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Abstract—Quantum machines are among the most promising
technologies expected to provide significant improvements in the
following years. However, bridging the gap between real-world
applications and their implementation on quantum hardware is
still a complicated task. One of the main challenges is to represent
through qubits (i.e., the basic units of quantum information) the
problems of interest. According to the specific technology under-
lying the quantum machine, it is necessary to implement a proper
representation strategy, generally referred to as embedding. This
paper introduces a neural-enhanced optimization framework to
solve the constrained unit disk problem, which arises in the
context of qubits positioning for neutral atoms-based quantum
hardware. The proposed approach involves a modified autoen-
coder model, i.e., the Distances Encoder Network, and a custom
loss, i.e., the Embedding Loss Function, respectively, to compute
Euclidean distances and model the optimization constraints. The
core idea behind this design relies on the capability of neural
networks to approximate non-linear transformations to make the
Distances Encoder Network learn the spatial transformation that
maps initial non-feasible solutions of the constrained unit disk
problem into feasible ones. The proposed approach outperforms
classical solvers, given fixed comparable computation times, and
paves the way to address other optimization problems through
a similar strategy.

Index Terms—embedding, graphs, neural networks, neutral
atoms, optimization

I. INTRODUCTION

In recent years, quantum computers have garnered more
and more interest, as they represent very auspicious tools to
accelerate specific computations like material simulations [1]–
[3], combinatorial optimization [4]–[6] etc. However, we are
currently in the noisy intermediate-scale quantum (NISQ) era.
Thus practical applications of canonical quantum algorithms
(e.g., Shor’s or Grover’s algorithms) are still unattainable be-
cause of technical limitations such as low qubits count, limited
coherence time, and gate fidelity. To overcome these limi-
tations, different approaches emerged, like hybrid quantum-
classical algorithms.

In this regard, our paper introduces a novel approach to
exploiting neural networks (NN) to optimize neutral atoms’
quantum architectures [7]. More precisely, the proposed
framework deals with combinatorial optimization problems

embedding into the previously mentioned quantum machines.
The embedding task from an optimization point of view is
equivalent to solving a constrained unit disk graph (CUDG)
problem. This optimization problem concerns finding a
unit disk graph (UDG) [8] (see Def. 1) realization, given
a generic graph. Contextualizing the optimization problem
in a real-world quantum computing (QC) application brings
additional constraints to a standard UDG problem, thus
completing its definition.

Definition 1 (Unit disk graph): Consider n circles, with
radius r, in the plane. The intersection graph [9] of these
circles is a unit disk graph with n vertexes where each vertex
corresponds to a circle centre and the vertexes share an edge
only if the corresponding circles intersect.

A. Unit disk graphs in quantum applications

Unit disk graphs have been popularized, in real-world
applications, by wireless communication [10]–[12]. However,
with the emergence of quantum technologies, UDGs have also
become of interest in the quantum field. In particular, quantum
neutral atoms machines [7] rely on Rydberg atoms, positioned
on a 2D/3D register, to represent qubits. From the interactions
between neutral atoms, subject to the action of laser pulses, a
spin Hamiltonian (e.g., Ising) is retrieved. The evolution of the
spin Hamiltonian is related to qubits (neutral atoms) that, once
measured, assume one out of two possible quantum states (i.e.,
the excited Rydberg state |1⟩ or the ground state |0⟩), hence the
association with binary optimization variables. This capability
of neutral atoms machines enables the mapping of a large set
of NP-hard combinatorial optimization problems into the Ising
Hamiltonian [13].

In principle, the class of problems that can benefit from
this quantum-based solution paradigm [14], [15] are Quadratic
Unconstrained Binary Optimization (QUBO) problems [16].
They are characterized by a square matrix Q ∈ Rn×n and
a vector of n binary variables x ∈ {0, 1}n. The complete
definition of QUBO problems is obtained by minimizing the
objective functions in the form xTQx. Theoretically, once the
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qubits are organised in the space to reproduce the desired
Hamiltonian, the associated QUBO problem can be solved
using Quantum Approximate Optimization Algorithm [14],
[15] or Quantum Adiabatic Algorithm [17].

In neutral atoms’ quantum architectures, the blockade effect
is one of the main players. It is a threshold-like effect reached
when the distances between qubit pairs are shorter than the
blockade radius [18], i.e. a critical distance at which the
strength of the interactions balances with the Rabi frequency
of the laser pulses [19]. Therefore, the interactions between
qubits in the register induce a UDG. In this situation, the
halved blockade radius plays the role of the radius r, as in
definition 1, and its appropriate value can be set according to
the characteristics of the considered quantum device. The qubit
positions instead correspond to the circle centres, so when
n qubits are placed on the quantum register and are excited
through laser pulses, the corresponding n-vertexes UDG can
be retrieved.

