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Abstract—Darknets collect unsolicited traffic reaching unused
address spaces. They provide insights into malicious activities,
such as the rise of botnets and DDoS attacks. However, darknets
provide a shallow view, as traffic is never responded. Here we
quantify how their visibility increases by responding to traffic
with interactive responders with increasing levels of interaction.

We consider four deployments: Darknets, simple
L4-Responders, vertical L7-Responders bound to specific
ports, and DPIpot, a honeypot that responds to all protocols on
any port. We contrast these alternatives by analyzing the traffic
attracted by each deployment and characterizing how traffic
changes throughout the responder lifecycle on the darknet. We
show that the deployment of responders increases the value of
darknet data by revealing patterns that would otherwise be
unobservable. We measure Side-Scan phenomena where once
a host starts responding, it attracts traffic to other ports and
neighboring addresses. DPIpot uncovers attacks that darknets
and L7-Responders would not observe, e.g., large-scale activity
on non-standard ports. And we observe how quickly senders
can identify and attack new responders.

The “enlightened” part of a darknet brings several benefits and
offers opportunities to increase the visibility of sender patterns.
This information gain is worth taking advantage of, and we,
therefore, recommend that organizations consider this option.

Index Terms—Darknets, Measurements, Network security.

I. INTRODUCTION

Darknets or network telescopes are IP addresses advertised
by routing protocols without hosting any services. They have
been used for years as passive sensors in a variety of network
monitoring activities and research projects [1], [2], [3], [4].
Traffic reaching a darknet is inevitably unsolicited. Therefore,
it is helpful to highlight network scans (both from malicious
and legitimate scanners), backscattering (i.e., traffic received
from victims of attacks carried out with spoofed IP addresses),
and traffic due to bugs and misconfigurations [2].

To increase the visibility of attackers’ activities, honeypots
allow researchers to obtain more information about events on
darknets [5], [6], [7], [8]. Honeypots are active sensors that
collect information by responding to unsolicited traffic. The
goal is to engage with potential attackers using simulators that
replicate the basic functions of real systems (low-interaction
honeypots) or actual live systems deployed in controlled en-
vironments (high-interaction honeypots).

Darknets and honeypots are complementary: the former
provides a broad but shallow view of scanning activity; the
latter provides deeper insights into specific attack patterns. A

combination of the two cases could enrich the type of infor-
mation currently being gleaned from darknets while providing
broad coverage and deep insights. Darknet traffic is known to
change significantly, not only in the IP address space but also
due to production services hosted “near” the darknet’s address
space [9], [10].

We present our efforts to systematically and quantitatively
compare different levels of interactive responders that we
deploy within different portions of our darknet address space.
We consider the following four types of sensors: (i) Darknet,
silent listeners that capture received traffic; (ii) L4-Responders,
which completes the TCP handshake and stores all possible
application layer requests sent by clients; (iii) L7-Responders,
low-interaction honeypots that mimic specific application pro-
tocols on their usual and known ports; (iv) DPIpot, a novel
responder that identifies the application protocol used by the
sender regardless of the destination port.

We design two experiments to observe how senders1 interact
with the responders. In the first setup, we activate the respon-
ders in a /24 darknet, while keeping a second /24 network
as a pure darknet. We run this setup for months and observe
the traffic that each sensor attracts over an extended period of
time. In the second experiment, we first turn off all responders
to measure the effects of darkening a network with active
services. After 15 days, we turn on responders in our second
/24 darknet, measuring the transient effects of deploying active
responders in a darknet.

Our goal is to revisit and update some well-known facts
about darknet deployments and add new and fresh insights
that highlight the advantages and disadvantages of alternative
response strategies. Summarizing our key findings:

• We quantify Side-Scan phenomena where a node hosting
a service receives more traffic for other services and
ports. Unlike [9], which observes similar patterns in CDN
nodes, we quantify how the type of service hosted in the
darknet critically affects Side-Scan.

• Activating responders leads to an increase in traffic on
darknet neighboring IP addresses too. The joint use of
active responders and passive darknets increases the vis-
ibility of sender patterns and improves the understanding
of phenomena and attacks.

1We call sender hosts contacting our darknet, e.g., attackers, scanners, etc.
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• L4-Responders and L7-Responders increase the visibility
of darknets, as reported in [11], [5]. However, the lack
of a wide range of application-level responders limits
interaction and traffic visibility compared to our multiple
L7-Responders and DPIpot.

• DPIpot decouples services from ports, shedding light on
activities directed to non-standard ports, offering a rich
picture that is unseen in other deployments. As a side-
effect, it may “trap” senders in some particular activities,
slowing them. This trade-off shows how passive and
interactive deployments are complementary.

• We observe several scanning patterns that senders employ
to discover hosts and services in a network. We document
how fast hosts become the target of in-depth activity
from multiple senders once found online by some initial
scanners. Conversely, senders keep coming back (for
weeks) to IP addresses that once hosted active responders.

In addition to these analyzes, we provide the complete set
of responders used in our analysis as open-source software.
We release DPIpot to foster its development and use. We also
make the data analyzed in the following sections available
online in anonymized form to allow for reproducibility.

We provide an overview of related work (Sec. II), explain
our methodology (Sec. III), and describe macroscopic traffic
characteristics (Sec. IV). We examine the changes in different
deployments (Sec. V) and the benefits of DPIpot (Sec. VI).
Finally, we observe what happens when we darken and lighten
a network (Sec. VII), before concluding the paper (Sec. VIII).

II. RELATED WORK

A. Darknet research and infrastructure

Darknets have been employed for years in various network
monitoring and research activities [1]. Examples include the
study of (i) DDoS attacks [8], [12], [13], (ii) IPv4 address
space usage [14], (iii) Internet censorship [15], (iv) large-scale
internet scanning [16], [4], [17], and (v) botnets and malware
proliferation [6], [18].

In terms of infrastructure, previous efforts have character-
ized the differences between centralized and sparse imple-
mentations, size, and location of darknets [1], [3]. Several
actors maintain darknet infrastructures, including the decades-
old CAIDA/UCSD [19] project, darknets operated by major
network operators [2], [3], and other projects run by univer-
sities and security companies worldwide [7], [10], [20], [21],
[22], [23].

Recent work [9] used servers from Akamai’s Content De-
livery Network (CDN) to study unsolicited traffic. Unlike a
traditional darknet, CDN nodes provide public services and
thus receive and process production traffic. Nevertheless, all
TCP/UDP ports that do not host production services can be
reached by unsolicited traffic. The authors show that produc-
tion servers attract unsolicited traffic that is quite different
from the traffic observed in an ordinary darknet. We extend
these findings by uncovering and investigating different de-
ployment combinations and services. Although our deploy-
ment is based on honeypots and thus lacks components of
a production environment, we show that the combination of

services exposed in a host is important and shapes the mix of
attacks and noise that targets it.

