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A B S T R A C T

A new probabilistic computational methodology aiming for a safer and optimized design of
glass components is proposed, overcoming the drawbacks of the currently employed design
approaches. The methodology, which adopts a stress intensity factor-based fracture criterion,
can be applied to predict the load bearing capacity associated to any given probability of failure
of elements having arbitrary geometry, support conditions and edge flaws scenario.

The main novelty consists in the use of the extended finite element method for the numerical
modelling of the structural elements, taking advantage of its intrinsic capability to deal with
multiple cracks without adapting the mesh topology and the possibility to directly evaluate the
stress intensity factor at the tip of the cracks without any post-processing procedure. Besides,
because of the stochastic nature of the problem, where the flaws size is the random variable,
the Monte Carlo method is used to obtain the cumulative distribution function of the failure
load, from which the load bearing capacity is derived.

Several case studies are reported to demonstrate the accuracy and reliability of the method.
It is also shown that, depending on the stress gradient along the glass component, the developed
method provides load carrying capacities larger than the predictions of a stress-based approach,
by an extent variable between 21% and 83%.

. Introduction and state-of-the-art

The fracture stress of glass varies widely between 20 and 200 MPa [1], depending on a variety of factors such as the load
istory [2], the surface condition [3,4], the element’s size [5], the environmental conditions [6], the point of the origin of failure
along the edge or on the surface), the type of edge processing [7,8], the presence of thermal treatments [9]. Griffith-like surface
laws cause the brittle failure in glass [10], and their random distribution results in a large scatter in fracture strength and location
f failure. Flaws and scratches appear during the manufacturing process, as well as during handling, assembly, everyday use and
aintenance [11]. As a result, not only across plates from various production batches, but even within the same batch, flaw

haracteristics and failure stress magnitudes vary dramatically. The glass flaws depth typically ranges from 20 μm to 200 μm [12].
owever, accidental impacts or vandalism might result in more serious damage and much deeper flaws.

Despite the large scatter of the glass strength, several design methods have been proposed. To simplify, they can be divided into
wo main groups: the methods adopted in the European design standards and those used in the North American design standards.

The European standards EN16612:2019 [13] and CEN/TS 19100-1:2021 [14] propose a stress-based design approach, for which
he structural integrity is assessed by comparing the maximum bending stress, 𝜎𝑚𝑎𝑥, with the design bending strength, 𝑓𝑔;𝑑 :

𝜎𝑚𝑎𝑥 ≤ 𝑓𝑔;𝑑 (1)
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Fig. 1. Cumulative Weibull distribution of the failure stress.
Source: Adapted from [13].

According to EN16612:2019 [13], for annealed glass of any composition, the design value of bending strength is:

𝑓𝑔;𝑑 =
𝑘𝑒𝑘𝑚𝑜𝑑𝑘𝑠𝑝𝑓𝑔;𝑘

𝛾𝑀 ;𝐴
(2)

where 𝑓𝑔;𝑘 = 45 MPa is the characteristic value of the bending strength (5% fractile); 𝛾𝑀 ;𝐴 is the material partial factor that ranges
from 1.6 to 1.8; 𝑘𝑒, 𝑘𝑠𝑝 and 𝑘𝑚𝑜𝑑 are the strength reduction factors. 𝑘𝑒 and 𝑘𝑠𝑝 take into account the edge and surface finishing,
while 𝑘𝑚𝑜𝑑 the load duration. An experimental campaign, involving 741 panes of 6 mm float glass, was carried out according to EN
1288-2 [15] to provide the characteristic glass strength 𝑓𝑔;𝑘 [13]. The 741 failure stress measurements 𝜎f were analized statistically,
and the 𝑓𝑔;𝑘 value was derived using the two-parameter Weibull distribution for a probability of failure 𝑃f = 5%, as shown in Fig. 1.
However, the sampling distribution is clearly non-linear and poorly fitted by the Weibull distribution. As a result, the confidence
intervals of the Weibull parameters are rather broad, and the prediction of extremely low risk levels is uncertain [13].

The stress-based design approach is widely used because of its outstanding simplicity, although it has some drawbacks. The first
weakness is that it relies on the bending strength which is not a true material property, as it depends on the flaws size distribution, the
fracture toughness, the test setup, as well as the specimen size and geometry [16]. Secondly, when using a deterministic approach,
large safety factors need to be introduced for a safe design. However, it is worth noticing that a high safety factor does not necessarily
imply a low level of risk, as its influence might be offset by the presence of greater uncertainties in the design environment [17].
In addition, the stress-based design approach assumes that the point of origin of failure coincides with the point of maximum
stress, condition that rarely happens in glass [18]. Because of the large scatter in fracture strength and failure origin, a probabilistic
approach should be adopted. Recent studies have enhanced the reliability of the semi-probabilistic (level I) method for the design
of glass components. For instance, the findings by Ballarini et al. [19] have contributed to reduce the partial safety factors for
the structural design of glass by using a generalized distribution of the Weibull type. However, the obtained results can be used
only when the maximum tensile stress acts far from the edges. In addition, Lamela et al. [20] showed that the Weibull distribution
functions of the glass strength are quite similar under different types of testing.

The American National Standard Practice for Determining Load Resistance of Glass in Buildings, ASTM E1300-16 [21], adopts
the model proposed by Beason and Morgan [22,23] for the prediction of the load bearing capacity of glass components. ASTM
E1300-16 only applies to vertical and sloped glazing having rectangular shape exposed to a uniform lateral load, such as wind load,
snow load and self-weight, with a total combined magnitude less than or equal to 10 kPa. The standard shall not apply to other
elements such as, for example, balustrades, glass floor panels, aquariums, structural glass members and glass shelves. Unlike in the
European design method, the structural integrity assessment is based on loads rather than stresses. In fact, the structural integrity
in ASTM E1300-16 is evaluated by comparing the uniform lateral load 𝑞 with the load resistance 𝐿𝑅 which is the load associated
to a breakage probability less than or equal to 0.8%:

𝑞 ≤ 𝐿𝑅 = 𝑁𝐹𝐿 ⋅ 𝐺𝑇𝐹 (3)

being 𝑁𝐹𝐿 the non-factored load and 𝐺𝑇𝐹 the glass type factor. The 𝐺𝑇𝐹 factors are listed in tables function of the glass type
and the load duration, whereas the 𝑁𝐹𝐿 values can be obtained from charts reported in ASTM E1300-16. The 𝑁𝐹𝐿 parameter
is obtained for a load duration of 3 s and depends on support conditions, plate size and plate thickness. The 𝑁𝐹𝐿 charts were
developed using the glass failure prediction model of Beason and Morgan [22,23], who used the Weibull statistics [24] to represent
the probability of failure 𝑃f for glass:

𝑃f = 1 − 𝑒−𝐵 (4)

