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Abstract 

There is an ongoing profound shift in using glass as a primarily passive material to one 

that instills active properties. This review aims at clearly demonstrating that bioactive glasses 

(BGs) and glass-ceramics (BGCs) as functional biomaterials for cancer therapy can transform 

the world of healthcare in the 21st century. Melt- and gel-derived glasses and glass-ceramics 

can carry many exotic elements, including less common rare-earth, and trigger highly efficient 

anticancer properties via the combination of radiotherapy, photothermal therapy, magnetic 

hyperthermia, along with drug or therapeutic ions delivery. The addition of these dopants 

modifies the bioactivity, imparts novel functionalities, and induces specific biological effects 

that are not achievable using other classes of biomaterials. In this paper, we have reviewed and 

discussed the current knowledge on promising compositions, processing parameters, and 

applications of BGs and BGCs in treating cancer. We have also highlighted the need for further 

research on this particular, unique class of biomaterials as well as the major challenges ahead 

in the field. 
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1- Introduction 

Cancer is one of the most important reasons for death among the other complex and 

dangerous diseases that are still largely incurable. However, much progress is being made in 

this area [1]. Various strategies such as surgery, chemotherapy, radiotherapy, and new targeted 

therapies have been developed, including hyperthermia, phototherapy, gas therapy, and 

intelligent drug delivery to combat cancer and associated complications [2]. Surgery can 

successfully treat the disease in the first stages when the cancer cells have not spread over a 

long distance in the body. However, surgery is often not recommended in the later stages of 

cancer due to its invasive nature [3]. Conventional chemotherapy can not also selectively treat 

cancer as it does not usually differentiate between cancer and healthy cells. A significant 

portion of the drugs used in this treatment does not affect the target cancerous tissue but causes 

unwanted side effects [4]. Therefore, controlled drug delivery systems are highly 

recommended. Many other promising methods are introduced for patients who cannot undergo 

surgery or chemotherapy. These new methods complement basic techniques, are more accurate 

and effective, and identify and target only tumor cells [5]. 

Bioactive glasses (BGs) and glass-ceramics (BGCs) have been introduced since 1969 for 

various applications in tissue engineering, implantology, and pharmaceutics because of their 

exceptional properties such as good biocompatibility, controllable degradation rate, 

osteoinductivity, antibacterial capability, and pro-angiogenic effect, which are key to develop 

multifunctional systems [6], [7], [8]. These substances have been highly considered for cancer 

treatment since the beginning of the 21st century [9], [10]. For this purpose, they are modified 

by using biologically active and rare elements, increasing their performance range and 

application [11],[12]. Figure 1 summarizes the different cancer treatment approaches using 

BGs and BGCs, including radiotherapy, drug delivery, phototherapy, and hyperthermia. 

Radioactive biomedical glasses are already used to kill cancerous cells through the 

emission of radioactive beta radiation. These glasses are either non-biodegradable or 

biodegradable radioactive glasses. Yttria-alumina-silica (YAS) compositional system is one of 

the most famous non-biodegradable groups of rare earth aluminosilicate (REAS) glasses used 

in brachytherapy, which is an internal radiation therapy with seeded radionuclides inside or in 
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the vicinity of the treatment area. When radionuclides are irradiated, the radioembolization 

effect significantly reduces blood flow to the cancerous tumor and, hence, reduce the tumor 

mass. This procedure may complement chemotherapy or surgery (Figure 1-A) [13]. 

 

Figure 1. The different cancer treatments with biomedical glass and glass-ceramics: (A) Radiotherapy, (B) Drug 

delivery, (C) Phototherapy (adapted from ref. [14]) and (D) Magnetic hyperthermia. 

 

Mesoporous bioactive glasses (MBGs) can treat cancerous tumors more purposefully; 

controlled loading and release of drugs are performed in addition to the inherent properties of 

glasses, such as the ability to regulate gene expression and regeneration of lost tissue, including 

bone. Emerging drug delivery systems based on pH-triggered drug release by MBGs are 

designed to selectively enhance chemotherapy of drugs based on the pH distinction between 

normal and cancer tissues. These smart systems provide more toxicity to cancer cells in vitro 

and show selective damage of tumors in vivo (Figure 1-B) [15]–[18]. 

Various biologically active elements such as copper and bismuth with photothermal (PT) 

conversion properties have been incorporated in glasses. These glasses in photothermal therapy 

(PTT) damage cancer cells by absorbing the near-infrared (NIR) light of the laser and 

converting it into heat. Recent research has shown that heat generation can form reactive 

nitrogen species (RNS) or reactive oxygen species (ROS) in the patient's body and destroy 

cancer cells under photodynamic therapy (PDT) or gas therapy (Figure 1-C) [19]. 
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Magnetic BGCs are another group used to combat cancer. The magnetic phases/crystals 

are formed within the glassy matrix by controlled heat treatment, resulting in the formation of 

glass-ceramics. When a magnetic field is applied to these substances, the magnetic phase can 

generate heat, thus yielding a controlled local increment of the temperature under the treatment 

mechanism of hyperthermia. This overheating kills cancer cells without damaging healthy cells 

(Figure 1-D) [20]. 

In the last few years, enormous progress has been made in developing BGs and BGCs 

for new and intelligent cancer treatment methods [21]. As such, the main focus of this article 

is to snapshot the application of BGs and BGCs in emerging treatment approaches such as 

radiotherapy, drug delivery, phototherapy, and hyperthermia. The simultaneous use of several 

treatment methods to maximize therapeutic effect is also highlighted for future research. 