Similar to our methodology, authors [11] propose Spoki,
which completes TCP handshakes in the darknet to record
the first payload sent by scanners. The authors of [5] present
eX-IoT, IoT honeypots deployed in darknets. Spoki is similar
to our L4-Responders, while eX-IoT is a new category of
L7-Responders. Our methodology includes multiple functions
beyond Spoki and eX-IoT, including multiple categories of
L7-Responders and a new DPIpot that performs deep packet
inspection (DPI) on-the-fly to decide how to respond to scan-
ners. We show that advanced responders shed light on a new
wave of scanners and attackers that are not visible in a pure
darknet or when using a single responder type such as in [11],
[5].

B. Honeypot systems and analysis

We study the impact of deploying active services on the
darknet using honeypots as responders. Honeypots have been
used in security activities for years, with well-established
projects such as the Honeynet Project [24] and TPot [25] pro-
viding several alternatives. Previous works on honeypots have
covered many aspects, such as (i) introducing new honeypots
that target specific protocols or services [26], [27], (ii) eval-
uating the effectiveness of different types of honeypots [28],
and (iii) presenting techniques to detect honeypots[29], [30].
Readers are invited to review the survey at [31], which
provides a broad overview of honeypot research.

Some authors present a general characterization of honeypot
traffic, focusing on the origin of attacks, the targeted services,
and the frequency of attacks (e.g., [32], [33], [27], [34], [35]).
A recent work [36] compared the use of honeypots in different
geographic locations. Another work [37] allocated unused
addresses in a cloud for honeypot deployment. We revisit these
efforts here evaluating the deployment of honeypots compared
to what is observed in dark spaces. In addition, we review how
measurements from different active responders differ from
(and influence) measurements collected in darknets.

Our DPIpot leverages DPI to decide how to respond to
incoming traffic. This setup allows attacks on non-standard
ports to be detected. Some meta-honeypots allow flexible
configuration of backends to handle traffic on non-standard
ports [38], [39], [25]. Most of these systems act as proxies (at
various levels) logging the traffic forwarded to the backend.
However, they lack DPIpot mechanisms to identify traffic on-
the-fly for a variety of protocols.

Honeytrap [40] is the closest honeypot to DPIpot. Honey-
trap is a meta-honeypot that performs protocol identification.
However, it implements only a limited number of protocol
fingerprints. Honeytrap supports about 26 services and pro-
vides the ability to extend the set of protocol identification
rules. DPIpot instead relies on a state-of-the-art DPI library
(nDPI [41]), which is widely used in other network applica-
tions and provides hundreds of protocol fingerprints. In fact,
we compared different DPI solutions in [42] and concluded
that nDPI provides the best coverage and precision for DPIpot.
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Fig. 1. Infrastructure overview. The infrastructure is divided from no inter-
action (Darknet) to the highest level of interaction (DPIpot).

III. METHODOLOGY AND DATASETS

A. Infrastructure

Fig. 1 schematically represents our measurement infrastruc-
ture. Unsolicited traffic that reaches our dedicated address
space is routed – totally unfiltered – to one of our four
deployments that correspond to different levels of interactivity:

1) Darknet: IP addresses that just receive traffic without
responding to any packet;

2) L4-Responders: responders that complete the TCP three-
way handshake, capture eventual application requests
from clients, but never respond to an application message;

3) L7-Responders: honeypots that mimic popular application
layer services. We use state-of-the-art honeypots to sim-
ulate well-known services; L7-Responders act as vertical
responders that only interact with a limited number of
ports and services;

4) DPIpot: our novel responder that performs L7 switching
of requests using DPI. It decides on-the-fly which pro-
tocol to use, and responds to TCP connections on all
TCP ports. Unlike L7-Responders, DPIpot decouples the
default TCP ports from the application protocols.2

Note that none of our deployments respond to UDP or mal-
formed TCP packets to prevent abuse (see ethical concerns in
Sec. III-E).

For the L7-Responders deployments, we rely on the hon-
eypots organized and distributed by the TPot project [25].
We activate honeypots to handle a range of popular appli-
cation protocols. TPot offers a collection of third-party low-
interaction honeypots, i.e., programs crafted to simulate a
vulnerable service communicating over a given L7 protocol.
Most of our L7-Responders offer login interfaces only [43],
registering the brute-force attempts against services (e.g.,
RDP, POP3, and IMAP). Some L7-Responders rely on more
sophisticated honeypots, e.g., simulating a vulnerable server
accessible via SSH/Telnet [38], or serving pages that mimic
actual services accessible over the web [44]. We defer the
reader to the documentation of TPot for details.

Our L7-Responders offer vertical services only: They are
deployed behind the standard TCP ports of the given service,
e.g., the HTTP honeypot is deployed on port TCP/80 whereas
the Remote Desktop Protocol (RDP) honeypot responds on
port TCP/3389. To investigate the impact of responding to

2To avoid resource starvation, L4-Responders and DPIpot implement active
and inactive timeouts dropping active (idle) connections after 60 s (10 s).

traffic arriving on other ports, we implement and deploy
DPIpot. DPIpot listens on all TCP ports. On receiving a new
TCP connection request, it completes the three-way handshake
and waits for the first message from the client. Then it analyzes
the payload looking for the application-layer protocol. DPIpot
relies on nDPI [41]. This choice gives us a flexible system
that supports hundreds of protocols, which is far more than in
previous projects [40]. If a known protocol is found and one
of the L7-Responders can handle it, DPIpot directs traffic to
such backend; otherwise it acts like L4-Responders. Note that
DPIpot can identify and direct traffic only in cases that are
client initiated, i.e., where the client sends the first application-
layer message. Otherwise, it behaves like L4-Responders– e.g.,
in telnet or SMTP, where the client waits for the server banner
before attempting to log in.

Both our L4-Responders and DPIpot are implemented in
Python using the Twisted framework [45]. Our architecture
(see Fig. 1) is intrinsically distributed, and Twisted is scalable.
However, as we will show later, the deployment of respon-
ders increases the traffic reaching the darknet by orders of
magnitude. To prevent abuses, we thus intentionally limit the
capacity of our infrastructure (see Sec. III-E).