According to Beason and Morgan [23], 𝐵 reflects the risk of failure and depends on the magnitude and duration of the surface
tensile stresses in the plate, the surface area of the plate exposed to tensile stress, and the geometry and orientation of the surface
flaws. For general cases, 𝐵 is computed as follows:

𝐵 = 𝑘̆
[

𝑐𝜎eq,max(𝑞, 𝑥, 𝑦)
]𝑚̆ d𝐴 (5)
2

∫𝐴
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where 𝜎eq,max(𝑞, 𝑥, 𝑦) is the maximum equivalent principal stress as a function of the lateral load 𝑞 and the coordinates (𝑥, 𝑦) of the
oint on the glass surface; 𝑐 is the ‘biaxial stress correction factor’ which is function of the minimum to maximum principal stress
atio; 𝐴 is the surface area of the plate; 𝑘̆ and 𝑚̆ are the so-called ‘surface flaw parameters’ which reflect the character of glass plate
urface flaws. The non-factored load 𝑁𝐹𝐿 can be obtained by Eq. (4) once the probability of failure, the support and load conditions,
he plate size and thickness, and the surface flaw parameters 𝑘̆ and 𝑚̆ are defined. In ASTM E1300-16, it was assumed 𝑚̆ = 7 and
̆ = 2.86 × 10−17 mm12 N−7. According to ASTM E1300-16, these flaw parameters refer to the surface strength of weathered window
lass that has undergone in-service conditions for approximately 20 years [21]. The narrow range of application of the standard is
ue to the fact that the parameters 𝑚̆ and 𝑘̆ have been obtained, and are therefore reliable, only for the case of vertical or sloped
lazing in buildings. To summarize, in ASTM E1300-16 the load-carrying capacity of glass plates is evaluated taking into account
he actual surface flaw condition and the effect of the plate’s size. However, the acceptable probability of failure cannot be set, and
he field of application is restricted to vertical and sloped glazing in buildings subjected to uniform lateral load.

Because of the narrow range of application of ASTM E1300 and the weaknesses of the stress-based design approach, new
odels, more flexible and suitable to be applied for several load and support conditions, should be developed. These models should

ccount for a variety of glass surface scenarios, so that severe surface cracking or specific surface conditions detected by quality
ontrol procedures may be included. A reliable and less conservative design method would reduce costs and emissions involved
n manufacturing glass components. Besides, the models should be robust, intuitive and easy to use, with few parameters having

clear physical meaning. Additionally, they should be based on the real physical mechanism determining the strength of glass,
.e. the micro-cracks distribution, which is independent of the test configuration and the element size. For this reason, the cracks
istribution should be provided after the manufacturing process, and its evolution should be predicted and monitored during storage,
ssembly, and service stages of glass. Even though some methods for crack and scratch detection have been recently developed,
uch as those based on microscope inspection techniques [25], thermal stress-induced light scattering techniques [26] and deep
earning techniques [27], additional efforts are needed in order to detect and measure the crack size along the edges and on the
urface of glass components. In addition, special attention should be paid to the edge flaw condition, since it is one of the main
arameters influencing the strength of glass [28], with particular regard to in-plane loaded structural elements, such as glass beams
nd façade mullions. The edge strength is also relevant in secondary construction elements, such as windows, that may be subjected
o significant tensile stress along the edges as result of thermal actions [29], and bolted connections which are subjected to stress
oncentrations along the hole’s edge.

In the present work, a new numerical methodology for the design of annealed glass components is proposed and tested. The
ethod can be used on any flat glass component under in-plane static loads and it adopts a stress intensity factor-based fracture

riterion for the prediction of the failure load. This method assumes that edge cracks are Pareto distributed and makes use of the
Xtended Finite Element Method (XFEM) [30] for the explicit introduction of cracks in the computational model and the calculation
f the stress intensity factors at the tip of each crack. In addition, Monte Carlo simulation is used to obtain the probability density
unction of the failure load. The model takes into account the size effect on the glass strength and the interaction among cracks for
he evaluation of the stress intensity factors, whereas it does not consider the stress corrosion effect.

. New proposed computational methodology

Glass is a brittle material that fails when the critical value of the stress intensity factor is achieved at the tip of any flaw. The
chievement of the failure condition is determined by a complex interplay between the flaw size distribution and the internal stress
istribution, such that the critical crack, i.e. the one having the maximum value of the stress intensity factor, is not always placed in
he point exhibiting the maximum tensile stress. For a crack subjected to pure Mode I, the fracture criterion is expressed as follows:

𝐾I = 𝐾IC (6)

here 𝐾I is the Stress Intensity Factor (SIF) and 𝐾IC denotes the value of the critical stress intensity factor, also known as fracture
oughness [31]. Unlike the bending strength 𝑓𝑔;𝑘, 𝐾IC is a material property, and its value for soda-lime silica glass is estimated to
e around 0.75 MPa m1∕2 [32].

Let us consider a deformable body with a crack of size 𝑎, subjected to a remote uniform stress state 𝜎𝑦𝑦 applied normally to the
lane of the crack, as shown in Fig. 2. The relationship between the fracture toughness 𝐾IC, the failure stress 𝜎𝑦𝑦,f and the crack
ize 𝑎 is derived from linear elastic fracture mechanics:

𝐾IC = 𝑌 𝜎𝑦𝑦,f
√

𝜋𝑎 (7)

where 𝑌 is a positive dimensionless geometrical factor depending on the aspect ratios of the structural element wherein the crack
is placed, the location of the crack (inner or edge crack), and the flaw shape. For instance, 𝑌 approaches 1.12 for isolated straight-
ronted edge cracks, remotely applied tensile stress (i.e. 𝐻∕𝑊 ≥ 2), and very small crack length (i.e. 𝑎∕𝑊 ≤ 0.03), as reported in
he handbook by Tada et al. [33].

Yankelevsky [34] developed a numerical method to predict the surface strength of rectangular glass plates under bending for
n arbitrary acceptable probability of failure. To fully exploit the bending strength of the glass plate, Yankelevsky [34] included
flaws population on the plate surface, from which the failure stress distribution could be derived. According to the method, the

urface of the glass plate is divided into 1 cm2 unit cells, and a crack is placed in each cell. The crack size 𝑎 is chosen randomly from
3

truncated exponential probability distribution. Then, the failure stress 𝜎𝑦𝑦,f on the plate side under tension is calculated according
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Fig. 2. Edge crack under Mode I loading.

to Eq. (7) for each crack, assuming 𝑌 = 1.12. As a result, the surface strength of a single plate is represented by the minimum
failure stress. A Monte Carlo simulation shall be run on a large sample of thousands of virtual specimens to acquire the probability
distribution of both the point of origin of failure and the surface strength.

Kinsella and Persson [1,35] extended the method developed by Yankelevsky [34] to consider multiple flaw populations, arbitrary
crack plane orientations and a mixed mode fracture. Due to the results presented in literature works [36–38], Kinsella and
Persson [35] adopted for their model the Pareto distribution to describe the statistical population of the depth of surface cracks.
The same assumption is made in the present study.