However, the representation of the spin Hamiltonian for ap-
plication use cases usually requires a backward approach: the
off-diagonal elements of Q describe the connectivity pattern
(i.e. the adjacency matrix) wanted in the quantum register.
Atoms (i.e. qubits) are placed in 2D/3D configurations, and
their interactions define UDGs, as reported in Fig 1b and Fig
1c. In sum, qubit positions are looked for so that the blockade
effect reproduces a UDG that respects the desired connectivity.

Moreover, other requirements come along with the specific
quantum device, thus adding constraints to the UDG prob-
lem. For the hardware considered in this work, the tweezers
governing qubits placement can not place atoms nearer than
Dmin = 4 µm, the register can handle atoms placed within a
circular area of radius L = 50 µm, and the greatest value
allowed for radius r is estimated at Dadj ≈ 10.26 µm.
Finally, it is desirable that the qubits placement not only
induces the wanted UDG configuration but also corresponds to
a UDG solution that maximizes the adjacency gap. That means
maximizing the difference between the minimum distance
among qubits pairs that are not subject to the blockade effect
(vertexes of the UDG not paired by an edge) and the unit disk
radius r for interacting qubits (adjacent vertexes in the UDG).

II. RELATED WORK

Since the embedding on the neutral atoms quantum architec-
ture corresponds to finding CUDG solutions and our methodol-
ogy relies on neural networks, we investigated literature under
two main topics. On one hand, state-of-the-art approaches and
results in the context of UDG problem solutions are analyzed
by pointing out their limitations concerning our use case.
On the other hand, previous work targeted the solution of
optimization problems through NNs, so they provide useful
insights when attempting similar approaches.

A. Solving the unit disk graph problem

Solving the CUDG problem is a complex task on different
levels. Indeed solving the UDG recognition problem, i.e.
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(b) Unfeasible graph embedding
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(c) Feasible graph embedding

Fig. 1. Representation of unit disk graphs in a quantum register. Whenever
two circles intersect an edge is generated. The radius of the circles in figs.1b,1c
is the half blockade radius, i.e. r. The adjacency matrix in fig.1a describes
the desired edges, it determines the feasibility of the embedding.

determining if a given graph has a UDG realization, is NP-
hard [20]. Moreover, even retrieving an approximate solution
to the UDG problem is impossible in polynomial time unless
P = NP [21]. The UDG problems do not become easier to
solve for simplified graphs subclasses, such as for outerplanar
[22] and tree graphs [23].
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Despite the complexity of the problem, previous works
proposed approximation algorithms, especially in the research
field of wireless communication, computing virtual coordi-
nates of sensor networks [24]–[27]. Unfortunately, for the
quantum application targeted by this paper, the proposed
approximations are not feasible. Furthermore, the additional
requirements deriving from the quantum device introduced
more non-convex constraints. Thus, the standard approach for
the CUDG problem solution requires defining the non-convex
programming model and trying to solve it with classical
solvers. On this side, different formulations for the CUDG
problem could be designed, as in [15], and according to the
class of the programming model, suitable solvers could be
exploited. Mixed-Integer Quadratic Constrained Programming
can be solved with Gurobi [28] (which nevertheless performed
poorly for the formulation proposed in Sec. III-A), and Non-
linear Programming can be approached with Ipopt [29]. Ipopt
solver, due to preliminary better results, has been chosen as a
classical solver for comparisons.

B. Applying neural networks to solve optimization problems

Previous studies investigated the application of neural net-
works to solve optimization problems. In [30], binary Mixed
Integer Linear Programs are handled through NNs by devising
proper architectures: ReLu activation functions implement
the binary variables, whilst continuous variables are directly
represented by the output value of each unit. The methodology
is applied to feature visualization and adversarial machine
learning tasks. A similar approach was presented by Amos
and Kolter [31] to solve Quadratic Programs. They provide
examples of learning Sudoku problems.

Beyond that, more specific applications of neural networks
for optimization are present in the literature. Chandrasekhar
and Suresh exploited the weights and biases of NNs to
parametrize a density function for topology optimization [32].
In [33], they extended their work to deal with multi-material
topologies. In [34], Reinforcement Learning enhances the
solution of Capacitated Vehicle Routing Problems, providing
a trained policy to solve unseen instances.