B. Data capture and processing
We isolate one /23 network to perform experiments with

our multiple deployments – i.e., darknet, L4-Responders,
L7-Responders or DPIpot. Our setup is deployed in /16
campus network (at Politecnico di Torino, in Italy) that hosts
servers and clients. Our infrastructure captures all packets hit-
ting the /23 darknet. We use tcpdump and store all traces on a
high-end server to generate separate logs for each deployment.

We here characterize the traffic focusing on TCP flows,
defined by the usual 5-tuple (client/server IP addresses,
client/server ports, and transport-layer protocol). A new flow
starts when a SYN segment is received, and it terminates after
the connection is closed (in case of the active responders)
or an idle time. We annotate each flow with useful metadata
and statistics, including the application protocol identified by
nDPI, if any L7 payload is present.

According to the capabilities of each responder, we identify
different flow stages:

• SYN: Flows for which we observe only the SYN mes-
sage(s), eventually retransmitted by the client multiple
times; This is the most common case on darknets, but it
happens also on the blocked ports of other deployments
or when a responder is unable to cope with the workload;

• 2WH: Incomplete three-way handshake, where the client
ignores (or resets) the SYN/ACK message, as in the case
of stealth-SYN port scans;

• 3WH: Client and server complete the TCP three-way
handshake, but exchange no payload – this is expected in
L4-Responders and DPIpot when clients wait for servers
to initiate the conversation;

• L7 payload: Client and server open the TCP connec-
tion and exchange some application-layer messages.

In addition, we record malformed TCP messages, e.g.,
SYN/ACK likely arriving due to backscattering or other pack-
ets with bogus TCP flags, as well as any other protocol (UDP,
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TABLE I
DEPLOYMENTS AND PROTOCOLS. EACH ROW REFERS TO THE TRAFFIC OF 8 IP ADDRESSES DURING OUR FIRST CAPTURE PERIOD (FROM 15/04/2021 TO

16/06/2021). FOR DIRECT COMPARISON, WE REPORT NUMBERS ONLY FOR THE 8 FIRST ADDRESSES IN DARKNET EXT.

Deployment Category Addr. Category: Port Category: Application Flows Flows with
L7 Payload

Sender
Addr.

DPIpot All 136:143 0:65535 All below 1927 M 1207 M 133 k
Mail 128:135 25, 110, 143, 465, 993, 995 pop(s), imap(s), smtp(s) 4 M 71 k 120 k
Terminal 120:127 22, 2222∗, 23, 2323∗ ssh, telnet 10 M 5 M 139 k
Fileserver 112:119 135:139, 445 netbios, CIFS 11 M 6 M 119 k

L7- Remote Desktop 104:111 3389, 5900, 5901, 5800∗, 5801∗, 5938∗, 6568∗ ms rd, vnc, teamviewer, anydesk 13 M 7 M 122 k
Responders Database 96:103 3306, 33060∗, 1433, 4022∗, 1434∗, 5432∗, 27017 mysql, mssql, postgres, mongodb 4 M 212 k 121 k

Proxy 88:95 8080, 8000∗, 3128 generic, squid 5 M 43 k 121 k
Web 80:87 80, 443 http(s) 4 M 93 k 127 k
All 72:79 All above All above 32 M 23 M 157 k
Mail 64:71 25, 110, 143, 465, 993, 995 - 4 M 36 k 123 k
Terminal 56:63 22, 2222, 23, 2323 - 6 M 546 k 123 k
Fileserver 48:55 135:139, 445 - 5 M 1 M 120 k

L4- Remote Desktop 40:47 3389, 5900, 5901, 5800, 5801, 5938, 6568 - 6 M 546 k 147 k
Responders Database 32:39 3306, 33060, 1433, 4022, 1434, 5432, 27017 - 4 M 356 k 123 k

Proxy 24:31 8080, 8000, 3128 - 5 M 38 k 123 k
Web 16:23 80, 443 - 4 M 59 k 131 k
All 8:15 0:65535 - 13 M 6 M 146 k

Darknet Int – 2:5;176:179 0:65535 - 4 M 0 125 k
Darknet Ext – 2:5;176:179 0:65535 - 4 M 0 111 k

(∗) Ports that are forwarded to the L7-Responders, even if the backend (i.e., TPot) does not host any honeypot. The L7-Responders reset the connection in these cases, as opposed
to the darknet (which never responds to traffic) and the L4-Responders (which always try to open a connection request).

ICMP, etc). These cases are however not discussed in the paper
but included in the public traces we release to the community.

C. First experiment: Deployments and categories

We perform two experiments. In the first round, we record
traffic for two months, from the 15th of April to the 16th of
June 2021. This capture starts several months after the deploy-
ment of the active responders, thus representing a picture of a
stable deployment of active responders in a darknet.

In this first experiment, we split the /23 network into two
/24 networks. One /24 network hosts no service and operates
as a classic darknet, hereafter called Darknet Ext – see Tab. I.
Unless explicitly mentioned, all results referring to our first
experiment and using a darknet as baseline rely upon this
Darknet Ext.

Then, we split the other /24 addresses into groups of 8 IP
addresses. We deploy several categories of responders inside
this single /24 as reported in Tab. I (see the third column).
Some host L4-Responders and L7-Responders and respond
to 8 specific service categories, 8 for L4-Responders, and 8
for L7-Responders. Each category defines which services the
responder supports. We configure the responders to receive
and handle only traffic that arrives at ports typically hosting
services belonging to such category, silently dropping packets
arriving on other ports. We create categories for database, file,
mail, proxy, remote desktop, terminal, and web services. We
report all ports opened for each category on Tab. I, together
with some typical applications relying on such ports. We
also create an extra category denoted as All, for which we
accept all traffic going to any port. In the case of the all
category in L4-Responders, we perform a TCP handshake
for flows arriving in any TCP port. For the L7-Responders
category denoted as All, we pass all traffic to the TPot backend,
regardless of whether there is a honeypot active on that port

or not. If no honeypot is present, the backend explicitly resets
the connection.

We devote 8 IP addresses to host DPIpot, which responds
in all ports. It performs DPI on the arriving packets to identify
the most appropriate responder based on the payload, and
eventually forwards traffic to a honeypot offered by TPot.

The remaining IP addresses in the /24 hosting the active
responders act as darknet. We select 8 of these IP addresses
and call them Darknet Int.

D. Second experiment: Deploying and removing responders

We perform a second experiment to assess the transient
impact of activating and shutting down responders in the
darknet. We start by shutting down all active responders on
the 25th of January 2022, thus letting the complete /23 behave
like a darknet. This allows us to observe whether (and how)
senders continue to search for the responders after they are
removed from the network.