The methodology proposed in this paper adopts the stress intensity factor-based fracture criterion in Eq. (6) for the edge strength
prediction of any annealed flat glass component. However, unlike the approaches by Yankelevsky and Kinsella and Persson, the
developed computational methodology does not require any post-processing procedure to get the stress intensity factors at the
crack tips, as their values are directly provided by the numerical solution. As a consequence, the stress intensity factor values do
not depend on assumptions made on the shape function 𝑌 . Therefore, the developed methodology is suitable for arbitrary geometries,
loads, and boundary conditions, even when closed-form solutions for the stress intensity factor are not available. For example, when
cracks are within stress concentration regions or interact with each other. The procedure of the proposed methodology consists of
the following six steps:

• The structural element is modelled through the extended finite element method (XFEM);
• A population of edge flaws, which is extracted from a pre-defined statistical distribution function, is randomly applied to the

FE model;
• The stress-intensity factors are computed for all the cracks;
• The load carrying capacity is evaluated by equating the maximum stress-intensity factor to the fracture toughness;
• Because of the stochastic nature of the problem, where the size of the edge flaws is the random variable, the Monte Carlo

simulation is used to obtain the distribution function of the failure load;
• The critical load referred to a chosen probability of failure is derived.

3. Crack modelling and stress intensity factor evaluation through XFEM

The extended finite element method (XFEM) was proposed by Belytschko and co-workers [39,40] for modelling cracks and crack
growth in the FE framework, with no need for the mesh to reproduce the crack geometry. By using XFEM, in fact, a standard FE
mesh is first set for the model without taking into account the cracks. Then, cracks are introduced independently of the mesh by
enriching the standard displacement approximation with both discontinuous displacement fields along the crack faces [41] and the
asymptotic displacement fields at nodes surrounding the crack tips [42].

For a cracked body modelled in the framework of XFEM, the displacement field 𝐮 far from the crack can be approximated by
the interpolation of the nodal displacements:

{

𝑢(𝑋, 𝑌 )
𝑣(𝑋, 𝑌 )

}

=
∑

𝑖∈𝐼
𝑁𝑖

{

𝑢0𝑖
𝑣0𝑖

}

(8)

whereas, close to the crack tip and along the crack faces, the standard local displacement approximation shall be enriched with the
asymptotic crack tip displacement field [42], which is discontinuous along the crack faces, as shown in Fig. 3:

{

𝑢(𝑋, 𝑌 )
𝑣(𝑋, 𝑌 )

}

=
∑

𝑁𝑖

{

𝑢0𝑖
𝑣

}

+
∑

𝑁𝑗

{

𝑢(tip 𝑘)𝑗
𝑣(tip 𝑘)

}

(9)
4

𝑖∈𝐼 0𝑖 𝑗∈𝐽𝑘∩𝐼 𝑗
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Fig. 3. Asymptotic crack tip displacement field 𝑣(𝑡𝑖𝑝 𝑘) close to the crack tip 𝑘 centred at the origin of the coordinate system 𝑥, 𝑦.

where 𝐼 is the set of all nodes in the element, (𝑢0𝑖, 𝑣0𝑖) are the standard degrees of freedom at node 𝑖, 𝑁𝑖 and 𝑁𝑗 are the finite
element shape functions associated with the node 𝑖 or 𝑗. 𝐽𝑘 is the set of nodes that are enriched around the crack tip 𝑘 and along
the crack path; (𝑢(tip 𝑘)𝑗 , 𝑣(tip 𝑘)𝑗 ) are the values of the asymptotic displacement fields at the node 𝑗 for the crack tip 𝑘.

In the framework of linear elastic fracture mechanics, it is very convenient to adopt the enrichment functions provided by
Karihaloo and Xiao [43], which rely on the stress intensity factors at the crack tips. The advantage consists in that the XFEM
enrichment variables will be estimates of the stress intensity factors. The general form of the displacement expansions (truncated
to the 1st term) near the crack tip for mixed mode in a homogeneous and isotropic material, reads [42]:

{

𝑢(tip 𝑘)𝑗
𝑣(tip 𝑘)𝑗

}

=
[

𝑓11 𝑓12
𝑓21 𝑓22

]

{

𝐾 (tip 𝑘)
I𝑗

𝐾 (tip 𝑘)
II𝑗

}

(10)

where 𝐾I𝑗 and 𝐾II𝑗 are the Mode I and Mode II stress intensity factors at node 𝑗, while 𝑓11, 𝑓12, 𝑓21 and 𝑓22 are the angular functions
whose explicit expressions with respect to the polar coordinate system (𝜌, 𝜙) centred at the crack tip (see Fig. 3) are:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓11
𝑓12
𝑓21
𝑓22

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=
𝜌1∕2

2𝜇
√

2𝜋

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝜅 − 1
2 )cos

𝜙
2 − 1

2 cos
(

− 3
2𝜙

)

(𝜅 + 3
2 )sin

𝜙
2 − 1

2 sin
(

− 3
2𝜙

)

(𝜅 + 1
2 )sin

𝜙
2 + 1

2 sin
(

− 3
2𝜙

)

−(𝜅 − 3
2 )cos

𝜙
2 − 1

2 cos
(

− 3
2𝜙

)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(11)

being 𝜇 and 𝜈 the shear modulus and Poisson’s ratio of the material, respectively, and 𝜅 = (3−4𝜈) for plane strain or 𝜅 = (3−𝜈)∕(1+𝜈)
for plane stress. The asymptotic displacement fields (𝑢(tip 𝑘), 𝑣(tip 𝑘)) are discontinuous across the crack surface 𝛤c. For illustration, the
displacement 𝑣(tip 𝑘) along the 𝑦 direction is plotted near the crack tip in Fig. 3.

By introducing (10) into (9) it reads:

𝐮 =
{

𝑢(𝑋, 𝑌 )
𝑣(𝑋, 𝑌 )

}

=
∑

𝑖∈𝐼
𝑁𝑖

{

𝑢0𝑖
𝑣0𝑖

}

+
∑

𝑗∈𝐽𝑘∩𝐼
𝑁𝑗

[

𝑓11 𝑓12
𝑓21 𝑓22

]

{

𝐾 (tip 𝑘)
I𝑗

𝐾 (tip 𝑘)
II𝑗

}

= 𝐍𝐚 (12)

being 𝐚 the vector of standard and enriched nodal degrees of freedom including 𝐾 (tip 𝑘)
I𝑗 and 𝐾 (tip 𝑘)

II𝑗 , which are therefore calculated
directly without extra post-processing for each node 𝑗 within the interval 𝐽𝑘 by solving the XFEM equilibrium equations.

