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Robust Real-Time Embedded EMG Recognition
Framework Using Temporal Convolutional

Networks on a Multicore IoT Processor
Marcello Zanghieri, Simone Benatti, Alessio Burrello, Victor Kartsch, Francesco Conti, Luca Benini

Abstract—Hand movement classification via surface elec-
tromyographic (sEMG) signal is a well-established approach
for advanced Human-Computer Interaction. However, sEMG
movement recognition has to deal with the long-term reliability
of sEMG-based control, limited by the variability affecting the
sEMG signal. Embedded solutions are affected by a recognition
accuracy drop over time that makes them unsuitable for
reliable gesture controller design. In this paper, we present a
complete wearable-class embedded system for robust sEMG-
based gesture recognition, based on Temporal Convolutional
Networks (TCNs). Firstly, we developed a novel TCN topology
(TEMPONet), and we tested our solution on a benchmark
dataset (Ninapro), achieving 49.6% average accuracy, 7.8%,
better than current State-Of-the-Art (SoA). Moreover, we de-
signed an energy-efficient embedded platform based on GAP8,
a novel 8-core IoT processor. Using our embedded platform, we
collected a second 20-sessions dataset to validate the system
on a setup which is representative of the final deployment.
We obtain 93.7% average accuracy with the TCN, comparable
with a SoA SVM approach (91.1%). Finally, we profiled the
performance of the network implemented on GAP8 by using
an 8-bit quantization strategy to fit the memory constraint of
the processor. We reach a 4× lower memory footprint (460 kB)
with a performance degradation of only 3% accuracy. We
detailed the execution on the GAP8 platform, showing that the
quantized network executes a single classification in 12.84ms
with a power envelope of 0.9mJ, making it suitable for a long-
lifetime wearable deployment.

I. INTRODUCTION

Decoding hand gestures is an established method for devel-
oping advanced Human-Machine Interfaces (HMIs), which
leads to a wide range of application scenarios, such as
industrial robot control, gaming interfaces, prosthetic control
or augmented reality [1], [2]. In the HMI field, gesture recog-
nition relies on the processing of information coming from
video cameras [3] or from muscular activity [4]. Camera-
based techniques rely on image processing algorithms which
recognize users’ hand in a scene and recognize different
gestures using computer vision. Although this approach can
decode a vast number of gestures reliably, it suffers from
the line of sight issues and scene illumination variability,
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and it requires pre-installed environmental cameras. On the
other hand, approaches based on muscular signal analysis are
inspired by the prosthetics domain, where electromyographic
signals are used to control artificial hands [5], [6]. Com-
mercial prosthetic controllers are simple and highly reliable.
However, they provide a non-natural interface, unsuitable for
intuitive gesture interface design, because of the high level
of concentration required by the user and the long learning
curve.

New machine learning approaches have been extensively
explored to enable the design of natural gesture interfaces.
They aim to map muscular contraction patterns onto a set of
intended gestures [7], using supervised learning methods such
as SVM, LDA or ANN [8], [9], [10]. Such approaches reach
accuracy above 80% on classifying several hand gestures
(from 4 to 12), making them suitable for the design of human-
machine interfaces.

Nevertheless, the EMG signal is affected by high variabil-
ity caused by subjects’ fatigue, perspiration, changes in the
skin-to-electrode interface, user adaptation, and mostly by
electrode shifts during multi-day usage [8], [11], [10]. These
factors severely limit the long-term usage and the reliability
of the EMG-based gesture recognition, leading to an inter-
sessions accuracy drop of up to 30% [12]. While extending
the training dataset and enhancing the algorithms with more
features can help to reduce this drop [8], this is still too high
(> 10%) to make these approaches suitable for robust and
commercially available systems.

A promising possible solution could come from using
Deep Learning (DL) techniques. In recent years, they have
been successfully proposed for biosignal application sce-
narios [13], and have achieved state-of-the-art accuracy on
a wide range of applications such as activity recognition
or neural diseases detection. The major advantage of the
DL approaches is the removal of manually-extracted signal
features. Indeed, a deep network automatically learns a good
representation of the signal during the training step. This
automatization is particularly useful for signals that are
affected by very high variability like the sEMG; for this
class of signals, the algorithm could learn a signature of the
signal, which is not affected by the variability, but allows
to characterize the muscle stimuli and differentiates multiple
hand gestures. As a result, such an approach enables a better
generalization on more massive datasets.

Most of the DL models are based on complex architectures
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with a high number of layers and neurons [13], [14], [15]
to obtain high recognition accuracy and low performance
drop on multi-day sessions. On the other hand, these models
require a memory footprint of several MBytes, which is not
suitable for a real-time deployment on low-power embedded
platforms. Pursuing the creation of a DL reliable framework
on an energy-efficient platform requires a multilevel approach
with HW/SW codesign. In particular, the designer should
i) develop a robust and high-accuracy network topology,
ii) minimize the number of parameters of the algorithm
through software DL optimizations and finally iii) couple the
algorithm with the embedded optimization (e.g. quantization
and memory management) of the firmware implementation
on the digital platform.