 

2- Radiotherapy 

Unlike chemotherapy and surgery, which are the most typical cancer treatments, 

radiation is a less invasive strategy that can be applied either from the inside or outside the 

body. Radiation therapy can destroy tumor cells by damaging the DNA of cancerous cells and 

losing the competence to divide and proliferate or reduce the size of the malignant mass by 

applying ionizing radiation as a physical therapeutic agent [22],[23]. Ionizing radiation consists 

of subatomic particles (photons, protons, and electrons) or electromagnetic waves that have 

enough energy to ionize atoms or molecules by separating electrons from them [24]. In addition 

to damaging cancerous cells, radiation therapy is sometimes harmful to normal cells. Still, they 

can keep their functions due to quicker self-repair than neoplastic ones [25],[26]. 

There are two strategies for radiation delivery to the injured site. The first case is ab 

externo (from outside the body, external beam radiation is given to the tumor location) which 

is the most commonly used clinical approach and typically operates with high-energy gamma 

rays, X-rays, or electrons (provided by a linear accelerator). The second case is ab interno using 

a radioactive source that delivers internal radiation from inside the body directly to the cancer 

site [23]. This radioactive source can be left in situ indefinitely (permanent brachytherapy) or 

be terminated and periodically replaced to preserve its therapeutic activity (temporary 

brachytherapy) [27]. 
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In brachytherapy, the radioactive sources are immobilized or sealed in microspheres, 

capsules, seeds, wires, or pellets. The appropriate radioactive sources for brachytherapy are 

chosen depending on the patient’s clinical conditions, disease stage, and physical aspects of 

radionuclides such as emitted radiation, the half-life time, associated average energy, and the 

emitted dose rate [23]. The selected radioisotope usually emits beta-ray with a short half-life 

and high energy or, in a few cases, alpha radiation for cancer treatment [28]–[30]. 

Brachytherapy has been successfully used to treat soft tissue cancer (gynecological and prostate 

malignant tumors) [23] and osseous tumors (Ewing’s sarcoma and metastatic bone cancer) 

[23],[31],[32]. 

Usually, radioactive seeds for brachytherapy consist of 125I as a radioactive element 

embedded in a metallic capsule (Ti in most cases) (Figure 2-A) [33]. Still, because of the long 

half-life of 125I (59.5 days), it can be replaced by 90Y with a shorter half-life (64.2 h) [34]–[36]. 

However, using this metallic capsule may require invasive extra-surgery for its removal [34]. 

Therefore, investigations have been conducted to find new materials to replace radioactive 

sources [36],[37]. Glasses with particular compositions are good candidates for brachytherapy, 

which host radionuclides in the glassy matrix. They can be non-degradable or degradable [38]. 

There are also two synthesis methods for radioactive glass fabrication. The first method 

includes combining the batch material with the radioactive agent and blending them, which 

causes the radioisotope to become an integral part of the glass. The second method is making 

radioactive glass from non-radioactive glass (specifically, oxide glasses) by neutron activation. 

This method is more common than the first one [38]. The remarkable point that must be avoided 

is the generation of some neutron-activated radioisotopes of Ca, K, and Na (the typical 

ingredients of oxide glasses) with a long half-life of about thousands of years. Also, the 

biocompatibility and chemical durability of glass matrices are other critical issues that must be 

considered [35],[39]. 

In order to avoid the production of undesirable radioisotopes from highly soluble K and 

Ca with a long half-life (1.25 × 109 years and 162.7 days, respectively) during neutron 

activation processes, a rare-earth doped aluminosilicate (REAS) system was studied by Day et 

al. in the early 1980s [35],[40],[41]. REAS consists of three oxides (Al2O3-SiO2-RE2O3, where 

RE2O3 is the neutron-activated rare earth oxide) and is a good candidate for radiotherapy agents 

due to the fast decay of radioisotope produced during neutron activation processes. 

Furthermore, these glasses have excellent durability in the biological environment and do not 

release any radioisotope in vivo. REAS glasses used in brachytherapy have been produced in 
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different shapes like rods (based on the 46.8Sm2O3-18.2Al2O3-35SiO2 wt.% system) (Figure 

2-B) or microspheres (55Y2O3-20Al2O3-25SiO2 wt.%) (Figure 2-C). REAS includes beta-

emitting 90Y (with a half-life of 64.2 h), 153Sm (46.7 h), 165Dy (1.257 minutes), 166Ho (26.7 h), 

and 186Re/188Re (90.6 h/17.0 h). The REAS glasses carrying 90Y or 166Ho present dual functions 

of avoiding the growth of a tumor and decreasing the mass of the tumor [38]. 

Figure 2. (A) A sample of commercial seeds with clinical use for brachytherapy [27]. (B) Rods and (C) 

Microspheres made of REAS glass in brachytherapy [28]. 

 

Yttria-alumina-silica (YAS) glasses are the most famous family of REAS glasses. These 

glasses have been synthesized by the flame spheroidization method in the form of microspheres 

(diameter around 20-30 µm). They kill cancerous cells by simultaneously emitting radiation 

and performing an embolization effect on the capillaries (radioembolization), which can be 

used in liver cancer radiotherapy [35],[36],[40],[42]. YAS glasses containing up to 55 wt.% 

Y2O3 have excellent chemical durability. It is also reported that the 40Y2O3-20Al2O3-40SiO2 

(wt.%) glass does not release any appreciable amount of 90Y in vivo [40]. In 1989, the first 

clinical trial reported by Boos et al. showed a considerably positive outcome in 35 of 46 

patients suffering from liver cancer, with full recovery of 1, partial recovery of 6, and disease 
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stability of 24 cases. Furthermore, the mean survival time for the respondent patients was 16.1 

months versus 8.8 months for the unresponsive patients [43]. 