Graphs-based optimization (e.g., Vertex Cover, Maximum
Independent Set problems) is instead the subject of [35],
[36]. The proposed methodologies consider Convolutional and
Graph NNs for their optimization purposes.

III. METHOD

A. The constrained unit disk graph problem

The QC use case, as described in section I, requires a
specific formulation of the CUDG optimization problem. Here,
we propose a programming model that considers both the unit
disk properties and the quantum hardware constraints.

Before diving into a detailed description of the program-
ming model, some remarks are needed. The proposed formu-
lation exploits binary variables to enforce the constraints: a
theoretically equivalent model could be designed with only
continuous variables. However, binary variables do not affect
the convexity of the problem; the formulation with only

continuous variables is nonetheless non-convex. Furthermore,
these binary variables are needed to deal with the State-of-the-
Art solver Ipopt [29] through the Pyomo1 Python library. This
solver allows constraint violations through tolerance parameter
settings, but even the most stringent tolerance does not pre-
vent numerical issues (e.g., numerical cancellation and errors
inherent in floating-point arithmetic). Thus it may lead to un-
feasible solutions when the feasibility is not enforced through
binary variables, explicitly reflecting constraint violations in
the objective function. Beware that in this specific quantum
application, the requirements correspond to hard constraints,
i.e. the quantum hardware cannot deal with qubits positions
that are approximately feasible.

To mathematically define the constrained unit disk graph
(CUDG) problem, we introduce the following notation.
G(V, E) represents the undirected graph to embed, with V as
the set of vertexes and E as the set of undirected edges. The
number of vertexes |V| will be denoted as n, and the vertexes’
labels will be indexed starting from 0; P is the set of all
unordered pairs in V , so |P| = n(n−1)

2 . The square matrix A
of size n× n is the adjacency matrix of G.
The parameterization of the CUDG problems’ instances is
determined by the positive constants Dmin, Dadj and L that
define the feasibility domain. Respectively, they represent the
minimum allowed distance between vertex pairs, the maximum
allowed distance between adjacent vertexes, and the maximum
radius of the circle/sphere inscribing the graph embedding.
Finally, the embedding dimensionality will be defined as
N ∈ {2, 3}.

Regarding the CUDG programming model, the coordi-
nates of the vertexes are represented by N -dimensional vec-
tors −→p i, ∀i ∈ V . These are continuous variables in the
square/cubic domain of side 2L (see eq. (2h)). The maximum
distance between adjacent pairs is modelled through the con-
tinuous variable dadj , eq. (2i). The minimum distance between
not adjacent pairs is defined by another continuous variable
dadj , eq. (2j). At last, the binary variables δij , ∀{i, j} ∈ P ,
defined as follows, model the feasibility of the solution.

δij :=

{
1 pair distance is unfeasible
0 pair distance is feasible

(1)

It is relevant to notice that the feasibility conditions are mod-
elled accordingly to the adjacency pattern described by A to
account for the unit disk graph property and constraints: adja-
cent vertexes’ feasible distances are in the range [Dmin, Dadj ]
(see Eqs. (2c), (2b)), not adjacent vertexes should have pair
distances in the range [Dadj+ϵ, 2L] (see Eqs. (2f), (2e)), with
a small value ϵ to avoid a strict inequality formulation that is
not allowed by the Pyomo library. Constraint (2d), combined
with the objective function (2a), enforces the adjacent vertexes
to be as close as possible, whereas constraint (2g) enhances
the distances between not adjacent vertexes to be the greatest
as possible.
The overall CUDG programming model is shown below.

1https://pyomo.readthedocs.io
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Notice that the constraints on the distances are defined taking
into account squared Euclidean distances and that the penalty
constant 2L −Dmin + ι, ι > 0, associated with each binary
variable in the objective function, favours feasibility over the
increasing of the adjacency gap, dadj − dadj .

min−→p , δ, d
(2L−Dmin + ι)

∑
{i,j}∈P

δij + dadj − dadj (2a)

s.t. ||−→p i −−→p j ||22 ≤ D2
adj + (8L2 −D2

adj)δij (i, j) ∈ E, (2b)

||−→p i −−→p j ||22 ≥ (1− δij)D
2
min (i, j) ∈ E, (2c)

||−→p i −−→p j ||22 ≤ d2adj (i, j) ∈ E, (2d)

||−→p i −−→p j ||22 ≤ 4L2 + 4L2δij (i, j) /∈ E, (2e)

||−→p i −−→p j ||22 ≥ (1− δij)(Dadj + ϵ)2 (i, j) /∈ E, (2f)

||−→p i −−→p j ||22 ≥ d2
adj

(i, j) /∈ E, (2g)
−→p ∈ [−L,+L]n×N , (2h)

dadj ∈ [Dmin, Dadj ], (2i)
dadj ∈ [Dadj + ϵ, 2L], (2j)