On the 9th of February 2022, we light up fresh responders
in the /24 that previously served as darknet (Darknet Ext). This
/24 had been used as a darknet for many years before the start
of our experiments. As such, it allows us to observe the speed
senders discover new services as well as all transition steps
from a darknet IP address into active responders.

We deploy L4-Responders, L7-Responders, and DPIpot us-
ing 8 IP addresses for each deployment, which are distributed
in the /24 network as reported in Tab. II. In this experi-
ment, we use only the All category for L4-Responders and
L7-Responders. The deployment is instrumental to maintain
an equally spaced set of dark IP addresses between each
group of active responders. This would let us measure whether
the placement of active responders impacts the neighboring
addresses.
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TABLE II
IP ALLOCATION IN THE FRESH DEPLOYMENT OF ACTIVE RESPONDERS.

Deployment Category Addr.
Darknet4 – 192:255
DPIPot All 184:191
Darknet3 – 128:183
L7-Responder All 120:127
Darknet2 – 64:119
L4-Responder All 56:63
Darknet1 – 0:55
Darknet∗ext – –

(∗) Darknetext in this experiment is equivalent to Darknet Int in Tab. I.

E. Ethics

We take several countermeasures to restrict the impact of
our measurements on third-party networks. First, and most
importantly, we never send packets if our packets may worsen
the position of attack victims. In particular, we never send
UDP traffic, as it could make our infrastructure part of DDoS
attacks relying on spoofed addresses and amplification tech-
niques. For the same reason, we silently drop all TCP packets
with SYN/ACK flags and other malformed flows, as they may
arrive from victims of DDoS attacks with spoofed addresses.
Responding to such packets may help the attackers to overload
the victims’ networks.

The traffic we observe may come from infected machines
that are taking part in botnets. As previously said, we explicitly
limit the capacity of our infrastructure to avoid creating too
much traffic for the networks hosting such infected machines.
The setup discussed in this paper can comprehensively sustain
at most a few Mbps of traffic upstream, which is far insufficient
to overload remote networks.

Finally, IP addresses sending traffic to our infrastructure
may uncover vulnerable computers exploited by attackers [46].
We take all measures to protect such IP addresses. We
anonymize addresses in the datasets we release publicly. We
also collaborate with our security team and our upstream
providers, actively notifying them about novel attacks and
senders.

IV. MACROSCOPIC CHANGES IN TRAFFIC

We report a high-level characterization of the different
deployments aiming to answer the following question: How
much extra information one would get when some IP addresses
inside a darknet actively respond to incoming traffic?

For easy comparisons, we restrict our analysis to 8 addresses
per deployment. We focus on those addresses in the all
category in the case of L4-Responders and L7-Responders, and
get 8 addresses from Darknet Ext and Darknet Int (see Tab. I).
Here we focus on our first experiment setup, and whenever not
explicitly mentioned we report statistics for the first month of
our dataset for easy visualization.

A. Breakdown per flow stage

Fig. 2 reports the number of flows received in each deploy-
ment, breaking it down per flow stage. The left plot details the

SYN 2WH 3WH L7 payload Other
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Fig. 2. Flows reaching different deployments. Numbers inside the left plot
mark the increase with respect to Darknet Ext.

number of flows (notice the y-log scale) while the right plot
details the share in each deployment.

Darknets observe a large majority of TCP SYN messages,
with a few UDP and bogus TCP segments (about 8% of the
total). As soon as we start replying with the L4-Responders,
the number of flows grows by a factor of 4 compared to
the darknets3 (cfr. Tab. I). Although our deployment shall
perform the full 3-way handshake, a small portion of flows
remain in the SYN stage, i.e., connection requests to which
our L4-Responders deployment cannot reply due to short-term
congestion. Interestingly, 35% of the flows terminate at the
2WH stage, most likely corresponding to “TCP-SYN scans”
(also reported in [11]). About one fourth of the open TCP
flows carries no payload, i.e., likely host discovery actions
performed with a “TCP-connect scan”.

Consider now the L7-Responders. the number of flows
doubles again. The SYN stage flows are now about 7%. Part
of this traffic is again caused by the limits we impose on
our infrastructure. However, as we will see later, once we
respond to traffic in some ports, more scans are observed
in other ports too. This effect increases the number of SYN-
stage flows. Naturally, we observe a strong increase of L7
payload flows, which are now about 72% of the total.

Moving to DPIpot, it attracts 3 and 2 orders of magnitude
more flows than the darknet and the L7-Responders, respec-
tively. The number of flows grows to billions – about 70 times
more than in the L7-Responders, and 600 times more than
in the darknets. Here we see around 40% of cases finishing
on SYN stage, which correspond to periods in which our
deployment hits its capacity.

It is worth commenting that the share of Other traffic
remains similar in all deployments. This suggests that respond-
ing to TCP traffic as we do in our deployments does not
stimulate senders to generate packets using UDP/ICMP.

Fig. 3 reports the number of flows observed for each IP
address selected for this analysis. Here, we see that the number
of flows reaching each deployment is well-divided among
the IP addresses belonging to the given deployment. Little
variations are seen for the L4-Responders, where a couple

3Other subsets of darknet addresses yield a stable number of flows
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Fig. 3. Number of flows per deployment. Each bar in the figure reports
numbers for a single IP address of several deployments.

of sources contribute with large-scale attempts against two
L4-Responders IP addresses.

More interestingly, the number of unique sources contacting
each deployment changes considerably (see numbers in the last
column of Tab. I). Differences are visible between Darknet Ext
and Darknet Int. In fact, IP addresses belonging to Darknet
Int attract thousands of sources more than those in Darknet
Ext. We conjecture that this behavior is a consequence of the
presence of active responders in the same /24 subnet. Once
sources find services in a subnet, they search for services in
the neighbor addresses. We will investigate this in more detail
in Sec. VII.

Finally, L4-Responders, L7-Responders and DPIpot attract
more senders than the darknets. In sum, deploying active
responders sheds light on new scanners and attackers that
would not be uncovered with simple darknets.

B. Temporal evolution

Darknets and honeypots are known to receive variable traffic
over time. Fig. 4 reports the average per-hour number of
flows received by each deployment (All category). Here we
report time series covering the full 2-month dataset of our
first experimental setup. Notice the y-log scale. As expected,
the darknet is steadily the least contacted deployment with
a few hundred flows per hour on average, except during
sporadic scans hitting the address space [2], [8], [10]. Both
L4-Responders and L7-Responders show a noisier pattern over
time, again with small episodes of increases. The DPIpot
registers much more variable figures. For instance, flows per
hour top to more than 1 million on May 7th to suddenly vanish
on May 12th. We will detail this case in Sec. VI-C. As said
above, these episodes bring DPIpot to the limits we impose
on the infrastructure.