In 1999, 90Y-containing glass microspheres, after being endorsed by the Food and Drug 

Administration (FDA), started being commercialized under the TheraSphere® brand (Boston 

Scientific Corporation, Watertown, MA, USA) [35]. They are currently used to treat patients 

with primary liver cancer that cannot be removed by surgery (unresectable hepatocellular 

carcinoma) [44],[45]. This product is clinically applied in more than 200 specialized global 

centers. The microspheres containing 90Y injected into the hepatic artery can be deposited in 

the capillary bed by radioembolization effect, decreasing the blood flow to the malignant 

tumor. Then, other follow-up treatments like transplants or surgery with observed significant 

reduction of a tumor mass can be performed [40],[35]. In addition, life expectancy has 

increased in terminal patients from 5-7 months to 12-24 months. Compared to chemotherapy 

or other cancer therapies, TheraSphere® has minor side effects and only causes flu-like 

symptoms such as mild fever, fatigue, or abdominal pain that may persist in patients after 

treatment for several days [40]. In 2006, Bretcanu and Evans provided a comprehensive review 

of TheraSphere® clinical applications for liver cancer treatment [46]. More recently, Daniel 

Boyd’s team at Dalhousie University, Canada, has developed another radioactive glass that 

triggers radioembolization and shows promise for treating cancer. This product, trade named  

Eye 90 MicrosphereTM glass, is being commercialized by ABK Biomedical Co. [47]–[49].    

Recently, it was observed that TheraSphere®-based therapy combined with 

chemotherapy had advantageous effects in selected patients with metastatic colorectal liver 

cancer. Still, even patients with the chemotherapy-resistant disease received some benefits 

from the treatment [50]. Hence, an investigation for assessing the safety and efficacy of 

TheraSphere® radioembolization assisted with second-line therapy was launched in 2018 in 

patients with metastatic colorectal carcinoma of the liver who had disease advancement during 

or after first-line cancer chemotherapy. Phase 3 pilot studies have begun at 100 sites in Canada, 

the USA, Asia, and Europe, and investigation is ongoing [51]. 

One of the main functions of glasses is their capability to release ions in vivo, which can 

help cell proliferation, gene activation, osteogenesis, or elicit angiogenesis, antibacterial, anti-

inflammatory effects, leading to more efficient tissue and bone regeneration. Biodegradability 

can also be helpful along with the radioactivity of glass. When cancer cells are surgically 

removed, some small-scale cancer cells that cannot be removed may be left behind and 
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destroyed by the radioactive glass. It is also possible that some tissue or bone may be damaged 

or removed by surgery, which demands tissue regeneration by bioactivity and ion release 

properties of BGs. 

The critical issue which could not be neglected is the released amount of the therapeutic 

substance or element from the glass carriers. This issue is truly crucial for biodegradable 

radioactive glasses as the amount of released radionuclide for brachytherapy must not stimulate 

the immune system or induce toxic effects in healthy tissue [30]. 

In 2003, Roberto et al. introduced the first radioisotope vectors based on biodegradable 

glass for therapeutic brachytherapy. In this study, to achieve a similar yield to titanium-

encapsulated 125I seeds, a group of biphasic materials combined a SiO2 gel-derived glass with 

high chemical stability in the biological fluid, and a biodegradable SiO2-CaO glass carrying 

neutron-activated 153Sm radioisotope was used [52]. The 153Sm radioisotope has a shorter half-

life than the 125I radioisotope and could operate better in a biodegradable carrier for a short and 

acceptable duration of several months. However, higher concentrations were used to function 

comparable with the 125I radioisotope [41]. In 2008, Roberto et al. also performed X-ray 

radiographic imaging on 153Sm seeds implanted in rabbit liver after seven months. However, 

no presence of carrier glass and 153Sm seeds were reported, thus confirming the uptake of glass 

particles into the liver [53]. Later, Cacaina et al. [53],[54] reported that bioactive silicate 

glasses exhibited different chemical stability depending on silica content. This type of glass 

showed good potential as a carrier for their lease of Y2O3 in simulated body fluid (SBF) in 

brachytherapy. The general rule is that the more silica in bioactive glass, the less chemical 

solubility is. As a result, glasses with lower silica content have more yttrium release. On the 

other hand, the presence of yttrium increases the chemical stability of the glass [35], thus 

allowing a multiple control on glass dissolution kinetics. 

Other biodegradable glasses for potential use in brachytherapy include melt-derived 

alkaline borate and borosilicate glasses. When these glasses are not radioactive anymore, they 

gradually decompose in the body over hours or weeks [38]. For example, during the 

decomposition of dysprosium-containing lithium-borate (DyLB) glasses, radioisotopes of Dy 

react with phosphate and calcium in the body fluid and form insoluble phosphates [56]. In 

principle, the microspheres react nonuniformly by releasing almost entirely soluble 

constituents (here B and Li), whereas dysprosium phosphate forms. The initial glass loses up 

to 80% of its weight after 64 days of implantation. 10-mg injected glass into a human joint 
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forms only 2 mg of an insoluble dysprosium phosphate-rich reaction product. It is assumed that 

this low amount will create no tissue damage in humans since the1 mg injection into the much 

smaller mice joint did not cause any damage. To date, studies have been performed on borate 

glass microspheres containing the 153Sm, 90Y, 166Ho, 165Dy, and 186Re isotopes but have not yet 

reached the commercialization stage [38]. However, more studies are needed to investigate the 

dissolution mechanism of these glasses to understand their in vivo and in vitro behaviors [56]. 

Nogueira et al. [57] showed that sol-gel-derived glasses containing radioisotopes of Ba, 

Zr, and Ho allow better visualization under radiographic imaging due to the additional role of 

Ba and Zr as contrast agents. Specifically, the glass sample loaded with Ho and Zr showed a 

significantly better radiological contrast than the sample loaded with only Ho. The presence of 

Zr also decreases the degradability and bioactivity of glass. 166Ho-doped glass compared to the 

Sm-containing one can treat smaller tumors faster due to its higher energy [58]. 

Recently, Piagentini Delpino et al. [59] examined Ho-doped 58S glass for brachytherapy. 