The XFEM approach has been included in the X3D FORTRAN finite element code implemented by Ventura and Benvenuti [44,45],
and recently extended by the authors to manage multiple cracks and to perform Monte Carlo simulations. To improve the
approximation [46], in the developed code, all the nodes within a distance 𝑟 from the crack path and tip are enriched, as shown in
Fig. 4. As suggested in Ref. [42], in X3D a penalty method is employed to enforce constraints to the enriched degrees of freedom,
thus improving the stress intensity factors determination. In particular, for each 𝑗th enriched node located in the circular region
centred at the 𝑘th crack tip with radius 𝑟0 (see Fig. 4) the system of linear equations is constrained to return the same value of the
stress intensity factors. 𝑟0 should be suitably small, including solely the nodes closest to the crack tips where the asymptotic fields
are expected to dominate the solution.

The procedure has been implemented for 4-node quadrilateral elements. In order to ensure that the stiffness matrix is adequately
integrated even when the integrand functions are not polynomials (see Eq. (11)), high order Gauss quadratures (8 × 8 or 20 × 20
Gauss points) are used over the finite elements whose nodes are enriched.

4. Accuracy of the XFEM-based methodology

Several examples were solved to evaluate the accuracy of the method in assessing the 𝐾 and 𝐾 values at the crack tips.
5

I II
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Fig. 4. Edge crack on a uniform mesh. The square and triangular nodes are enriched by the crack tip functions.

Fig. 5. Sketch of the single edge notched tension specimen.

4.1. Single edge notched tension specimen with an angled-crack

The problem under consideration is a single edge notched tension specimen as shown in Fig. 5. The specimen length is 𝐿 = 20
units, the width is 𝑊 = 10 units, the thickness is 𝑡 = 1 unit, 𝑎 is the crack length and 𝜔 is the crack inclination angle, 𝜔 = 0◦
denoting pure Mode I cracking. The material is assumed to be linear elastic isotropic (𝐸 = 1 unit and 𝜈 = 0.3), and the problem is
idealized as 2D plane stress. A uniaxial stress field, 𝜎 = 1 unit, is applied to the specimen. 2D quadrilateral elements are used to
mesh the solid model, with edge size of 0.125 units.

The stress intensity factor is calculated at the crack tip for different crack lengths, and for 𝜔 = 0◦ and 𝜔 = 45◦. The numerical
integration over the enriched finite elements is performed using 8 × 8 and 20 × 20 Gauss points (GP) for 𝜔 = 45◦, whereas only
8 × 8 GP are adopted for 𝜔 = 0◦. The enrichment radius 𝑟 is set to 0.55, while 𝑟0 (i.e., the radius within which the enriched variables
are constrained to be the same) is set to 0.27.

The resulting 𝐾I values for 𝜔 = 0◦ are reported in Table 1, together with those obtained numerically by Albinmousa et al. [47],
herein considered as the reference solution. Tables 2 and 3 list, respectively, the 𝐾I and 𝐾II values for 𝜔 = 45◦, both calculated with
X3D and according to Albinmousa et al. [47]. In the tables, the error is computed as:

𝐸𝑟𝑟𝑜𝑟 =
𝐾I,X3D −𝐾I,Reference

𝐾I,Reference
(13)

As it can be seen in Table 1, when 𝜔 = 0◦, an excellent agreement with the reference solution is maintained for the considered range
of crack lengths 𝑎. It is important to remark that what matters is the inclination of the crack with respect to the mesh orientation
instead of the inclination with respect to the specimen geometry. When 𝜔 = 0◦, the crack is parallel to one of the side of the
finite element, while if 𝜔 = 45◦ the crack is inclined with regard to the sides of the finite elements, resulting in the increase of
the complexity of the mathematical expressions of the integrands of the stiffness matrix, which are far from polynomials. In the
latter case, in fact, large errors are obtained, especially for small crack sizes (see Tables 2 and 3), even by increasing the quadrature
6
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Table 1
𝐾I values for a horizontal edge crack (𝜔 = 0◦) in an isotropic elastic
plate under tension - 8 × 8 Gauss Points.
𝑎 𝐾I,X3D 𝐾I,Ref . [47] 𝐸𝑟𝑟𝑜𝑟 (%)

0.25 0.94 0.97 −2.7
0.5 1.35 1.4 −3.8
1 2.04 2.10 −2.7
2 3.40 3.44 −1.1
4 7.61 7.46 +1.9
5 11.50 11.15 +3.2

Table 2
𝐾I values for an inclined edge crack (𝜔 = 45◦) in an isotropic elastic plate under tension.
𝑎 8 × 8 Gauss Points 20 × 20 Gauss Points 𝐾I,Ref . [47]

𝐾I,X3D 𝐸𝑟𝑟𝑜𝑟 (%) 𝐾I,X3D 𝐸𝑟𝑟𝑜𝑟 (%)

0.25 0.74 +22.2 0.68 +12.8 0.60
0.5 0.97 +11.9 0.96 +10.3 0.87
1 1.37 +7.4 1.36 +6.3 1.28
2 2.06 +3.7 2.02 +1.9 1.98
4 3.81 +5.6 3.79 +5.0 3.61
5 5.19 +9.4 5.12 +8.1 4.74

Table 3
𝐾II values for an inclined edge crack (𝜔 = 45◦) in an isotropic elastic plate under tension.
𝑎 8 × 8 Gauss Points 20 × 20 Gauss Points 𝐾II,Ref . [47]

𝐾II,X3D 𝐸𝑟𝑟𝑜𝑟 (%) 𝐾II,X3D 𝐸𝑟𝑟𝑜𝑟 (%)

0.25 0.15 −51.9 0.25 −19.5 0.31
0.5 0.36 −19.8 0.36 −17.6 0.44
1 0.58 −11.1 0.57 −11.7 0.65
2 0.95 −5.2 0.92 −7.9 0.99
4 1.72 −2.7 1.70 −3.4 1.76
5 2.22 −2.0 2.20 −2.7 2.26

order to 20 × 20 GP. Additional approaches may be implemented to further improve the solution, such as that based on equivalent
polynomials proposed in [48–50] and the blending techniques introduced in [51,52], but these aspects are out of the scope of the
present work.

4.2. Stress intensity factor prediction for micro-cracks with coarse mesh

In this example, the minimum crack length that provides an accurate solution in terms of 𝐾I is identified in relation to the mesh
ize 𝑙. For this purpose, a single edge notch tension specimen is considered, whose sketch is shown in Fig. 6. Plane strain conditions
re adopted. The specimen has height 𝐻 = 30 mm and width 𝑊 = 7.5 mm. It is subjected to a tensile stress 𝜎 = 10 MPa. The
pecimen includes a crack whose length 𝑎 ranges from 10 μm to 100 μm (see Table 4), which are typical sizes for flaws in glass [12].
he problem is solved with a regular mesh of 4-node quadrilateral elements with an edge size set to 0.25 mm. Young’s modulus is
hosen as 70,000 MPa and Poisson’s ratio is taken as 0.25. The enrichment radius is chosen as 𝑟 = 0.45 mm (see Fig. 7). Because of
he very small extension of the enriched region, 𝑟0 is set equal to 𝑟.