δ ∈ {0, 1}|P| (2k)

B. Generating the dataset: basic requirements

The programming model presented in section III-A is
solved by comparing two solvers: the Ipopt solver and the
novel neural-enhanced optimization framework detailed in
Sec. III-C. To fairly compare these solvers, a test dataset has
been created: it consists of 200 graph instances; in particular,
there are 20 samples for each value of n ∈ {10, 20, . . . , 100}.

It is worth mentioning that the generation of the dataset
takes into account some necessary conditions regarding the
feasibility of the solution to the CUDG problems. The identi-
fied necessary conditions follow directly from Thue’s Theorem,
which states that regular hexagonal packing is the densest
circle packing in the plane [37]. As follows, necessary con-
ditions have been defined for the 2-dimensional case, which
corresponds to the most quantum-application-ready setting.
Further generalization to the 3-dimensional case or more
sophisticated conditions will be the subject of future work.

Concerning the real-world application, the domain
parameters values are Dmin = 4 µm and Dadj ≈ 10.26 µm.
So, in the densest packing embedding, the hexagon side is
4 µm, and adjacent vertexes should lie within a ≈ 10.26 µm
distance. Thus, to properly embed a complete graph with
M vertexes, KM , all its vertexes should have pair distances
≤ Dadj (see Fig. 2 on the left), hence property 1.

Property 1 (Maximum clique property): Consider the CUDG
problem formulated in section III-A. Let Dmin = 4 µm,
Dadj = 10.26 µm, L = 50 µm, G(V, E) the undirected graph
that defines the CUDG problem and M the number of vertexes
in the maximum-sized complete graph (or clique) of G, then
a feasible unit disk graph solution can be obtained only if
M ≤ 7.

Moreover, still considering the same regular hexagonal pack-
ing combined with the unit disk graph definition, property 2
follows.

Property 2 (Maximum degree property): Consider the
CUDG problem formulated in section III-A. Let Dmin =
4 µm, Dadj = 10.26 µm, L = 50 µm, G(V, E) the undirected
graph that defines the CUDG problem and ∆ the maximum
degree for vertexes in G, then a feasible unit disk graph
solution can be obtained only if ∆ ≤ 18.

𝐷𝑎𝑑𝑗

𝐷𝑚𝑖𝑛

𝐷𝑎𝑑𝑗

𝐷𝑚𝑖𝑛

Fig. 2. Representations of a K7, clique with 7 vertexes, (on the left) and of a
graph with maximum degree ∆ = 18 (on the right) feasible embeddings, for a
CUDG problem with Dmin = 4 µm, L = 50 µm and Dadj = 10.26 µm.

Fig. 2, on the right, shows a feasible embedding for a
subgraph with ∆ = 18. All the vertexes lying within the
circular red area, with radius Dadj = 10.26 µm, are neigh-
bours of the red-colored vertex, which among the highlighted
vertexes is the one with the highest degree ∆ = 18. However,
the represented embedding constraints the connectivity of
neighbouring vertexes. Thus it is not a feasible embedding
for all arbitrary graphs with ∆ = 18.

So, since properties 1 and 2 define the necessary conditions
for the CUDG to have a feasible solution, they govern the
dataset generation. To have more chance and get feasible
embeddings, the graphs instances are created by randomly
setting initial coordinates −→c i, ∀i ∈ V in a square domain with
side l. Then, edges are defined following a unit disk graph
approach, considering a threshold distance d: all vertexes that
fall within distance d are paired by edges. No constraints on
minimum feasible distance between vertexes or tight relation-
ship between values d and l are considered. So the CUDG
problem, as defined in section III-A, is not trivially solved by
scaling the initial domain. The parameters l and d increment
along with the number of vertexes. The dataset creation is
performed iteratively until all the desired samples are obtained.
In the specific case, the overall dataset, accounting for 200
graphs, was computed in ≈ 2.30 min.

Therefore, in generating the dataset, all the graphs’ instances
were required to satisfy the following conditions:

• size of the maximum estimated2 clique ≤ 7;
• maximum degree ≤ 18;
• all vertexes of the graph belong to the same connected

component.