The results showed that the Ho content significantly affects the kinetics of the hydrolysis 

reaction: specifically, the addition of holmium ions in the glass structure decreased the energy 

barrier of hydrolysis reactions, thus accelerating glass dissolution in an early stage, while the 

strength of Si–O–Ho bonds yields a more stable dissolution in the long term. Although a high 

concentration of Ho was added into the glass, most of this dopant remains in the glass structure, 

thus preventing toxicity. Figure 3 summarizes the structure, in vitro bioactivity, and cell culture 

experiments on 58S gel-glass (60SiO2–36CaO–4P2O5 mol%). It was observed that Ho had no 

adverse effect on glass bioactivity and can stimulate more pre-osteoblast cell proliferation as 

compared to the Ho-free control sample (58S) (Figure 3) [59]. 166Ho-containing BGs produced 

more radiation to the tumor tissue than other radioisotopes, and the short-range penetration of 

beta particles is useful to minimize damages to the adjacent healthy tissue [60],[61]. 
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Figure 3. (A) Schematic representation of Ho-doped 58S glass structure, containing silicate tetrahedrons with 
holmium in octahedral coordination. Water attack possibilities in this glass (right side) should be considered for 
the chemical stability of Ho (radioactive) ion in the long-term degradation and early-stage dissolution of non-
radioactive elements. (B) Osteoblast cell culture experiments on Ho-doped bioactive glass. (C) Results of in vitro 
apatite forming ability on 2.5 mol% holmium-containing glasses before and after 1and 14 days immersed in SBF 
solution confirm the apatite forming ability of this glass [59]. 

 

3-Drug and ion delivery 

BGs can act as a powerful local drug delivery system by adsorption, establishing covalent 

or non-covalent bonds to trap drugs in their cavities [62]–[64]. Compared to other biomaterials, 

BGs can also act as vehicles for the controlled release of ions that can regulate gene expression 

of cells, which makes them multifunctional candidates in cancer treatment [65]–[69]. These 

carriers show slow and continuous in vitro sustained drug release due to the dissolution of the 

glass matrix, which is accompanied by ion release as well [70]. 

Mesoporous bioactive glasses (MBGs), first synthesized two decades ago, have become 

an ideal option in topical and targeted tumor therapies due to their ability to deliver drugs along 

with various therapeutic elements. Figure 4-A illustrates the schematic preparation of drug-

loaded MBGs. Active targeting of MBGs is accomplished by functionalizing their surface by 

factors such as peptides, antibodies, or proteins [71]. One of the most critical issues in cancer 
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treatment by drug delivery systems is how to differentiate cancer and normal cells and use the 

differences to achieve a selective and more effective treatment. These dissimilarities include 

pH differences, redox levels, and expression levels of several enzymes and receptors [17], [18], 

[72]. 

The innovative drug delivery systems that have received so much attention are 

environmental-sensitive carriers [73]. They consist of ionizable components (e.g., amines or 

carboxyl groups), and their structure changes under pH change [74]. Consequently, the pH 

gradient will act as the driving force behind the release of the drug from the glass carrier in 

such systems (Figures 4-B; 3&4, and 4-C) [74]. 

In some cases, a more finely controlled drug release can be achieved by using pH-

sensitive polymer coatings on the surface of glass carriers [75]. The results demonstrated that 

these smart systems provided higher toxicity for cancer cells in vitro and showed a selective 

increase in tumor death in vivo [15], [75]–[86]. After entering the body, the drug goes through 

four stages, including absorption, release, metabolism, and excretion. The drug should be 

metabolized after entering the body and reaching the target tissue or cell and easily be 

eliminated from the body after creating the effect [87]–[92]. 

Specific surface area, composition, pore size, and particle size are among the key factors 

influencing the rate of glass degradation as well as their biocompatibility in contact with the  

biological fluid [65]. On the other hand, drug delivery can be controlled by changing the 

porosity volume, drug concentration, pH of the environment and by adding different dopants 

in the glass structure [77], [83], [85], [93]–[101]. Shoaib et al. [74] studied the effect of drug 

loading concentrations and pH for the controlled release of Imatinib (IMT) against cancer cells 

in MBGs (Figure 4-C and 4-D). IMT was loaded with 77.59% efficiency, and its release was 

affected by the drug loading concentration (0.2–1.0 mg/mL) and the pH of the medium where 

the release takes place (4.4-10.4). 81% of IMT was released for 250 h at an acidic pH=4.4 at 

12.19 μg/mL of IMT-MBG, and significant inhibitory effects were observed on the viability of 

MG-63 osteosarcoma cancer cells [74]. 

It has been proven that hollow spheres of MBGs doped with different ions (Ag, Ca, Sm, 

Tb, Se) have a higher drug loading capacity and more stable release than dopant-free BGs [77], 

[83]–[85], [102], [103]. Interaction between ions and drugs can synergistically enhance the 

anticancer effect and improve drug loading [98], [102]. Rahman et al. [84] reported that Ag-

doped MBG nanospheres have higher drug storage capacity and more stable release of DOX 
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than the pure MBG nanospheres. It was shown that Ca-MBG nanospheres loaded with DOX 

could effectively inhibit tumor growth [102], [103]. MBG nanospheres showed continuous and 

long-term local release of DOX in many studies [82], [86], [104]. Meng Hu et al.[77] studied 

the cytotoxicity of DOX-Se-MBG and DOX-free nanospheres (Se-MBG) in the context of 

bone tissue engineering. It was proved that the cytotoxicity of DOX-Se-MBG and Se-MBG 

nanospheres depends on release time and drug dosage. The viability of MG63 osteosarcoma 

cells cultured with DOX-Se-MBG nanospheres was slightly higher than the positive control 

(DOX-free sample), attributed to the interaction between DOX and Se. Indeed, the effect of 

this synergy apparently seems not so helpful for cancer therapy. However, although Se-MBG 

nanospheres had a faster inhibitory effect on MG63 osteosarcoma cells in the short term, DOX-

Se-MBG nanospheres provided a long-term inhibitory effect on the same cells [77]. 
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Figure 4. (A) Schematic of drug-loaded MBG preparation. (B) The effect of MBGs on cancer cells and normal 
cells [105]. Cumulative drug release profile (C) against different pH and (D) against different drug loading 
concentrations [74]. 

