymers and showed excellent superhydrophobic properties in all cases. The
superhydrophobicity was also stable upon complete immersion under water for 25 h. In
particular, a laser-based approach that combines flexibility with the substrate-independent
one-step fabrication of stable superhydrophobicity extends the scope of LIG based sensors
for even extreme environments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13084935/s1, Figure S1: EDS spectra obtained from SH-LIG
on the following substrates, (a) Sodalime glass; (b) Al 6061; (c) Silicon. Gold coating was used for the
measured sample; Video S1: Water jet bounce-off from the ultrahydrophobic LIG surface.
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