C. Neural-enhanced optimization framework

As classical solvers’ performance significantly decreases
with CUDG problem dimensionality, we designed a novel

2Finding the maximum clique is an NP-hard problem, which solution was
not targeted in this context, the NetworkX maximum clique approximation
algorithm was exploited at this scope [38].
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methodology to enable solving more CUDG instances. This
approach exploits neural networks’ capability to approximate
non-linear functions to make a modified autoencoder learn the
spatial transformation that maps an initial unfeasible solution
of the CUDG into a feasible one, possibly satisfying both the
unit disk graph property and maximizing the adjacency gap.
The overall model, named Distance Encoder Network (DEN),
takes as input an initial guess on the coordinates −→p i, learns
new feasible coordinates −→p f

i in a specific hidden layer, i.e.
the coordinates’ layer, and produces as output the squared
pair distances ||−→pi f − −→pj f ||22, ∀{i, j} ∈ P . Then, the CUDG
problems’ constraints and the objective function are handled
through a custom loss function, named Embedding Loss Func-
tion (ELF).

So, the overall neural-enhanced optimization framework
manages one graph instance G(V, E) at a time. As represented
in Figure 3, it consists of two main parts: the preprocessing
phase provides −→p i, ∀i ∈ V , and then the learning phase
performs the actual optimization to retrieve −→p f

i , ∀i ∈ V for a
feasible embedding configuration.

1) The preprocessing phase: the vertex coordinates initial-
ization: Since the proposed optimization framework relies on
learning spatial transformations, initial coordinates −→p i, ∀i ∈ V
should be provided. Hence, a preprocessing phase performs
the computation of these initial positions. This preliminary
phase aims to support the convergence of the optimization
algorithm, i.e. providing −→p i, ∀i ∈ V that roughly satisfy
some of the constraints. Thus, the DEN model would converge
in fewer iterations (epochs) than when starting from random
initialization. Two approaches for −→p i, ∀i ∈ V initialization
have been investigated.

• Scaling method: all the graphs in the dataset come along
with vertex coordinates −→c i, ∀i ∈ V . These coordinates
can be scaled to the domain of interest to respect at least
one set of distance constraints. The choice was made to
scale −→c i, ∀i ∈ V to a circle with radius L, thus retrieving
−→p i, ∀i ∈ V initial positions that automatically satisfy
constraints (2e). If the target is a 3-dimensional embed-
ding, i.e. N = 3, then all z-coordinates are initialized to
0.

• Fruchterman-Reingold method: this force-directed layout
algorithm [39] does not require initial coordinates to
be performed, and it models attractive and repulsive
forces between vertex pairs according to the adjacency
pattern. The chosen Fruchterman-Reingold algorithm im-
plementation is available in the NetworkX3 Python li-
brary, where repulsive forces intervene on all vertex
pairs with module k2/||−→p i − −→p j ||22, whilst attractive
forces intervene only on adjacent pairs and have module
||−→p i − −→p j ||2/k. Here the parameter k determines the
equilibrium distance at which the two forces balance for
adjacent pairs [40], so in this specific setting, it assumes
a value of 7 µm ∈ [Dmin, Dadj ]. This method does

3https://networkx.org

not guarantee some constraints satisfaction through −→p i,
∀i ∈ V initialization; though, it allows to deal with
graph instances that do not have any initial coordinates
to start from, a valid assumption for most of the graphs
in UDG-related applications. It handles both 2D and 3D
coordinate vectors. This is an iterative method, which
tends to converge to a solution in a short time. Thus,
it was restrained to 1000 iterations.

2) The learning phase: pursuing the feasible embedding:
After the preprocessing phase, the core of the optimization
framework takes place. It consists of the DEN model’s
training. Even if the training algorithm follows the typical
approach to training neural networks (forward step to
compute outputs and gradients, and backward step to update
the network’s weights), it has a different meaning. The DEN
model is supposed to learn a proper spatial transformation
that maps an initial not feasible solution of the CUDG
problem into a feasible one, still targeting the maximization
of the adjacency gap. So, the training of each graph sample
is independent of the others. Hence, the network architecture
is defined according to the problem dimensionality, i.e. n
and N , and to the desired adjacency pattern, determined by
A. To set up a fair comparison among graph samples, for
each instance of the CUDG problem, a maximum number of
epochs, i.e. DEN model trials to find a solution, is fixed, and
it is denoted by E.
The DEN model architecture includes dropout layers for
regularization purposes [41]. Therefore, at each epoch, a
training step and a subsequent inference step are performed:
during the training step, the dropout works by randomly and
temporarily deleting neurons in the hidden layers, then the
ELF is computed, and DEN weights are updated according
to AdamW optimizer with learning rate defined by the
hyperparameter lr [42], after that, in the inference step no
dropout takes place, and the embedding configurations is
computed without further contributing to weights’ update.
In the ELF definition, the parameter α represents the
adjacency gap, so it would not be directly optimized if an
outer optimization loop were not performed. In the proposed
solution, α is initialized to ϵ, and each time the DEN model
finds a feasible solution, if the new solution corresponds to
an increment in the adjacency gap, the parameter α assumes
the value of the best adjacency gap.
This overall procedure, concerning both the feasible
embedding retrieval and the adjacency gap maximization, is
the learning phase.