 

The doping of various elements can influence the microstructural and morphological 

properties of the MBGs. Ion concentrations can alter drug release due to changes in the number 
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of ionic bindings [77], [83], [85]. Also, even the type of ions can affect drug loading 

concentrations. For example, doping with Cu and Se [106], [107] was shown to be associated 

with drug loading increase, but Mg, Zn [106], [108] reduced the drug loading concentration in 

MBGs structure. The effect on drug loading capability is related to morphological changes in 

terms of pore volume, surface area, and pore size of MBGs. For example, adding a certain 

amount of cerium in the glass structure increases the pore size and reduces the specific surface 

area [109]. Furthermore, the addition of metal ions into the structure of MBGs changes the 

surface charges of nanoparticles, yielding a direct impact on particles aggregation [98], [110].  

Se [77], [111], Ca [112], Ga [113], Cu, Ag [110], [114]–[116], Zn [117] have shown 

anticancer properties. Each of these ions exhibits this property via a different mechanism [110], 

[118], [119]. However, the production of reactive oxygen species (ROS) – stimulated by such 

ions – has always been a key factor in developing anticancer properties [120]. 

Concentrations of calcium ions in the glass structure can also be effective in drug release 

and control [103], [121]. Excessive calcium ion release from the glass structure can damage 

cells and kill them through apoptosis, thus stimulating the anticancer effect [98]. Released 

calcium from the glass structure can suppress cancer growth by activating calcium sensor 

channels on cancer cells with the least damage to healthy cells [112]. Ion doping such as Mg 

and Co provides anticancer properties if these ions are appropriately released from the glass 

structure properly. This release can be controlled depending on the concentration of dopants 

and the pH of the release medium [75], [122]. Low and suitable concentrations of cobalt ions 

can cause angiogenesis during tissue regeneration due to their hypoxia-mimetic effect. If cobalt 

ion is released rapidly and extensively in situ, this ion can cause the death of cancer cells by 

ferroptosis [120], [123]–[138]. Ferroptosis is generally a type of cell death caused by ROS 

accumulation due to Fenton’s or Fenton-like reactions [120], [139]–[141]. On the other hand, 

we cannot ignore that cobalt has a potent pro-angiogenic effect, which could contribute to 

cancer development, thus achieving an opposite effect. Oxidative stress of cells and the 

production of ROS have been shown to be induced by selenium ions [77], [111], [142]. Also, 

Ga-doped BGs show the ability to suppress cancer cells [143]. 

Ferroptosis is a type of programmed cell death dependent on iron and is detected by lipid 

peroxides accumulation. It is biochemically and genetically different from other types of 

regulated cell death, like apoptosis. Recently this method attracted significant attention in 

cancer therapy that kills cancer cells by ROS generation via iron ions mediated Fenton’s 
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reaction. Among ferroptosis-based cancer therapies, metal-containing nanomaterials meddling 

with ferroptosis cancer therapies efficiently induce ferroptosis of tumor cells without complex 

cellular signal transduction [120]. Also, therapeutic metal elements incorporation into a MBG 

and controlled release of these soluble therapeutic ions developed MBG with therapeutic 

properties such as Fe for ferroptosis [144]. The release of Fe ions results in catalytic H2O2 

decomposition inside the tumor cells and production of ROS, a Fenton’s reaction [145]. Fe 

ions-releasing MBG ultra-small nanoparticles synthesized by a simple one-pot ultrasonic-

coupled sol-gel synthesis can be used as a ferroptosis-based bone cancer treatment. Also, 

adding 10%Fe2O3 to 85SiO2–15CaO (mol%) glass reduced the particle size and simultaneously 

increased the specific surface area [139]. 

MBGs can also be effective in other cancer treatment methods such as photothermal 

therapy and hyperthermia, depending on the type of ions that they carry [110], [137]. 

 

4-Phototherapy 

A laser-irradiated cancerous region could be locally heated in PTT due to the possibility 

of controlling laser penetration. In this case, overheated cancer cells are killed without harming 

other organs or tissues. Various nanoparticles have been utilized as PT conversion agents that 

absorb NIR-light and transform it into heat [146]. The PT effect caused by optical input can 

also generate the thermal apoptosis of cancerous cells. Studies showed that metal ions doping 

in the glass structure could provide PT therapeutic ability. Liu et al. [69] reported the first PT 

effect in BG doped with copper, iron, manganese, and cobalt ions. Bismuth [147] and carbon 

dots [148] also induced a PT effect in BGs.  

One new idea was to make multifunctional glasses for cancer treatment by combining 

radiotherapy, drug delivery, and PTT and using BGs to regenerate bone. Multifunctional 

glasses with anticancer and bone regenerative properties can eliminate bone tumors and often 

lead to new bone formation to achieve optimal bone tumor therapeutic effect. Wang et al. [147] 

fabricated Bi-doped BGs for triggering PT and bioactivity response for tissue repair and bone 

tumor therapy. A Bi-doped BG equips photo-induced hyperthermia and enriched remineralized 

bone tissue. The high PT transformation of Bi locally raised the temperature from 42 to 86 °C 

depending on the irradiation time and Bi concentration (Figure 5-A). The PT effects were 

managed by controlling the nonradiative and radiative procedures. Also, Bi-doped BGs 
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demonstrated non-cytotoxicity before and after laser irradiation and showed an effective 

inhibitory effect on cancerous cells viability. It was proved that more than 80% of human 

osteosarcoma line U2OS tumor cells were killed under NIR-light (Figure 5-B) [147]. Such 

dual-functional materials exhibit remarkable bioactivity and tumor therapy, offering a new 

horizon for bone tumor treatment. Copper is another element that can be added to MBGs, 

giving PT effect while maintaining bioactivity. Copper-doped BGs provide good opportunities 

for biomedical applications due to their excellent biocompatibility, antibacterial properties, 

bone regenerative potential, and cancer theranostics [149]. In PT, it is critical to apply a very 

homogeneous laser on the treated area, otherwise localized hot spots damage the tissues. 