The 𝐾I values obtained with the numerical simulations are listed in Table 4, together with the reference solutions calculated as:

𝐾I = 𝜎
√

𝜋𝑎𝐹 (𝑎∕𝑊 ) (14)

where 𝐹 (𝑎∕𝑊 ) is calculated for each single crack length 𝑎 with accuracy better than 0.5%, according to the handbook by Tada
et al. [33].

Table 4 shows that, on average, the 20 × 20 Gauss quadrature yields better results than the 8 × 8 Gauss quadrature, confirming
the findings of Section 4.1. In particular, in the case of 20 × 20 GP, the error in the estimation of 𝐾I is below 4% for any crack
length between 0.02 mm and 0.1 mm (crack length to finite element size between 8% and 40%), while for 𝑎 = 0.01 mm the error is
about 15%. For 8 × 8 GP and 𝑎 = 0.01 mm the error increases almost to 26%. In conclusion, the XFEM technique returns accurate
𝐾I values even when the mesh is coarse, unlike the standard FEM approach, which requires a denser mesh to yield a precise stress
7

value in the presence of stress concentrations and singularities.
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Fig. 6. Sketch of the uniaxial tensile test.

Fig. 7. FE mesh and enriched finite elements, 𝑟 = 0.45 mm.

Table 4
𝐾I values for a single edge notched tension specimen.
𝑎 8 × 8 Gauss Points 20 × 20 Gauss Points Reference Solution

𝐾I,X3D 𝐸𝑟𝑟𝑜𝑟 𝐾I,X3D 𝐸𝑟𝑟𝑜𝑟 𝐾I (Eq. (14))
(mm) (MPamm1∕2) (%) (MPamm1∕2) (%) (MPamm1∕2)

0.01 2.51 +26.2 2.28 +14.7 1.99
0.02 2.93 +4.2 2.78 −1.1 2.81
0.025 3.25 +3.4 3.10 −1.4 3.14
0.03 3.62 +5.2 3.31 −3.8 3.44
0.035 3.96 +6.5 3.64 −2.1 3.72
0.04 4.19 +5.4 3.88 −2.4 3.97
0.05 4.44 −0.1 4.40 −1.0 4.44
0.06 4.87 +0.1 4.70 −3.4 4.87
0.065 5.22 +3.1 5.03 −0.7 5.07
0.07 5.62 +6.9 5.32 +1.2 5.26
0.075 5.86 +7.7 5.36 −1.5 5.44
0.08 6.0 +6.8 5.57 −0.9 5.62
0.09 6.04 +1.4 5.95 −0.2 5.96
0.1 6.20 −1.3 6.26 −0.3 6.28

4.3. Multiple interacting edge cracks

In this section the example of three interactive parallel edge cracks in a plate subjected to tensile load is analysed. Auradou
et al. [53] showed that the presence of neighbouring cracks modifies the stress field within the body and induces a shielding
of the stress at the crack tips. According to Afferrante et al. [16], the statistical distribution of the glass failure stress would
change depending on the distribution of cracks, their distances, and their interaction with the geometry and the stress field. As
8
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Fig. 8. Parallel cracks in a finite plate under uniaxial tensile load.

Table 5
Stress intensity factors for parallel edge cracks in a finite plate.
Crack 𝑎 𝜎 𝐾I,X3D 𝐾I,Reference [54] 𝐸𝑟𝑟𝑜𝑟

(mm) (MPa) (MPam1∕2) (MPam1∕2) (%)

Outer 1.5 9.15 0.75 0.76 −1.60
Central 1.5 9.15 0.63 0.65 −3.37

a consequence, the correct failure stress distribution can only be obtained through numerical simulations in which the cracks
distribution is directly included in the model.

Fig. 8 shows the setup of the virtual specimen, that is analysed in plane strain conditions. A tensile stress 𝜎 = 9.15 MPa is applied
to a finite plate with three edge cracks. The plate width is 𝑊 = 7.5 mm, while its height is 𝐻 = 30 mm. The length of the three
cracks is 𝑎 = 1.5 mm, and they are far from each other 𝑏 = 3 mm, i.e. twice their length. The mechanical properties and the finite
element type and size are the same as for the previous example. The enrichment radii 𝑟 and 𝑟0 are chosen as 0.50 mm.

𝐾I values for central and outer cracks are listed in Table 5. The error with respect to the numerical solution provided by Jiang
et al. [54] is less than 4%.

5. Critical crack and failure stress distributions for uniform and uniaxial stress

Following previous studies [29,35], the population of the size 𝑎 of edge cracks can be realistically represented by a single Pareto
distribution, that is described as [55]:

𝐹Pareto(𝑎) = 1 −
(𝑎0
𝑎

)𝑐
(15)

with 𝑎0 ≤ 𝑎 < ∞, 𝑎0 > 0 and 𝑐 > 0. 𝑐 is the shape parameter, whilst 𝑎0 is the scale parameter, which represents the smallest edge
crack size.

Let us consider a glass plate subjected to uniaxial tensile loading, with a single edge crack of size 𝑎 perpendicular to the loading
and no sub-critical crack growth (see, for example, Fig. 2). The survival probability of the plate is expressed as the probability that
the size 𝑎 is smaller than the critical crack depth 𝑎𝑐 :

𝑃 (𝑎 < 𝑎𝑐 ) = 𝐹Pareto(𝑎𝑐 ) = 1 −
(

𝑎0
𝑎𝑐

)𝑐
(16)

Supposing now that the glass plate has a random number 𝑖 of isolated edge cracks, since 𝑎𝑐 is constant in case of uniaxial loading
perpendicular to the cracks, the survival probability of the plate is the product of the survival probabilities of all cracks:

𝑃 (𝑎 < 𝑎𝑐 ) =
[

1 −
(

𝑎0
𝑎𝑐

)𝑐]𝑖

(17)

Assuming that the real number of defects 𝑥 is a random variable which follows a Poisson distribution with mean 𝑚 [56]:

𝐹Poisson(𝑥) =
𝑥
∑

𝑖=0

𝑒−𝑚𝑚𝑖

𝑖!
(18)

the survival probability of a random glass plate is now obtained by multiplying the probability 𝐹Poisson(𝑥) from Eq. (18) by the
survival probability from Eq. (17):

𝑃 (𝑎 < 𝑎𝑐 ) =
𝑥
∑ 𝑒−𝑚𝑚𝑖 [

1 −
(

𝑎0
)𝑐]𝑖

(19)
9
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For all possible numbers of cracks the survival probability is:

𝑃 (𝑎 < 𝑎𝑐 ) =
∞
∑

𝑖=0

𝑒−𝑚

𝑖!