Takeaway: The number of flows grows by orders of mag-
nitude with increasingly interactive responders. Vertical hon-
eypots attract many times more flows than darknets. DPIpot
pushes this increase further thanks to its ability to respond to
application traffic on non-standard ports. This growth creates
temporal bursts of traffic that challenge the deployment itself
and calls for protection mechanisms to avoid collapsing the
infrastructure and biasing the collected data.
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Fig. 4. Temporal evolution of the number of flows.

V. PORTS AND SENDERS

We have observed the effects of answering darknet traffic
in terms of traffic volume. We now assess changes in traffic
patterns along two axes: the targeted services and sender IP
addresses. This section answers the following question: How
the presence of active services changes the behavior of the
groups of senders and of contacted services?

For this analysis, we again rely on our first experimental
setup, i.e., long-run assignment of addresses to active respon-
ders.

A. Changes on probed ports

The traffic volume is expected to vary over the exposed
ports. Already in a darknet, well-known ports are expected to
be more frequently contacted than others. Fig. 5 reports the
number of flows per port for the different deployments. Here
we see interesting effects of deploying the active responders.
Common for darknet, L4-Responders, and L7-Responders,
senders concentrate their interest on well-known ports below
1024. On the contrary, DPIpot attracts much more flows on
very uncommon ports (notice the y-log scale). Investigating
the L7 payload, these flows are related to Remote Desktop
Protocol (RDP), hinting at a specific attack (we investigate
this in Sec. VI).

In detail, focus on the darknet (black plot on the left).
While some ports do receive a much larger share of traffic as
expected, scanners cover the whole port range. This confirms
how darknets are effective to observe senders performing
horizontal scans, i.e., doing host discovery.

When we start responding to requests, the picture drastically
changes. For instance, the top ports in the L4-Responders
account for more than 60% of the flows. This percentage
grows to more than 70% in L7-Responders. See how the
number of flows increases for low, well-known ports in Fig. 5-
b and Fig. 5-c. That is, once a target is discovered, senders
activate the next stages of scans or attacks. Interestingly,
senders contacting L4-Responders skip some ports starting
from port 27 000 (the number of flows goes below 1 in the
y-log scale). Curiously, notice the continuous group of ports
[35000 : 38000] where senders again check all ports. For the
sake of completeness, note that a few ports go unchecked also
in L7-Responders.
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Fig. 5. Number of flows per destination port for the four deployments. The presence of different active responders changes the observed traffic per port.

DPIpot

L4-Responders (ALL)

L7-Responders (ALL)

Darknet

Fig. 6. Fraction of flows per sender IP address.

We observe a completely different picture for DPIpot. Some
hundreds of ports get millions of flows, and the remaining
ports get some uneven distribution of traffic. Unlike the
darknets and L7-Responders, more than 15 000 ports never
received any flows, similarly to the L4-Responders case. Recall
that, for both L4-Responders and DPIpot cases, all ports result
open during port scans. We conjecture that either the senders
get trapped performing activities on the found open ports, or
they are more cautious and abort (or time out) scans after
finding a high number of open ports.

Takeaway: Active responders in some ports engage senders,
which activate the next stage in their scans or attacks. This
increases the traffic and sometimes challenges the monitoring
infrastructure. Enabling all ports traps senders in some activ-
ities, possibly limiting/biasing their activity.

B. Changes on traffic senders

We now investigate changes seen in the set of senders
contacting the deployments. We start by highlighting the
last column of Tab. I. The number of unique senders varies
substantially across the deployments. In fact, senders increase
by around 40% in the L7-Responders when compared to the
Darknet Ext. Even more interesting Darknet Int, i.e., those
IP addresses hosted in the same subnet with the responders,
observe around 12% more senders than the pure darknet
subnet.

We dig into the behavior of these senders in Fig. 6. It reports
the cumulative fraction of flows from each sender. The x-axis
reports (in log scale) the rank of sender IP addresses according
to the volume for each deployment.

(a) Darknet (b) DPIpot

Fig. 7. Activity pattern of top-1000 sender IP addresses. Each row corre-
sponds to a sender’s IP address.

In the darknet, the three most active senders generate 40% of
flows. These are well-known scanners reported multiple times
in blocklists. The top 10 most active senders are responsible
for 63% of the flows. Some of them are always active. Some
senders probe at a high rate (hitting 20 000 flows per hour)
and disappear. We also observe a tail of more than 63 000 IP
addresses. This tail is in line with previous work [2] that shows
darknet traffic is dominated by bugs and misconfiguration,
with only a minority of senders actually performing scans
and attacks. Flows are more distributed across senders in
L4-Responders and L7-Responders, with the top-10 account-
ing for 20% and 32% of traffic, respectively.

The figure is completely different in DPIpot where the top-
10 most active senders account for 95% of the flows. These
senders are involved in RDP abuses observed on non-standard
ports. They generate millions of flows per hour, triggering our
rate-limiting countermeasures.

Fig. 7 offers a visual representation of the activity of the top
1000 most active senders over time. Each row corresponds to
an IP address. A dot is present if that IP address is active at
that hour. We register the presence of senders that are active
most of the time and the continuous arrival of new senders.
For instance, a group of 200 new senders appears on day 20
in the darknet. These senders are likely bots that perform a
coordinated scan reaching our address space. In general, we
can distinguish different patterns: some senders are persistent,
while others keep coming back periodically. A few senders
interact only for some time before disappearing and never
coming back. The latter is more visible in Fig. 7(b) for DPIpot.

We complement the analysis in Fig. 8, where we investigate
scan patterns performed by the top 100 most active senders.
We show only the darknet for brevity. The x-axis reports the
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Fig. 8. Top-100 senders vs. destination port. Addresses are sorted numerically.

destination port of flows, sorted by value. Each row refers to
a single sender IP address. A dot is present if that IP address
sends a flow to such a port. The darker the color, the larger
the number of flows.

For readability, we highlight some patterns with colors.
First, a few horizontal scanners are visible (cyan). These
senders check all ports, even in the darknet. Second, we
observe some vertical scanners (green) - i.e., senders that send
lots of packets for a few ports. Third, some senders cover a
large set of continuous ports, covering a subset of all ports
(dark blue). All these patterns are seen for other deployments
too, which however show yet other behaviors. For example,
besides the horizontal scanners, DPIpot allows us to observe
very targeted scans on a few ports, i.e, vertical attacks, and a
large number of coordinated scanners, i.e., groups of senders
that target the same few ports simultaneously. This has been
confirmed by our recent works we leverage embeddings to
discover common sender patters [47].