In this work, we tackle the challenge of variability ro-
bustness of sEMG-based hand gesture recognition, and we
propose a real-time embedded platform for robust sEMG-
based gesture recognition. The major contributions we are
proposing are:

• TEMPONet, a novel EMG classification algorithm based
on a Temporal Convolutional Network (TCN), tested on
a benchmark EMG dataset (NinaPro DB6);

• a complete embedded platform for EMG acquisition and
processing. The system is based on the combination of a
commercial Analog Front End for biopotential acquisi-
tion with GAP8, a multicore low-power IoT processor;

• a 20 session dataset, collected with our custom plat-
form, which allows us to validate the algorithm and to
profile a quantized version of the TCN, suitable for the
deployment on a resource-constrained platform.

We tested the performance of TEMPONet on the NinaPro
DB6 dataset [11], achieving 65.2% inter-session accuracy on
steady signals and 49.6% inter-session on the full dataset –
7.8% better than the current state-of-the-art [16]. Moreover,
after the system design, we tested the same TEMPONet
topology on a new dataset we introduce in this work, com-
prising 20 sessions on three subjects. On this dataset, we
achieve 93.7% inter-session accuracy. The 20-session dataset
is collected using the same platform on which we deploy our
detection algorithm. Therefore, it is representative of the real
kind of data that an embedded setup can gather. Our results
show that the accuracy drop on entirely unseen sessions can
be reduced to 6.6% on NinaPro DB6 and 3.4% on the 20-
session dataset, surpassing the current state-of-the-art.

Finally, we performed a full quantization of our TEM-
PONet, dropping the data representation of the weights and
the feature maps from 32-bit floating point to 8-bit integer,
thus reducing the network memory footprint by 4×. To
leverage the 8-core architecture of the GAP8 processor and
parallelize the execution of the algorithm, we used highly
optimized neural network libraries [17]. The quantized TCN
can be executed in real-time on the GAP8 chip (a full
inference takes less than 13ms and consumes 0.9mJ), but
still achieves 93.3% inter-session accuracy on the 20-session
dataset and 61.0% on the NinaPro DB6 while providing up
to 54h of battery life, showing a computational efficiency of

10× compared to SoA systems for sEMG processing, suitable
for convolutional network deployment, such as [18], [19].

II. BACKGROUND AND RELATED WORK

A. Background

1) sEMG Signal and Datasets
The electromyographic (EMG) signal [20], [21], [22] is the

bioelectric potential originating from the current generated
by the ionic flow through the membrane of the muscular
fibers, and it is, therefore, a major index of the muscular
activity. This potential is generated by the electrical stimulus
starting from the central nervous system and passing through
the motor neurons (motoneurons) that innervate the muscular
tissue. Typically, the EMG signal has amplitude ranging from
10 µV to 10mV, and bandwidth ∼ 2 kHz.

Moreover, it is a very challenging signal as it is affected
by several noise sources, such as motion artifacts, floating
ground noise, crosstalk, and Power Line Interference [23],
[24].

EMG data can be acquired either with invasive or non-
invasive methods. In this work, we focus on surface elec-
tromyography (sEMG), a non-invasive technique which uses
electrodes operating on the surface of the skin. In the sEMG
setup, the action potentials (APs) can be detected using
an instrumentation amplifier with the positive and negative
terminals connected to two metal plates positioned on the
skin surface; the sEMG signal results from the superposition
of all the detected APs underlying the amplifier [10]. In
the Human-Machine Interface (HMI) field, building gesture
recognition upon the analysis of sEMG signals is one of
the most promising approaches, since non-invasiveness is an
essential requirement for many types of interface.

The Non-Invasive Adaptive hand Prosthetics Database 6
(NinaPro DB6) [11] is a public sEMG database realized
to investigate the repeatability of sEMG-based hand gesture
(grasps) recognition over time. The data were collected from
10 intact (i.e. non-amputee) subjects (3 females, 7 males,
average age 27 ± 6 years). The database consists of 10
sessions (5 days, two sessions a day: morning and afternoon),
each involving 12 repetitions of 7 grasps, for all the 10
subjects. The grasps were selected from the robotics and
rehabilitation literature, covering hand movements typical of
Activities of Daily Living (ADL). The sEMG signals were
measured with 14 Delsys Trigno sEMG Wireless electrodes,
placed on the high half of the forearm, at sampling rate 2 kHz.
Each grasp repetition lasts approximately 6 s, followed by 2 s
of rest.