The Distance Encoder Network architecture: the DEN
model architecture comes from a modification of a typical
autoencoder network. It consists of two parts, which are
respectively the trainable autoencoder component and the
fixed-weight distance calculator.
The trainable autoencoder has the architecture described in
table I: the input layer accounts for all the initial coordinates
components, −→p i, ∀i ∈ V and the output layer generates the
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Learning phasePreprocessing phase Best feasible embedding

Fruchterman-Reingold method

Scaling method

𝑑 ≈ 8,59 𝜇𝑚
𝐷 ≈ 57.64 𝜇𝑚

d𝑎𝑑𝑗 ≈ 25.59 𝜇𝑚

d𝑎𝑑𝑗 ≈ 25.00 𝜇𝑚

𝐴 =

𝑑 ≈ 8.48 𝜇𝑚
𝐷 ≈ 100.00 𝜇𝑚
d𝑎𝑑𝑗 ≈ 49.29 𝜇𝑚

d𝑎𝑑𝑗 ≈ 49.87 𝜇𝑚

Initial graph

𝑑 ≈ 4.22 𝜇𝑚
𝐷 ≈ 20.63 𝜇𝑚
d𝑎𝑑𝑗 ≈ 9.41 𝜇𝑚

d𝑎𝑑𝑗 ≈ 11.34 𝜇𝑚

𝑑 ≈ 4.00 𝜇𝑚
𝐷 ≈ 21.21 𝜇𝑚

d𝑎𝑑𝑗 ≈ 10.04 𝜇𝑚

d𝑎𝑑𝑗 ≈ 11.56 𝜇𝑚

Fig. 3. The optimization framework for the constrained unit disk graph problem: two different approaches are considered for the position initializations in
the preprocessing phase. Both the Scaling and the Fruchterman-Reingold methods do not provide initial feasible embeddings. Then, during the learning
phase, the DEN model has 3000 epochs available for learning a proper spatial transformation. Along with the model training, the best feasible embeddings
are updated according to the adjacency gap maximization goal. The final step returns the best embedding found so far.

transformed coordinates, −→pi f , ∀i ∈ V . In particular, these
positions are flattened into 1-dimensional vectors, the input
vector I and the output vector O, such that

I(k) =


−→p (x)

k 0 ≤ k < n
−→p (y)

k−n n ≤ k < 2n
−→p (z)

k−2n 2n ≤ k < 3n and N = 3

(3)

O(k) =


−→
pfk

(x) 0 ≤ k < n
−→
pf

(y)
k−n n ≤ k < 2n

−→
pf

(z)
k−2n 2n ≤ k < 3n and N = 3

(4)

In the trainable autoencoder, all the fully connected layers
allow for the contribution of a bias node and they are equipped
with the dropout functionality. This latter is parameterized
through the dropout probability hyperparameter pdrop.
Finally, the activation function in the last fully connected layer
allows generating coordinates in the square (or cubic, when
N = 3) domain of side 2L.

The fixed-weight distance calculator is the second compo-
nent of the DEN model. It computes squared pair distances,
||−→pi f − −→pj f ||22, ∀{i, j} ∈ P , thus making the trainable
autoencoder aware that the values contained in O represent
Cartesian coordinates whilst providing the proper input to the

loss function. To perform this task, the weights of the distances
encoder are not subject to the training procedure, differently
from the trainable autoencoder, and the computation of the
squared distances is accomplished through the fully connected
difference layer (input size = n×N , output size = N ×

(
n
2

)
,

no bias node) followed by a Square activation function and
subsequently through the fully connected sum layer (input size
= N ×