Takeaway: The presence of active responders attracts a new
wave of senders, which target also the addresses remaining
dark in the subnet. Most of the traffic comes from a few thou-
sand senders that are involved either with vertical or horizontal
scans and attacks. Unlike vertical honeypots, DPIpot lets us
observe scan patterns where also non-standard ports get the
attention of attackers.

VI. AMPLIFICATION OF SERVICE-SPECIFIC DEPLOYMENTS

We now focus on the extra information different responders
offer compared to darknets We consider our first experiment.

Here, we answer the question: Does the presence of specific
services attract traffic to other services? What happens when
one deploys services on non-standard ports?

A. Service amplification

To quantify the extra traffic per deployment, we define the
amplification factor as the ratio between the number of flows
seen on a given port(s) for the 8 IP addresses of a specific
deployment, and the number of flows directed to the same
port(s) on the 8 IP addresses belonging to the Darknet Ext.

First, we run a preliminary test to verify whether the
amplification factor changes when comparing IP addresses

TABLE III
AMPLIFICATION FOR L4-RESPONDERS AND L7-RESPONDERS. CASES IN
WHICH NO AMPLIFICATION IS OBSERVED ARE MARKED WITH A HYPHEN.

L4-Responders
DB File Mail Proxy RD Terminal Web Others

DB 15.4 4.3 – – – – – –
File 1.6 42.0 – – – – – –
Mail 1.5 4.1 6.5 – – – – –
Proxy 1.5 4.2 – 2.7 – 1.2 – 1.2
RD 1.5 4.2 – – 21.2 1.6 – –
Terminal 1.5 4.1 – – – 9.3 – 1.3
Web 1.5 4.2 1.4 1.2 – 1.3 8.1 –

L7-Responders
DB File Mail Proxy RD Terminal Web Others

DB 9.3 3.9 – – – – – –
File 1.6 116.3 – – – – – –
Mail 1.5 3.6 9.6 – – – – –
Proxy 1.5 3.8 – 2.8 – – – 1.2
RD 1.5 3.8 – – 254.9 – – –
Terminal 1.5 3.6 – – – 46.6 – 1.2
Web 1.5 3.8 1.2 1.2 – 1.2 5.3 –

belonging to the same deployment. For this, we take all groups
of 8 sequential IP addresses (/29 subnets) in the Darknet Ext
and compute – for each destination port – the amplification
factor for each group pair. Not reported here for brevity – the
distribution of the amplification factors is centered between 0.9
and 1.1. We therefore consider significant any amplification
factor outside this range.

Fig. 9 shows the amplification factor for some selected ports.
We identify five major behaviors, which we label with capital
letters and for which we provide two examples per category:
A) Invariant (around 50 000 ports): the traffic reaching these

ports does not change significantly from the darknet to
the other deployments. Ports like 2 000 and 6 379 receive
only port scan attempts, whose volume does not change
when responders are present;

B) Homogeneous (around 13 000 ports): senders find pos-
sible services on some open ports. These open ports
trigger senders to contact several other ports on the host
– e.g., ports 2 375 and 2 323 in the figure. However,
for these ports, senders do not send any L7 payload
- e.g., because waiting for servers to initiate the ex-
change. Here, L7-Responders and DPIpot behave just like
L4-Responders;

C) L7 client-initiated (around 500 ports): these are clear
cases of open services on default ports with client-
initiated protocols, e.g., SSH and RDP on ports 22

A) B) C) D) E)

Fig. 9. Amplification factor for the most targeted ports.
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Fig. 10. Amplification factor for selected deployments. β marks cases of Side-Scans.

and 3 389. Both L7-Responders and DPIpot are effec-
tive to engage with the senders. Since frequent attacks
are present, we observe very large amplification factors.
L4-Responders are less interesting for the senders, with
reduced amplification factor;

D) L7 server-initiated (around 10 ports): open services on
default ports for which the senders expect the server to
initiate the L7 exchange. In this case, the L7-Responders
vertical honeypots are more effective, while DPIpot be-
haves as the L4-Responders, e.g., on SMTP and SMB on
ports 25 and 445, respectively;

E) Large-scale attacks on non-standard ports (around 1 500
ports): Senders discover services on non-standard ports
and perform attacks. Only DPIpot, the only one able to
identify the L7-protocol, let us quantify such behavior.
In particular, we have witnessed an extensive RDP attack
on multiple non-standard ports, resulting in around 1 500
ports for which DPIpot amplification grows to almost
1, 000.

Takeaway: Different deployments amplify different behav-
iors. Overall, the obtained information clearly grows from case
A) to case E). The latter is particularly interesting, showing
the effects of performing traffic analysis on non-standard ports.
DPIpot leads to the discovery of active attacks on non-standard
ports, otherwise unseen with darknets or L4-Responders. A
simple darknet would offer a more limited view overall.

B. Targeted services and Side-Scans
So far we evaluated responders that support All services

at the same time. We now check what happens if we par-
tition responders so that they behave as vertical services.
We consider L4-Responders and L7-Responders, with cate-
gories/ports/applications defined in Tab. I. For each category,
we compute the amplification factor with respect to the cor-
responding categories/ports/applications in darknet addresses.

Tab. III summarizes results. For each vertical deployment,
we report the amplification factor only when significant. Rows
report the category of the deployment while columns report the
corresponding categories in the Darknet Ext as reference. As
expected, activating specific services attracts the attention of
senders on them (see main diagonal, in bold). L4-Responders
suffice to observe more traffic, but L7-Responders clearly gen-
erates much more interaction. Exceptionally, L4-Responders

see a higher amplification factor than L7-Responders in some
cases (e.g., DB). This is likely a consequence of our lack of
honeypots in the L7 backends (see Tab. I). In this case, while
L7-Responders reply with an uninteresting response (reset the
connections), the limitation to the TCP handshake offered by
L4-Responders further engages the senders.

We observe also significant amplification factors on services
for which the deployment does not answer, i.e., where we drop
the SYN packets. Regardless of the deployment, once senders
find an IP address that is alive (i.e., hosting a popular service),
they target other ports in the DB and File categories. The case
of the Web category is particularly interesting: when a service
is found active on ports typically hosting HTTP services,
senders apparently start targeting multiple other services/ports
on the same host. We refer to this phenomenon as Side-Scan
activity.