Chang et al. [150] synthesized copper-doped MBGs with excellent drug loading capacity, 

good bioactivity leading to apatite formation and mineralization, and excellent photothermal 

properties. The photothermal effect could well modulate the drug release, thus allowing a 

combination of chemotherapy and photothermal therapy to enhance tumor eradication. 

Figure 5. (A) Diagram of temperature changes over time for Bi-doped BG samples immersed in SBF solution for 

various irradiation times (at a power density of 1.5Wcm−2). The temperature of S6PyB rises from 42 °C to 86 °C 

when the concentration of Bi2O3 in the glass extends from 1 to 4 mol%. (B) Cell viability of Bi-doped BG before 

and after laser irradiation (808 nm at 1.5Wcm−2 for 5 min) [149]. 

 

Another innovative developing method for cancer therapy is gas therapy to generate RNS 

where adjustable nitric oxide (NO) generation plays a critical role in bone regeneration, 

combinatory progression of coupled vascularization, and sequential adjuvant tumor ablation. 
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Multifunctional biomaterial system of 2D Nb2C MXenes wrapped with S-nitrosothiol-grafted 

mesoporous silica with 3D-printed BG scaffolds showed the specific characteristics of 

controllable NO release, stimulatory bone regeneration, and highly efficient PT conversion. 

This multifunctional biomaterial can be coordinated for multitarget ablation of bone tumors to 

improve localized osteosarcoma treatment due to the NIR-triggered photonic hyperthermia of 

MXenes in the NIR-II bio window and controlled release of NO [151]. 

 

5-Magnetic hyperthermia 

Among the mechanisms of tumor cell death induced by the most common thermo-

ablation techniques, hyperthermia uses magnetic materials exposed to an external magnetic 

field to generate a local temperature increase above 42 °C. This temperature rise destroys 

cancer cells without significantly damaging normal tissues [146],[152]. Although various 

biological effects can simultaneously appear like heat-induced alteration of cell signaling 

pathways, expression of heat-shock proteins, RNA and DNA alterations, the direct cytotoxic 

effect of heat, and many other biochemical changes, the precise mechanism of hyperthermia is 

not yet completely understood [153],[154]. This method is associated with less unfavorable 

side effects than conventional therapies of various tumors such as glioblastoma, prostate, and 

metastatic bone cancer. Hyperthermia can be combined with other treatments like PTT, PDT, 

immunotherapy, gene therapy, chemotherapy (drug delivery), and high-intensity focused 

ultrasounds [20]. 

Superparamagnetic iron oxide nanoparticles (SPIONs) can significantly reduce or 

eliminate the population of cancer cells in the patient’s body by generating heat due to magnetic 

hyperthermia. Unlike SPIONs, BGs usually do not exhibit any inherent magnetic behavior 

unless a magnetic phase, such as Fe3O4, is embedded or somehow nucleated in the glass 

network (e.g., by thermal treatment), thus obtaining magnetic BGCs [155]. Glass-ceramics 

generally have better mechanical properties and may also inherit – at least partially – the 

bioactivity of the parent glass. The magnetic crystalline phases in glass-ceramics cause heat 

generation when exposed to a magnetic field, helping to kill cancer cells [20]. Both melt-

derived BGCs and gel-derived mesoporous BGCs with various compositions or dopants were 

synthesized in order to improve their efficiency for hyperthermia application [156]. It has been 

shown that MBGs containing iron oxide phase(s) (Fe3O4, FeO) are endowed with the double 

ability of loading/releasing anticancer drugs and eliciting a hyperthermic effect due to the 
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presence of magnetic crystals via ferrimagnetic properties [76], [78], [86], [157], [158], [157]–

[159]. 

Many fabrication techniques like melt-quenching, powder-sintering, and sol-gel, as well 

as various compositions such as  SiO2-CaO-Fe2O3-ZnO [160], SiO2-CaO-Na2O-Fe2O3 [161], 

[162], SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 [163], SiO2-CaO-Fe2O3-B2O3-P2O5 [164], SiO2-

Fe2O3-Li2O-CaO-MnO-P2O5 [165], SiO2-CaO-P2O5-MgO-MnO2-Fe2O3 [166], SiO2-CaO-

P2O5-Fe2O3-ZnO-Na2O [167]–[169], and SiO2-CaO-P2O5-MgO-CaF2-MnO2-Fe2O3 [170]–

[172] were investigated so far for hyperthermia. 

Fabrication methods, sintering temperature, crystallization [173], [174], synthesis 

atmosphere [175], additives [176],[177], and dopants [159],[178] are important parameters that 

affect the structural, magnetic and biological properties of BGs and BGCs. Apart from the 

conventional fabrication methods, new techniques like the sol-gel method, electrospinning, and 

3D printing were also developed to improve the properties of BGs and BGCs. More reactive 

materials in a wider compositional range are obtained by the sol-gel method as compared to 

the traditional melt-quenching route due to the unique textural properties (for example, inherent 

nano-porosity) that directly derives from the sol-gel synthesis process [179]–[181]. However, 

nucleation and crystallization in sol-gel BGs are more complex and difficult to control 

compared to melt-derived systems [182]. 

BG fibers (BGFs), mainly fabricated by the electrospinning method, have potential 

biomedical applications due to their unique fibrous structure, resembling the structure of fibrin 

clots. Fe-doped mesoporous BGFs (Fe-MBGFs) fabricated by this method has a weak coercive 

field and a narrow hysteresis loop. The magnetic property of Fe-MBGFs can be enhanced by 

more iron salt precipitation into the porous polystyrene fiber template. Multifunctional 

scaffolds with hyperthermia and local drug delivery functions were constructed from these Fe-

MBGFs for bone defects therapy [183].  