(
n
2

)
, output size =

(
n
2

)
, no bias node). In particular, the

difference layer’s weights assume values ±1, 0, such that the
node values u in this layer, before the activation function is
applied, are

u
i(n−1)−(i2)+j−i−1

=
−→
pfi

(x) −
−→
pfj

(x) ∀{i, j} ∈ P (5)

u
(n−1)(n

2
+i)−(i2)+j−i−1

=
−→
pfi

(y) −
−→
pfj

(y) ∀{i, j} ∈ P (6)

u
(n−1)(n+i)−(i2)+j−i−1

=
−→
pfi

(z) −
−→
pfj

(z) ∀{i, j} ∈ P, N = 3

(7)

Finally, the weights in the sum layer are fixed to values
0,+1, such that the output values v of the DEN models are
the squared pair distances in lexicographic order:

vk =

u2
k + u2

(n2)+k
k ∈

{
0, 1, . . . ,

(
n
2

)
− 1

}
, N = 2

u2
k + u2

(n2)+k
+ u2

2(n2)+k
k ∈

{
0, 1, . . . ,

(
n
2

)
− 1

}
, N = 3

(8)
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TABLE I
Trainable autoencoder COMPONENT ARCHITECTURE FOR A GRAPH WITH n VERTEXES AND TARGETING AN EMBEDDING IN N DIMENSIONS.

Layer type Input size Ouput size Activation function
Encoder

Fully connected layer n×N 64 ReLu
Fully connected layer 64 36 ReLu
Fully connected layer 36 18 ReLu
Fully connected layer 18 9 ReLu

Decoder
Fully connected layer 9 18 ReLu
Fully connected layer 18 36 ReLu
Fully connected layer 36 64 ReLu
Fully connected layer 64 n×N L× Tanh

The Embedding Loss Function: starting from the output
of the DEN model, v = ||−→pi f − −→pj f ||22, ∀{i, j} ∈ P ,
the embedding loss function (ELF) is defined to address the
feasibility constraints. In particular, it handles separately (2c)
(2f) and (2b) (2e). They respectively define lower and upper
bounds on feasible distances. So, the ≥-based constraints
are reflected in the loss ELFmin, whilst the ≤-based are
modelled through the loss ELFmax. It is worth mentioning
that this modelling approach for inequalities constraints can
be exploited beyond the specific CUDG problem.
The ELFmin and ELFmax definitions exploit the Margin
Ranking loss function:

MarginRanking(v, vt,m) = avg(max(0,−m(v − vt))) (9)

where m is a vector that determines if we are modelling ≥
or ≤ inequalities constraints, and the target squared distances
vt are defined according to the adjacency pattern. More
precisely, for the ELFmin computation: m = I|P|, and

vt
i(n−1)−(i2)+j−i−1

=

{
D2

min Ai,j = 1

(Dadj + α)2 Ai,j = 0
∀{i, j} ∈ P

(10)
Whereas, for the ELFmax, m = −I|P|, and

vt
i(n−1)−(i2)+j−i−1

=

{
D2

adj Ai,j = 1

4L2 Ai,j = 0
∀{i, j} ∈ P (11)

Finally, the overall loss function accounts for both contri-
butions, so

ELF (v) = ELFmin(v) + ELFmax(v) (12)

IV. EXPERIMENTS

To test the effectiveness of the DEN-based optimization
framework, 200 graph samples have been considered to de-
fine the corresponding CUDG problem instances. The dataset
consists of 20 graphs for each value of n ∈ {10, 20, . . . , 100}.
The feasible domain has been parametrized according to the
characteristics of the quantum hardware of interest, so Dmin =
4 µm, Dadj ≈ 10.26 µm, L = 50 µm. The parameters ι
and ϵ have been set respectively to 1 and 0.1. Each DEN
model learning phase was allowed to perform E = 3000

epochs. The learning rate and the dropout probability hyper-
parameters were tested with values lr ∈ {0.01, 0.001, 0.0001}
and pdrop ∈ {0.3, 0.5, 0.7} and combined with the two
initialization methods, such as to obtain 18 different trials for
retrieving a CUDG solution for each graph in the dataset.
All the trials were run on an IBM Power9-based cluster, with
32 cores/node and 256 GB/node. The nodes in the cluster
are also equipped with 4 x NVIDIA Volta V100 GPUs each.
However, since the mini-batch size is 1, i.e. just one graph
sample is considered at each epoch, training on GPUs does
not provide a significant acceleration. Whereas the greater
availability of CPUs allowed us to exploit better the trials
parallelism. In particular, each trial uses 8 physical cores of a
node. The overall experiment, comprehensive of the classical
solver comparison, required ≈ 5000 core hours.