Fig. 10 reports some of the most relevant Side-Scans.
α) marks the well-known (and open) ports for the category.

Here as expected we get significant amplification factors,
with L7-Responders getting significantly more traffic than
L4-Responders for some honeypots.
β) marks those Side-Scan ports that suddenly get targeted

- despite being blocked for the particular deployment. These
are the ports senders target in vertical attacks/scans triggered
by a different category. For instance, when opening ports of
the Mail category (plot in the left-hand side), we observe
significant amplification factors on ports (445, 1 433), which
are usually used in File and DB services. We see curious Side-
Scans also on ports (7 001,8 088). Similar effects can be seen
for the Remote Desktop category.

More expected, ports (2 222, 2 323) are often used as alter-
native ports for terminal services – and senders Side-Scan these
ports when finding standard terminal ports open (rightmost
plot). Ports (8 728, 8 291) are known to be vulnerable services
in old versions of software routers. We observe frequent “door-
knocking” attempts: the sender checks port 22 first; if open
but no banner is offered, they check ports (8 728, 8 291).
L7-Responders do offer a banner on port 22. Thus, flows on
ports (8 728, 8 291) are smaller than in L4-Responders that
offers no banner on port 22 [48].

Finally, γ) exemplifies some ports that remain invariant, i.e.,
they are neither the initial target nor reached in Side-Scans.
Most ports fall in this class.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3267671

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

9 80 81
8080

8291
8081

2375
9200

2181
8088

Port Number

0

2

4

6

8

%
F

lo
w

s

(a) HTTP

22
6001

6000
8422

8522
8722

9000
8322

18522
8822

Port Number

0

20

40

60

80

%
F

lo
w

s

(b) SSH

1433 102
3389

1962
10001

3433
2433 21 22

28015

Port Number

0

20

40

60

80

100

%
F

lo
w

s

(c) MsSQL-TDS

3389
6000

3456
1025

49165
32772

49172
20031

6346
49188

Port Number

0.0

0.2

0.4

0.6

0.8

%
F

lo
w

s

(d) RDP

Fig. 11. Flows percentages on top-10 ports for DPIpot and different L7 protocols.

TABLE IV
TOP-5 PROTOCOLS RECOGNIZED IN DPIPOT.

Protocol Flows Sender
Addr.

Dest.
Ports

% of Flows on
Standard Ports

RDP 329 652 678 1 415 28 333 0.8
HTTP 444 715 13 705 9 381 6.2

TLS 221 565 2 806 11 999 4.6
SSH 119 698 1 097 187 72.9

MsSQL-TDS 31 596 3 193 448 92.6

Takeaway: We observe high amplification in both
L4-Responders and L7-Responders. Deployments targeting a
particular service uncover Side-Scans, which vary according
to the service exposed and the behavior of the responder.

C. DPIpot additional visibility

We now dig into DPIpot data to check the Side-Scan
phenomena in this case. Tab. IV shows that DPIpot observed
a vast majority of RDP flows - with 1 415 senders generating
more than 330 M flows in one month. These senders target
more than 28 thousand ports, with the standard port 3 389
accounting for only 0.8% of flows. This behavior is also seen
in Fig. 5 and Fig. 6 where the IP addresses involved in this
attack dominate the traffic DPIpot collects.

DPIpot lets us observe also other popular protocols like
HTTP, TLS, and SSH, with multiple senders targeting thou-
sands of ports. Some of these attacks focus mostly on the
default port - like SSH or MsSQL-TDS where 72.9% and
92.6% of the flows are to the default ports.

To check how senders choose the port to probe for a given
protocol, Fig. 11 details the most popular target ports for some
L7 protocols. Start from the HTTP case. Port 9 results as
the most popular port. This is a Side-Scan performed by an
Internet mapping project of the University of Michigan, which
targets port 9 (about 30 000 flows) and 7 (about 50 flows
only), sending bogus HTTP requests [49]. This scan activity
would likely go unnoticed on traditional honeypots. Besides
this curious scan, DPIpot recognizes HTTP requests on non-
standard ports that it correctly handles. Given the popularity
of solutions based on HTTP protocol, it is not surprising to
see senders probe open ports with HTTP requests.

Move to SSH now. Here, most flows target port 22. Yet, the
senders check other ports where system administrators may
move the SSH service, e.g., 8 422, 8 522, 18 522. This behavior
suggests a targeted Side-Scan where senders generate the port
to target with some domain-driven algorithm. The Side-Scan
using the MsSQL-TDS protocol is even more vertical. Most of

the attacks are directed to the default port 1 443, but some few
requests go to port 102, likely trying to abuse some Microsoft
Exchange service.

At last, the RDP case is worth more details. RDP has
become a viable solution for malicious hosts for installing
ransomware [50] via attacks that start with password brute-
force [51] as well as a common backdoor [52].

Thanks to DPIpot, we observe 1 415 senders performing
password brute-force attacks. The attackers however execute
the brute force in almost any port announcing RDP support.
Fig. 12 shows the targeted ports, ranked per number of re-
ceived flows. Notice the log-log scale. The step-wise behavior
of the figure suggests the presence of a group of 1 000 ports
that receive the most requests, followed by a second group
of ports that are contacted less frequently. This second group
may be due to an initial discovery horizontal scan, after which
senders come back to perform the brute-force attack. The inner
plot shows that there is also a clear pattern for the top-300
ports. Checking which ports each sender targets, we recognize
three macro-categories:

• Senders (around 700) that vertically probe only standard
RDP port 3 389 and the immediately adjacent ones;

• Senders that focus on a small group of selected ports
(e.g., ports 1 289, 23 390, 1 025, 3 418, 50 000, 554,
3 336) - likely chosen via domain knowledge. The four
IP addresses involved in this attack belong to the same
network and have never been reported at the time of
writing. They generate 3.5 million flows;

• Senders that scan thousand of ports (16 IP addresses).
These addresses have been reported as heavy scan-
ners [53] and perform a similar activity. This suggests
they are part of the same botnet.
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Fig. 12. Flows per port (RDP). Zoom on the first 300 ports in the inner axis.
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Fig. 13. Effects of removing and adding active responders in darknets.

Takeaway: DPIpot unveils unexpected Side-Scan attacks
and scans where senders target non-standard ports. It also
triggers activity that L7-Responders in the standard ports do
not observe. Senders may become very aggressive, calling for
precautions to avoid overloading the monitoring infrastructure.

VII. DARKENING AND ENLIGHTENING NETWORKS

We now shift our attention to our second experimental
setup, in which we shut all active responders down, before
enlightening new active responders in the other darknet.