Magnetic composite scaffolds were fabricated by M. L. Dittler et al. [184], who coated a 

foam-derived 45S5 Bio-glass® structure with iron-doped hydroxyapatite (Fe-HA) 

nanoparticles. This magnetic 3D Fe-HA-BG scaffold has potential application in biology and 

nanomedicine as contrast agents for magnetic resonance imaging (MRI), drug carriers, and 

magnetic hyperthermia application [184]. 

Multifunctional systems can be fabricated by utilizing 3D printing of scaffolds with glass 

and magnetic particles. J. Zhang et al. [185] studied a 3D-printed multifunctional 
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Fe3O4/MBG/PCL scaffolds with hierarchically meso-macropore architecture and uniform pore 

size and shape. These scaffolds exhibited sustained anticancer drug delivery, superior apatite-

forming ability (bioactivity), and magnetic heating properties due to the presence of Fe3O4 

nanoparticles. Fe3O4 nanoparticles incorporated into the MBG/PCL scaffolds were also 

beneficial in stimulating the differentiation and proliferation of h-BMSCs [185]. 

G. Li et al. [186] proposed a novel magnetic BGC utilizing graphite-modified magnetite 

with improved magnetic property. Graphite-modified Fe3O4 was incorporated into the BGC 

via a sol-gel technique and then optimized sintering and quenching procedures enhanced the 

magnetic properties of the system. 

As mentioned, the sintering temperature also affects the properties of glass-ceramics. In 

SrFe12O19-P2O5-CaO-Na2O BGCs, the coercivity of the material increases, and the SrFe12O19 

crystallite size decreases, respectively, as sintering temperature raises. At the minimum 

sintering temperature (500 ℃), SrFe12O19 phase with the largest crystallite size and highest 

crystallinity was observed, along with the highest saturation magnetization (Ms) and remanent 

magnetization (Mr) [173]. 

Another critical parameter to be taken into account during the fabrication of BGs and 

BGCs is the control of the atmosphere. Y. Hou et al. investigated the effect of the treatment 

atmosphere on the magnetic properties of CaO-Al2O3-SiO2-Fe3O4 glass-ceramics prepared by 

the powder-sintering method. The magnetic properties of glass-ceramics could be tuned by 

varying the ratio of Fe3+ to Fe2+, which was modified by changing the oxygen partial pressure 

in the melting process. The air atmosphere during heat treatment causes Fe2O3 (hematite) 

precipitation. On the contrary, using an inert atmosphere such as an argon atmosphere can 

reduce the amount of oxygen and favour the formation of magnetite [175]. The same authors 

reported that an increment of heat-treatment temperature decreased the saturation 

magnetization and remanent magnetization, which was attributed to the reduction of magnetite 

content because of the remelting of magnetite crystals into the glass matrix at a higher 

temperature. 

Similar conclusions about the effect of the heat-treatment atmosphere (argon vs. air) were 

also reported by Baino et al., who synthesized Fe-doped silicate glasses and glass-ceramics by 

the sol-gel method [156]. 

It was also proven that three main phases of iron oxide (magnetite, hematite, and 

maghemite) show superparamagnetic properties at the nanoscale. The crystallinity of the 
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hematite phase was affected by the content of iron oxide in the glass-ceramic composition. 

However, the final hematite crystal size was not affected by iron oxide content [187]. Also, 

adding P2O5 to magnetic Fe2O3-CaO-SiO2 glass-ceramics promoted the formation of a surface 

apatite layer (bioactivity) while eliciting low cytotoxicity in vitro [188]. 

Mesoporous lithium-ferrite containing BGs synthesized through the sol-gel technique are 

another class of promising BGs for hyperthermia. Yazdanpanah et al. [189] proved that these 

glasses are appropriate for use as thermoseeds. The magnetic properties of samples were 

improved when the content of magnetic crystals increased, and a local temperature of 47.2 ℃ 

could be reached under hyperthermic effect.  

Koohkan et al. [190] synthesized copper-containing MBGs for hyperthermia in bone 

defect treatment. The addition of copper oxide in Fe-doped BGs increased the magnetic 

saturation of the sample and improved superparamagnetic behaviors. The presence of copper 

in the magnetic glass structure caused further calcium release and improved bioactivity. In 

addition, Fe/Cu-containing MBGs can be used as a multifunctional system combining 

hyperthermia, therapeutic ion release, and drug delivery. The antibacterial properties of Fe-BG 

and Cu-BG were also found to be better than those of Fe-Cu-BG [190]. 

The gradual replacement of B2O3 with SiO2 in a magnetic 20BaO–20Fe2O3–xSiO2–(60-

x)B2O3–1CeO2 glass-ceramic with various compositions (x = 0 − 50 wt%) changed the types 

of crystalline phases that nucleated in the material, i.e., Fe2O3, Ba4B2O7, BaFe2O4, and Fe3O4. 

As a result of this gradual replacement, a “boron abnormal phenomenon” was observed due to 

the different [BO3]/[BO4] ratio in the glass-ceramics composition, which led to a continuous 

transition from the paramagnetic to the ferromagnetic behavior when x increased from 20 to 

30 wt%, accompanied by a significant increase of the saturation magnetization [191]. 

Glass-ceramic engineering provides versatile flexibility in hyperthermia. It is possible to 

enhance the magnetic properties or generate heat by developing finely nanostructured glass-

ceramic. Shah et al. [167] synthesized nano-sized ZnFe2O4 crystallites with pseudo-single 

domain structures formed in ferromagnetic zinc/ferrite-containing glass-ceramics by aligning 

magnetic field. 

Some of the most recent studies have focused on the association of hyperthermia with 

chemotherapy to limit the well-known side effects of chemotherapy. Local heating of tumors 

increases the sensitivity of malignant cells to drugs, thus allowing a reduction of the drug's 

dosage and the side effects on the human body [192]. Sometimes a polymeric additive can be 
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used in the system so that the desired drugs can be embedded in this component. When the 

magnetic field is applied and the system heats up, the polymer component melts, and the drug 

is released in a controlled way [193]. Magnetite (Fe3O4)-containing MBGs also creates synergy 

for treating cancer by hyperthermia and concurrent drug delivery, adding value to stimulating 

bone regeneration [194]. 