{

𝑚
[

1 −
(

𝑎0
𝑎𝑐

)𝑐]}𝑖

(20)

Introducing the definition of the exponential function as an infinite series:

𝑒𝜉 =
∞
∑

𝑖=0

1
𝑖!
𝜉𝑖 (21)

the survival probability of a glass plate with average number of cracks equal to 𝑚 becomes:

𝑃 (𝑎 < 𝑎𝑐 ) = 𝑒−𝑚𝑎
𝑐
0𝑎

−𝑐
𝑐 (22)

Finally, by substituting:

𝜆 = 𝑚𝑎𝑐0 (23a)

nd

𝛼 = 𝑐 (23b)

n Eq. (22), the Fréchet cumulative distribution function of the critical edge crack size is obtained:

𝐹Fréchet (𝑎𝑐 ) = 𝑒−𝜆𝑎
−𝛼
𝑐 (24)

he Fréchet distribution is a special case of the so-called generalized extreme value distribution [57], that find applications in many
reas, such as rainfall analysis, seismic analysis, radioactive emissions, strength of materials, insurance and financial matters [58].
n Eq. (24), the exponent 𝛼 > 0 is the shape parameter, while 𝜆 > 0 the scale parameter. The Fréchet distribution is also referred to
s Inverse Weibull distribution.

In the same way, Haldimann et al. [59] showed that the strength of glass, under uniaxial tensile loading 𝜎𝑓 , follows the Weibull
istribution in Eq. (25a) if the cracks population is represented by a single Pareto distribution:

𝐹Weibull(𝜎𝑓 ) = 1 − exp
[

−
(𝜎f
𝜃

)𝛽
]

(25a)

𝜃 =
𝐾𝐼𝐶

𝑚
1
𝛽 𝑌

√

𝜋
√

𝑎0
, 𝛽 = 2𝑐 (25b)

t is important to remark that Weibull and Fréchet distributions are related to each other by Eqs. (25b) only under the hypothesis
f a uniform uniaxial stress field acting perpendicular to the cracks. The relationships in Eqs. (25b) lose their validity in case of
rbitrary stress field and gradient.

The Weibull parameters 𝜃 and 𝛽 can be obtained, for instance, by uniaxial tensile tests using small scale glass specimens. Once
hey are evaluated and the size of the smallest flaw 𝑎0 is assumed, the parameters 𝑚 and 𝑐 can be estimated by means of Eq. (25b).
inally, the average number of defects 𝑚 and the size of the glass specimens can be used to calculate the density of the glass defects.
he average number of cracks 𝑚 and the shape parameter 𝑐 are true material properties unlike 𝜃 and 𝛽, which depend on the test
etup and the element size.

. Case studies and discussion

The proposed XFEM-based methodology is now applied to evaluate the load bearing capacity of glass components. The influence
f the stress gradient is also studied using four different test configurations: a specimen under uniaxial tensile load, a beam under
hree point bending, a simply supported beam and a cantilever beam, both subjected to a uniformly distributed load. In addition, a
omparative study is conducted to show the difference between the stress-based design approach and the proposed one.

All the considered case studies were analysed in plane stress conditions, adopting the following material properties: 𝜈 = 0.25,
𝐸 = 70,000 MPa and 𝐾IC = 0.75 MPam1∕2. Based on the findings of the tests presented in Section 4, the continuum was discretized
using a regular and uniform mesh of 4-node quadrilateral elements with edge size 𝑙 = 0.25 mm, cracks parallel to one of the side
of the finite element were considered, the enrichment radii were chosen as 𝑟 = 𝑟0 = 0.45 mm, a 20 × 20 Gauss quadrature rule was
adopted over the enriched finite elements. It is to be noted that the edge size of the finite element has been selected in such a way
to have the crack length to element size ratio falling within the range 8%–40%, which allows to get very accurate results, as shown
in Section 4.2.

6.1. Edge-cracked specimen under uniaxial tensile load

Consider an edge-cracked specimen, as shown in Fig. 9, subjected to uniaxial tensile stress, provided by a uniform distributed
load, 𝑞, applied at the right and left edges. The specimen has length 𝐿 = 30 mm, height 𝐻 = 7.5 mm and thickness 𝑡 = 1 mm. The
10

specimen includes 29 cracks, which are placed every millimetre. It is assumed that the crack size 𝑎 follows the Pareto distribution
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Fig. 9. Specimen under uniaxial tensile load.

Fig. 10. Specimen under uniaxial tensile load: 𝐾I values at the crack tips for a single simulation.

in Eq. (15) with scale parameter 𝑎0 = 0.020 mm and shape parameter 𝑐 = 3.0. The value of the parameter 𝑐 is chosen based on the
findings of the study by Vandebroek et al. [29], where the glass edge strength was investigated experimentally using a four-point
bending configuration. The tests, that involved almost 40 specimens with polished edge finishing, showed that the experimental
data could be interpolated by a Weibull distribution with shape parameter 𝛽 ≃ 6. As a consequence, the Pareto parameter 𝑐 can be
derived using Eq. (25b) as 𝑐 = 𝛽∕2.

The failure load 𝑞f ,𝑖 of the virtual specimen was calculated for 𝑛 = 5000 different simulations, since Yankelevsky [34] showed
that this number of simulations guarantees a reliable convergence and repeatable results. In each simulation, the size of the cracks
along the bottom side of the specimen varied according to the Pareto distribution. RANDOM_NUMBER() is the FORTRAN function
used in X3D to extract pseudo-random crack sizes from the Pareto distribution. The failure load was obtained for each simulation
by equating the maximum value of 𝐾I to 𝐾IC. Fig. 10 shows the 𝐾I values at each of the crack tips for a single simulation.

The computed failure loads, 𝑞f ,𝑖, were ranked in ascending order (𝑖 = 1 to 𝑛) to build an ordered sample with 𝑛 values and, then,
a probability of failure was assigned to each value 𝑞f ,𝑖 of the ordered sample by means of probability estimators 𝐺̂𝑖:

𝐺̂𝑖 =
𝑖 − 0.3
𝑛 + 0.4

(26)

The points (𝑞f ,𝑖, 𝐺̂𝑖) build the sampling cumulative distribution function of the failure load.
As recalled in Section 5, the statistical population of the failure load, 𝑞f , of a glass specimen having crack sizes Pareto distributed,

can be represented by a two parameter Weibull distribution function:

𝐹Weibull(𝑞f ) = 1 − exp

[

−
(

𝑞f
𝜃̂

)𝛽
]

(27)

where 𝛽 and 𝜃̂ are the Weibull shape and scale parameters, which can be estimated with the moments method [60]:

𝛤
(

1 + 2
𝛽

)

𝛤 2
(

1 + 1
𝛽

) − 1 =
𝑠̂2𝑞f
𝜇̂2
𝑞f

(28a)

𝜃̂ =
𝜇̂𝑞f

𝛤
(

1 + 1
𝛽

) (28b)

being 𝜇̂𝑞f and 𝑠̂2𝑞f the sample mean and variance:

𝜇̂𝑞f =
∑𝑁

𝑖=1 𝑞f ,𝑖
𝑁

(29a)

𝑠̂2 =

∑𝑁
𝑖=1

(

𝑞f ,𝑖 − 𝜇̂𝑞f
)2

(29b)
11
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Fig. 11. Weibull distribution of the failure load for the glass specimen under uniaxial tensile load: (a) Linearized cumulative distribution function; (b) Probability
density function.