We answer the following questions: Do senders continue to
reach IP addresses that once hosted active responders? How
fast does a newly-active IP address become a target of the
senders unseen in the darknet? How does the deployment of
active responders impact neighboring IP addresses?

A. From light to darkness, and back

Fig. 13 describes the traffic evolution for some deployments
in our infrastructure. Let us focus first on the deployments
that have been shut down. Fig. 13(a) depicts the time series
of the number of flows per hour for groups of 8 IP addresses
hosting the Darknet Ext, L4-Responders (All), L7-Responders
(All) and DPIpot in our first experimental setup (see Tab. I).
Before the shutdown (first black dashed vertical line) the active
responders observe more than 103 flows per hour, whereas
Darknet Ext between 102 and 103 flows per hour, respectively.
The number of flows per hour remains orders of magnitude
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Fig. 14. Example of host discovery patterns observed in the infrastructure.

higher in the active responders when compared to Darknet Ext
even two days after the responders are down. In fact, the
traffic remains noisier for the IP addresses that were hosting
the responders for weeks. In sum, the senders that target the
active responders insist on reaching these responders, and the
traffic does not return to the darknet levels even two weeks
after the shutdown.

Focus now on Fig. 13(b) which depicts the deployment
of fresh responders in the network that originally hosted
Darknet Ext. Before the activation of any service, all groups
of IP addresses observe the same amount of traffic (102–103

flows per hour). As soon as we deploy active responders on
Feb 9th, 2022, we spot an immediate increase in traffic for all
cases. We will show later that this increase is partly caused by
a new wave of senders that immediately and suddenly reach
each responder to perform an in-depth port scan. This result
hints at coordination with those senders that perform initial
host discovery. Again, it confirms the advantage of having a
deployment that mixes both types of responders.

To shed more light on senders’ strategies for port and service
scanning, Fig. 14 shows two examples of common patterns
observed when the responders are deployed. The figure depicts
the sequence of IP addresses a given sender targets over time.
On the y-axis, we report the type of darknet/responders on
such IP addresses.

The first example of Fig. 14(a) illustrates the behavior of
sequential scanners. These scanners sequentially visit every
IP address in the /24 subnet to find open services. After this
host discovery, they get back to those IP addresses hosting
responders to perform in-depth port scans and application
attacks. Some scanners start from a random initial IP address
(as in Fig. 14(a)), while others start from the first address in
the /24 subnet.
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Fig. 15. Jaccard Index among aggressive senders targeting each IP address.

Fig. 14(b) instead shows an example of a scanner that
performs a random host scan: these scanners keep contact-
ing random IP addresses in the /24 subnet to perform host
discovery. Once this stage is completed, they come back to
those responders for in-depth activity, similar to the sequential
scanners.

Takeaway: It takes days or even weeks for senders to stop
targeting responders that went offline. Conversely, as soon as
an IP address is found responding to traffic, it becomes a target
of (new) senders almost immediately to perform an in-depth
host and service discovery. Senders employ diverse strategies
to perform the discover activities.

B. Disturbing the neighbours

We further investigate if the presence of active responders
causes disturbance to IP addresses remaining dark in the
same /24 subnet. This question is important for those running
darknets to understand to what extent active responders pollute
the darknet traffic. Recall from previous sections that while
active responders do attract more senders, they sometimes trap
senders in specific activities, thus biasing senders’ behaviors.
Here we verify how neighbor addresses are impacted.

Recall from the last column of Tab. I that the number
of senders varies substantially across the deployments. We
confirm such behavior in our second experiment. For those
darknet IP addresses close to active responders, the increase in
the number of senders starts immediately after the responders
become active.

We now investigate if the additional senders contacting dark
addresses are similar to the ones reaching the responders. For
this, we compute the Jaccard Index for all pairs of addresses
in the /24 subnet where we have deployed fresh responders.
To filter out occasional senders, we restrict the analysis to
aggressive senders – those sources that send at least 100
packets over 1 month.

Fig. 15 shows the Jaccard Index in the form of a heatmap.
Overall, the figure shows two main effects: 1) active respon-

ders attract a different set of senders, and 2) there is a pollution
effect, but not directly nearby the responders.

For 1), notice the low Jaccard Index when comparing active
responders with darknet addresses (e.g., the rows/columns
corresponding to L4, L7, and DPIpot). This decrease is due
to an increase in the number of senders that target only the
responders (causing an increase in the denominator of the
Jaccard Index). This behavior confirms that some senders per-
form only the “host scan” phase, while other senders become
active to perform subsequent phases of attacks, e.g., “port
scans”, “application scans” and ”vulnerability exploitation” on
addresses that are found alive.

For 2), darknet addresses at the beginning (end) of the /24
address space tend to observe a higher fraction of senders in
common with neighboring addresses (causing an increase in
the numerator of the Jaccard Index). This fact is reflected in
the darker red pattern seen along the diagonal of the Jaccard
Index. This is an effect of the sequential scanners that stop
their activity before completing the scan of the entire /24
subnet.

Finally, focusing on the Jaccard Index computed among
addresses in the external /24 darknet (top and rightmost
groups), we observe a different set of senders. This behavior
is due to the set of senders scanning one /24 being different
from the set of senders scanning the second /24.

Takeaway: Senders involved in darknet scans are typically
different from those seen in subsequent attack stages. These
new senders are seen only when active responders are present.
Interestingly, the presence of responders attracts new senders
also for addresses remaining dark.

VIII. CONCLUSION

We systematically analyzed the impact of deploying interac-
tive responders on the darknet address space. Our results show
the clear benefit of engaging with senders, with more and more
interactive responders that allow one to collect richer data on
the senders’ behaviors. We also showed that a careful design in
the deployment, with the ability to turn on and off responders
at need, offers even more opportunities, uncovering a new
wave of senders that otherwise would remain unobserved.

We show that each deployment has its own benefits, un-
veiling different activities and bringing new perspectives.
Combining the several interaction levels augments visibility.
However, deployments may impact each other (e.g., polluting
neighboring addresses) and may foster traffic increase to the
point of saturating the monitoring infrastructure.

Beyond our findings, several challenges are waiting ahead
of such hybrid infrastructures. For example, a large amount
of collected information calls for automatic methods for
analyzing the data, uncovering correlations between deploy-
ments, fingerprinting senders and, ultimately, identifying the
rise of novel scans and cyber threats. Distributing our active
responders to other IPv4 ranges, IPv6 networks, and different
geographical locations is also a challenge that we will face in
future work.
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