Another approach to enhance BG properties relies on the design and production of 

composite materials [195]–[197]. H. Tripathi et al. [198] combined strontium-containing BG 

(46.1SiO2–21.9CaO–24.4Na2O–2.6P2O5–5SrO wt.%) with manganese ferrite (MnFe2O4) to 

obtain a dual-phase magnetic composite with enhanced biocompatibility and antimicrobial 

properties. The results showed that this composite had an antibacterial effect on both Gram-

positive (S. Aureus) and Gram-negative (E.coli) bacteria while exhibiting superparamagnetic 

characteristics and heating capability for potential use in hyperthermia application [198]. In 

another study, Matteo Bruno et al. [199] have dispersed a ferrimagnetic BGC in a 

polymethylmethacrylate (PMMA) matrix, thus obtaining a composite cement. The glass-

ceramic contained magnetite crystals embedded in an amorphous bioactive SiO2–Na2O–CaO–

P2O5–FeO–Fe2O3 matrix. The material was recommended as an injectable bone filler for 

treating osseous tumors by hyperthermia [199]. In vitro properties of this composite bone 

cement were investigated, and a synergistic effect between bioactivity and cell mineralization 

was observed, i.e., cells seemed to be stimulated in their mineralization process by the ions 

released from the BGC particles even at the early stages of culture (72 h) [200]. 

Among the methods described, new treatments have emerged that lead to new substances 

in the treatment and control of cancer. Developing BGs and BGCs containing two or more 

therapeutic approaches such as magnetic, drug-release ability, PT, and radioactive properties 

is a hot spot zone for future research. There is consent that the immense promise comes when 

multiple therapeutic actions against cancer are activated simultaneously. For example, Figure 

6 shows that magnetic hyperthermia can synergistically combine with chemotherapy and PTT. 
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Figure 6. Combining magnetic hyperthermia with chemotheraphy or PTT enhances cancer treatment efficacy. 

 

6- Conclusions and Perspectives 

This review paper witnesses that BGs, although being developed more than 50 years ago, 

still exhibit a great potential in biomedicine and, especially, are highly appealing in the field of 

cancer therapy. These materials exhibit an exceptional versatility in terms of composition and 

processing, with an obvious impact on the range of functional properties and biological 

responses that can be obtained. Hence, the “best” BG option should be designed and tailored 

depending on the type of cancerous disease and patient’s clinical situation as well as taking 

into account the latest advancments in the field. For example, chemically-inert radioactive 

glasses have been typically used to treat liver cancer; however, combining radioactive therapy 

and bio-reactivity of partially-soluble glasses has a great potential to open new treatment 

perspectives for a broader range of cancer-associated diseases. It is also believed that MBGs 

are novel systems within the BG family that can stimulate multiple therapeutic actions thanks 

to their unique composition, easy-to-functionalize nature, and tailorable textural properties 

such as high surface area, pore size, and pore volume. They are promising platforms that can 

offer simultaneous controlled drug/ion delivery, healthy tissue regeneration, PT therapy, and 

hyperthermia, which are all valuable strategies that can be used and/or combined in the fight 

against cancer. BGCs are also remarkable in terms of having higher mechanical strength and 

magnetic properties [201]. From the viewpoint of therapeutic response, it is known that 

combining at least two different strategies is a valuable option as synergistic effects can be 

achieved by combining different cancer cell death mechanisms. In general, a combination of 

different therapeutic approaches can yield an improvement of treatment efficacy against 
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cancer, and BGs/BGCs are indeed a great resource in this regard because of the potential of 

inherent multifunctionality. These biomaterials also carry other important added values. Today, 

nanocomposite or hybrid materials that combine biodegradability and bioactivity are 

extensively researched for 3D bioprinting and tissue engineering. Composite bio-inks 

incorporating anticancer BGs could permit the development of scaffolds that can replace the 

resected cancerous tissue (commonly bone), thus regenerating healthy tissue while inhibiting 

the recurrence of cancer. They can even contribute to 4D bioprinting, where time, pH, or 

biological parameters are integrated with 3D bioprinting as the fourth dimension. In this regard, 

BGs can change their functionalities when an external stimulus like pH is imposed or when 

cell fusion or specific chemical reactions occur. This interesting and emerging research field 

demands further attention and multidisciplinary collaboration of BG community with other 

scientific and technological fields. 

Future research is envisaged in which theoretical and computational modeling can 

significantly accelerate the compositional and microstructural design, characterization, 

synthesis, and application of materials [202]–[204]. In the last 25 years, more than 6 thousand 

articles and 100 review papers have highlighted the impact of the discovery of BGs on the 

pathways of biomaterials research. We applaud these very accurate portrayals of the early days 

after the discovery of Bioglass® 45S5 by Larry Hench in 1969, the chronology, numerous 

advances, and future challenges. However, albeit the literature became rich in this topic, few 

works have addressed data/model-driven approaches to designing new BGs or efficiently 

predicting their properties. This task should be accelerated as a critical part of the macro-

endeavor to decode the  “glass genome” [205]. Montazerian et al. [206] have recently reviewed 

all publications that have applied molecular dynamics simulations, machine learning 

approaches, and meta-analysis for understanding BGs. They argued that more modeling of 

BGs should be employed to design specific properties of glass, including anticancer properties, 

in the future. Modeling the therapeutic action of BGs is a complicated but indispensable 

challenge, which should focus on modeling the biological response of these biomaterials after 

implantation in terms of impact on processes such as cell proliferation, cell adhesion, protein 

adsorption, angiogenesis, osteogenesis, bactericidal effects, and anticancer properties. 
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