Table 6
Weibull and Fréchet parameters for the glass specimen under uniaxial tensile load.
n. of Pareto Weibull Fréchet
cracks param. parameters parameters

𝑚 𝑎0 𝑐 𝜃̂ 𝛽 𝜃 𝛽 𝜆̂ 𝛼̂ 𝜆 𝛼
(mm) (N∕mm) (N∕mm)

29 0.02 3.0 48.8 5.7 48.2 6.0 2.4 × 10−4 3.0 2.3 × 10−4 3.0

By solving Eq. (28a), using any of a number of standard iterative root-findings procedures, and Eq. (28b), the parameters of the
Weibull distribution function of the failure load can be obtained: 𝜃̂ = 48.8 N/mm and 𝛽 = 5.7.

The sampling cumulative distribution function (𝑞f ,𝑖, 𝐺̂𝑖) and the Weibull distribution function of the failure load are plotted into
the diagram of Fig. 11(a). The Weibull density function of the failure load is plotted in Fig. 11(b), where it is compared to the
histogram whose bars represent the relative number of the failure load, 𝑞f , obtained from the numerical simulations. Even though
the histogram is not a smooth function, a reasonable fit of the numerical results is obtained with the Weibull distribution. It is worth
noticing that the numerical results plotted in Fig. 11(a) follow a regular two parameter Weibull distribution function, whereas the
experimental results in Fig. 1 could be more accurately interpolated by a bilinear and bimodal Weibull distribution, in accordance
with the findings of Ballarini et al. [61]. This discrepancy is due to the fact that for the numerical tests the edge cracks were extracted
from a single statistical population, whereas the experimental results in Fig. 1 suggest that the initial cracks belong to two different
statistical populations, which differ from each other either in the crack shape or in the dispersion of the crack size, or in the two
factors combined. In particular, the experimental results indicate that the smallest cracks are more scattered than the biggest ones,
which causes the slope of the right tail of the sampling distribution to be lower than that of the left one. However, this difference
does not undermine the validity of the numerical approach. It is only a matter of choosing a correct crack size distribution.

The statistical distribution of the size of the critical edge cracks, which represent the point of origin of failure, has been obtained
by the numerical results. As clearly shown in Figs. 12(a) and 12(b), the Fréchet distribution provided by Eq. (24) fits the numerical
data perfectly. The Fréchet distribution parameters 𝜆 and 𝛼 are calculated by means of the moments method [57]. The estimator
for 𝛼̂ can be obtained by solving the following non-linear equation:

𝛤
(

1 − 2𝛼̂−1
)

𝛤 2
(

1 − 𝛼̂−1
) − 1 =

𝑠̂2𝑎𝑐
𝜇̂2
𝑎𝑐

(30)

while the parameter 𝜆̂ can be obtained by solving:

𝜆̂ =
𝜇̂𝛼̂
𝑎𝑐

𝛤 𝛼̂
(

1 − 𝛼̂−1
) (31)

Like the failure load and the critical edge crack size, the fracture origin point is considered a random variable that is predicted
by the methodology and shown in the graph of Fig. 13. The point of origin of failure is uniformly distributed since the specimen is
subjected to a uniaxial and uniform tensile load.

Finally, in Table 6, the estimated Weibull parameters 𝜃̂ and 𝛽 are compared to the experimental ones, 𝜃 and 𝛽, obtained by
Vandebroek et al. [29] and used as input for the numerical procedure. The same is done for the Fréchet parameters 𝛼 and 𝜆. The
good match between the estimated and experimental distribution parameters is another proof of the accuracy and validity of the
proposed methodology.
12
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Fig. 12. Fréchet distribution of the critical edge crack size for the glass specimen under uniaxial tensile load: (a) Cumulative distribution function (CDF); (b)
Probability density function.

Fig. 13. Location of the critical edge crack for the glass specimen under uniaxial tensile load.

Fig. 14. Sketch of the three point bending test.

6.2. Edge-cracked beam under three point bending

This example involves the edge cracked beam from Section 6.1 subjected to three point bending (Fig. 14). The beam contains 29
edge cracks Pareto distributed (𝑎0 = 0.020 mm and 𝑐 = 3.0) and, just like the previous example, the failure load 𝑃f ,𝑖 was determined
for 5000 simulations. The 𝑖th failure load corresponds to the load for which 𝐾𝑚𝑎𝑥

I = 𝐾IC at one of the 29 edge cracks. For the sake
of example, the 𝐾I values at each crack tip for a single simulation are plotted in Fig. 15. The highest values of 𝐾I are obtained near
the mid-span of the beam, where the bending moment takes the maximum value.

The failure load values, 𝑃f ,𝑖, were analysed statistically using the Weibull distribution, whereas the critical crack size, 𝑎c, using
the Fréchet distribution, as discussed above. The diagrams in Fig. 16 show good agreement between the sampling distribution of
the failure load and the Weibull distribution. At the same time, Fig. 17 shows an excellent match between the sampling distribution
of the critical crack size and the Fréchet distribution. The Weibull and Fréchet parameters, estimated with the moments method,
are: 𝜃̂ = 83.5 N and 𝛽 = 6.0, 𝜆̂ = 2.3 × 10−4 and 𝛼̂ = 2.7.

The fracture origin coordinate 𝑥 is normally distributed around the mean 𝑥̄ = 15 mm (Fig. 18) with standard deviation
√

𝑠2𝑥 = 3.25 mm. However, it is shown that fracture can occur anywhere between 𝑥 = 5 mm and 𝑥 = 25 mm.
By interpolating the sampling cumulative distribution function of the failure load with the Weibull distribution the following

load bearing capacity evaluated with a 0.8% probability of failure is obtained: 𝑃f ,0.008 = 37.55 N (see Fig. 16(a)).
The design load bearing capacity for the three-point bending test is now estimated through a stress-based failure criterion. First,

the glass tensile strength of the beam with 29 cracks must be defined. Based on the outcomes of the previous case study (see
13
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Fig. 15. Beam subjected to three point bending: 𝐾I values at the crack tips for a single example simulation.

Fig. 16. Weibull distribution of the failure load for the glass beam under three point bending: (a) Linearized cumulative distribution function; (b) Probability
density function.

Fig. 17. Fréchet distribution of critical edge crack size for the glass beam with 29 cracks under three point bending: (a) Cumulative distribution function (CDF);
(b) Probability density function.