Figure 4a shows the variability in computational time to
perform each one of the 3600 = 200 × 18 trials (the dataset
consists of 200 graphs and the combinations in the hyperpa-
rameters search are 18 ) for both the embedding dimensionality
N = 2, N = 3, grouped by the number of vertexes n. For
each value of n and N , an average computational time, Tn,N ,
is retrieved. Then to perform a comparison with the Ipopt
solver, a multi-start classical optimization takes place, with
the number of starting set to 18 and the maximum walltime
for each iteration set to Tn,N , according to the number n of
vertexes of the graph instance and the targeted dimensionality
N . Figure 4b reports some statics on the first time the DEN
model find a feasible embedding for each trial, grouping the
result by n and separately for dimensionality N . You can
notice that, due to the augmented dimensionality, it is easier for
the DEN model to find solutions in the 3D space. On average,
the first feasible embedding is found earlier along the epochs.
Moreover, as n increases, it becomes more difficult to solve
the CUDG problem. As we can see, for n = 70, only one
graph was successfully embedded within the 3000 epochs in
a 2D space.

This result is even better represented in Fig. 5 which shows
the percentage of feasible embeddings retrieved with each op-
timization approach. In the case of the DEN solver, the results
achieved through the two initialization are distinguished. To
better prove the advantage of the DEN solver, we allowed
the Ipopt solver to exploit higher computational times. More
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(b) Epochs at which the first feasible embedding was found during the
learning phase

Fig. 4. The average computational times for the DEN models training scale
linearly with n, and the increment in the dimensionality does not seem to
impact significantly on the training duration (Fig. 4a). Whereas the impact of
an increased dimensionality, N , is much more evident in Fig. 4b, here the
DEN model finds more easily a feasible embedding when N = 3 than in
the case N = 2, as can be noticed, feasible embeddings are retrieved up to
n = 100 and generally the first feasible embedding is found earlier along the
epochs.

precisely, we allowed for 10Tn,N (accordingly to n and N ,
it could be more than half an hour). Nevertheless, it still did
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Fig. 5. Percentage of feasible embeddings obtained, on the whole graphs
dataset. The DEN model outperforms the Ipopt solver for both the N = 2
and N = 3 cases. There is no clear best choice concerning the initialization
methods (Fruchterman-Reingold, i.e. FR, or scaling). As in the case of the
first feasible embedding (Fig. 4b), the increment in dimensionality allows for
finding more easily feasible embeddings, despite the increment in the models’
parameters.

not provide feasible solutions for the instances that were not
solved within Tn,N walltime.

Fig. 6 illustrates instead the results concerning the maxi-
mization of the adjacency gap. The DEN-based optimization
outperforms the classical optimization when the feasibility of
the embedding is the goal of major importance. On the other
hand, when the Ipopt-based solver finds feasible embeddings,
they correspond to a greater adjacency gap. Possibly, more
sophisticated optimization strategies on the α parameter in the
ELF, combined with an increment of E, could overcome this
issue.

A final observation concerns the choice of the hyperpa-
rameters. Up to the experiment results, there is no specific
combination of value for the learning rate lr and the dropout
probability pdrop that provides a higher success rate for
the CUDG solution. The retrieval of an embedding seems
independent of those hyperparameters.

V. CONCLUSION

This paper presents a novel neural-enhanced optimization
framework that addresses a non-convex NP-hard optimization
problem, i.e., the constrained unit disk graph problem. It arises
from several real-world applications, such as QUBO problems’
embedding for neutral-atoms-based quantum hardware.
The proposed distance encoder network (DEN) model com-
bined with the embedding loss function (ELF) can find feasible
embeddings for a larger set of graphs than the classical solver
Ipopt. Nonetheless, better embeddings could still be accom-
plished by improving the adjacency gap optimization. Over-
coming the limitation concerning adjacency gap maximization
will be the subject of further work, together with a deeper
study on hyper-parameter settings and convergence analysis.
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Fig. 6. Comparison of the largest adjacency gap values obtained with the different solvers, for all the graph samples in the dataset. The blue rectangles group
the graphs’ instances by n.

Moreover, modified versions of the DEN model and ELF will
be targeted to provide a more GPU-friendly implementation
increasing the mini-batch size during the training phase.
A final observation concerns the generality of the approach.
The DEN model and the ELF pursue the computation and
optimization of Euclidean distances. Yet, custom modifications
can supply outputs of interest for other optimization problems
in a similar optimization framework. On this side, we can
remark that the definition of the ELF function is sufficiently
general to model inequality constraints, and the activation
functions combined with proper fixed-weight settings allow
for representations of objective functions and constraints.
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