Fig. 18. Location of the critical edge crack for the glass beam under three point bending.
14
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Fig. 19. Simply supported beam under uniformly distributed load.

Fig. 20. Weibull distribution of the failure load for the simply supported beam under uniformly distributed load: (a) Linearized cumulative distribution function;
(b) Probability density function.

Fig. 11(a)), the glass tensile strength evaluated with a 0.8% probability of failure is 𝜎f ,0.008 = 20.96 MPa. As a consequence, the
resistant bending moment is:

𝑀z;R =
𝜎f ,0.008𝐼
𝑦max

= 196.50 N mm (32)

being 𝐼 the second moment of area and 𝑦max the distance from the neutral axis to the most extreme fibre. Finally, the load bearing
capacity is obtained as follows:

𝑃R =
4𝑀z;R

𝐿
= 26.20 N (33)

Therefore, it can be concluded that the load bearing capacity estimated with the proposed probabilistic FEM approach is 43% greater
than the one evaluated with the stress-based approach. The difference in load-carrying capacity prediction is due to the fact that the
stress-based design approach assumes that the point of origin of failure coincides with the point of maximum stress, that, in most
of the cases, does not occur [18]. In that regard, the distribution in Fig. 18 shows that the point of the origin of failure matches
with the point of maximum stress in less than one case out of five.

6.3. Edge-cracked simply supported beam under uniformly distributed load

The cracked beam of Section 6.1 is now simply supported and subjected to a uniformly distributed load as shown in Fig. 19. As
in the previous case studies, the size 𝑎 of the cracks follows the Pareto distribution with 𝑎0 = 0.02 mm and 𝑐 = 3.

Figs. 20 and 21 show the sampling probability distributions of the failure load 𝑞f and critical edge crack size 𝑎𝑐 , which are well
fitted by the Weibull and Fréchet distributions, respectively. The Weibull and Fréchet parameters were determined using the sample
mean and variance by means of the moments method as explained before. Their values are: 𝜃̂ = 4.8 N/mm and 𝛽 = 5.9, 𝜆̂ = 2.3×10−4

and 𝛼̂ = 2.8.
As shown in Fig. 22, the coordinate 𝑥 of the critical crack follows the Gaussian distribution with mean 𝑥̄ = 15 mm and standard

deviation
√

𝑠2𝑥 = 7 mm.
The load bearing capacity of the beam under uniformly distributed load obtained from the Weibull diagram (Fig. 20) for the

0.8% probability of failure is 𝑞 = 2.12 N∕mm. This value is compared with that estimated using the stress-based failure criterion.
15
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Fig. 21. Fréchet distribution of the critical edge crack size for the simply supported beam under uniformly distributed load: (a) Cumulative distribution function
(CDF); (b) Probability density function.

Fig. 22. Location of the critical edge crack for the simply supported beam under uniformly distributed load.

Fig. 23. Sketch of the cantilever beam test.

As obtained above (see Section 6.2), the resistant bending moment of the glass beam is Mz;R = 196.50 N mm. Therefore, the load
carrying capacity calculated with the stress-based failure criterion is:

𝑞R =
8𝑀z;R

𝐿2
= 1.75 N∕mm (34)

In conclusion, the load bearing capacity assessed using the proposed probabilistic FEM approach is 21% larger than that obtained
using the stress-based failure criterion.

6.4. Edge-cracked cantilever beam under uniformly distributed load

The last example involves a cantilever beam subjected to a uniformly distributed load (Fig. 23). As in the previous cases, the
beam contains 29 cracks, whose size 𝑎 is Pareto distributed (𝑎0 = 0.020 mm and 𝑐 = 3.0).

The Weibull distribution of the failure load interpolates 𝑁 = 5000 different points (𝑞f ,i, 𝐺̂𝑖) in Fig. 25. Each 𝑞f ,i value is obtained
using the 𝐾I-based fracture criterion. Fig. 24 depicts the 𝐾I distribution along the beam for a single FEM simulation. Near the fixed
end of the beam, where the bending moment is the largest, the highest 𝐾I values are found.

The sampling probability distribution of the critical edge crack size is fitted with the Fréchet distribution in Fig. 26. The estimated
Weibull and Fréchet distribution parameters are: 𝜃̂ = 1.8 N/mm and 𝛽 = 6.0, 𝜆̂ = 1.6×10−4 and 𝛼̂ = 2.7. The point of origin of failure
is located between 𝑥 = 15 mm and 𝑥 = 30 mm, as shown in Fig. 27.
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Fig. 24. 𝐾I values at the crack tips for a single simulation of the cantilever beam under uniformly distributed load.

Fig. 25. Weibull distribution of the failure load for the cantilever beam under uniformly distributed load: (a) Linearized cumulative distribution function; (b)
Probability density function.

Fig. 26. Fréchet distribution of the critical edge crack size for the cantilever beam under uniformly distributed load: (a) Cumulative distribution function (CDF);
(b) Probability density function.

Fig. 27. Location of the critical edge crack for the cantilever beam under uniformly distributed load.
17
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The load resistance of the cantilever beam evaluated with the stress-based failure criterion is:

𝑞R =
2𝑀z;R

𝐿2
= 0.44 N∕mm (35)

whereas the load bearing capacity obtained with the proposed probabilistic approach is 𝑞f ,0.008 = 0.80 N∕mm (see Fig. 25(a)).
Therefore, the 𝐾I-based prediction is 83% larger than the stress-based prediction.

7. Conclusions

A new probabilistic FEM approach has been proposed for the design of structural glass elements and, more generally, brittle
materials such as ceramics and polysilicon micro-structures. In the current version, the methodology, which adopts a stress intensity
factor-based fracture criterion and makes use of the Monte Carlo simulation to predict the failure load associated to a chosen
probability of failure, can be applied to plane stress/strain problems, with arbitrary geometries, boundary conditions and flaw size
statistical distributions. Moreover, it has the capability to take into account the interaction among cracks and the effect of stress
concentrations on the stress intensity factor.

Advantages of the proposed procedure are an increased reliability of the design process and a more accurate prediction of the
load bearing capacity compared to the stress-based design approach. With reference to the considered case studies, the developed
method provided load carrying capacities larger than the predictions of the stress-based approach by an extent variable between
21% and 83%, depending on the stress gradient within the glass specimen.

In this first version, deterministic assumptions have been done on the crack position, the crack density, and the statistical
distribution of the edge flaws. However, the crack density and the statistical distribution of the cracks could be evaluated, within
confidence intervals, by means of experimental tests, while the crack position could be selected randomly from a statistical
distribution. To quantify how the uncertainties on these three parameters affect the output variable, a sensitivity analysis will be
carried out in future work. Besides, the extension of the methodology to 3D problems will be pursued, to generalize the method and
to better investigate the effect of shape, orientation and location of the cracks, all factors that influence the distribution function of
the glass strength.
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