In addition to the analysis performed on NinaPro DB6, we
also introduce a study on our dataset, which incorporates the
effects of a real-life scenario in our embedded platform. This
dataset targets hand gestures that are fully compatible with
Human-Machine Interaction. To analyze the sEMG temporal
variability and validate our results, we collected a 20-session
dataset, using our custom 8-electrodes platform. The dataset
is described in detail in Section IV-C.
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2) Temporal Convolutional Networks
More recently, Temporal Convolutional Networks (TCNs)

have been gaining attention for the analysis of time se-
ries [25], [26]. TCNs are a recently proposed class of sequen-
tial models able to learn the temporal dependencies of a given
input signal. TCNs are the State-of-the-Art in many sequence
modeling challenges, outperforming the more expensive and
complicated Recurrent Neural Networks (RNNs) [25], [26],
[14]. The novel and unique properties granting success to this
kind of network are situated in its 1D-convolutional layers
operating along the time dimension. These layers present two
fundamental novelties:
(1) causality, which implies that each output ytN of the layer
only relies on convolutions of elements xtI with tI ≤ tN . In
this way, only the previous history of the signal is used to
predict the label at time tN .
(2) dilation: a fixed step d is introduced between the filter
inputs. Using this approach, TCN layers present an increased
receptive field with a reduced number of parameters (e.g.,
with d = 4 and filter size = 3, the receptive field is 9). This
method allows to take into account a wide signal history
without impairing the network with a too high number of
parameters (increasing the filter size) or with many stacked
layers (reducing the training efficiency). Thus, a convolu-
tional layer of a TCN operates as:

yon = Conv (x) =
L−1∑
l=0

K−1∑
i=0

xln−d i ·W
l,m
i

with x input feature map and y output feature map, n the
time index, W the filter weights, L the number of input
channels, m the output channel, d dilation, and K the filter
size. The lower part of Figure 1 portraits how the presented
dilated 1D-convolutional layers work on an input time series.

B. Related Work

In the last few years, several sEMG-based hand recognition
approaches have been presented both in academia and in
commercial applications. All of them share a typical struc-
ture, based on i) an analog front end for bio-potential acquisi-
tion, ii) a data preprocessing and feature extraction/selection
step, and iii) a final classification back end. Moreover, they
usually all rely on Machine Learning (ML) algorithms such
as Support Vector Machine (SVM), Random Forest (RF),
LDA or artificial neural networks (ANN) [8], [9], [27], [10],
[13], [28].

For instance, in [29], [30], the authors presented a 4
hand gesture classification with accuracy above 90%, using
ANN with 5 time-domain features (Mean Absolute Value
(MAV), Mean Absolute Value Slope (MAVS), number of
Slope Sign Changes (SSC), number of zero crossings (ZC),
and Waveform Length (WL)). Castellini et al. [31] illustrated
a three grasp recognition, achieving 97.1% classification
accuracy using the Root Mean Square (RMS) as features
extraction for an SVM.

On a more general scenario (up to 50 different hand ges-
tures), remarkable results were obtained by Atzori et al. [9]

Figure 1: Structure and functioning of Convolutional Block
2: two dilated convolutions (d = 4), one strided convolution
(s = 2) and average pooling. The input of the block is the
temporal sequence computed by Convolutional Block 1.

on the Non-Invasive Adaptive hand Prosthetics Databases 1,
2, and 3 (NinaPro DB1, DB2, and DB3), employing a mixture
of time- and frequency-domain features. As a downside, all
these works are limited to a single-session setup. This setup
fails to tackle the issue of the inter-session accuracy drop
observed when classifying gesture from a never-seen session
after training on just one session.

As a result, the crucial challenge in sEMG-based gesture
recognition has shifted from absolute classification accu-
racy to managing the variability of the signal, which is
affected by several factors such as anatomical variability,
posture, fatigue, perspiration, changes in the skin-to-electrode
interface, user adaptation, and electrode repositioning over
multi-day usage [34], [8], [11], [10]. These factors strongly
hamper generalization, thus limiting the long-term use and
the realization of robust real-time recognition systems.

For instance, Benatti et al. [12] and [11] collected sEMG
data from several subjects in multi-day sessions to analyze
the performance degradation of conventional ML algorithms
when donning and doffing the sensory setup. In these ex-
periments, the inter-session accuracy drop after training on a
single session was up to 30%. The proposed solutions mostly
rely on the extension of the training datasets, the modification
of the acquisition setup (e.g. by increasing the electrode
count), and the extraction of a broader set of features to
improve algorithm convergence. These solutions lower the
average accuracy drop, decreasing the average error rate to
12% [8]. However, this performance drop and the lack of
generalization are still hampering the deployment of these
solutions in reliable, commercially available systems.

A new state-of-the-art strategy to robustify recognition
against temporal variability is multi-session training, which
is the methodology implemented in this work. This strategy
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TABLE I: Comparison between SoA embedded platforms for EMG processing.

Work Dataset # subj # sessions # classes # channels Time
window

Features Algorithm Accuracy [%]
Intra / Inter

Real-time Embedded

Hudgins [29] private 18 1 4 1 200ms MAV,
ZC, SSC,

WL

Shallow
ANN

88.9 / N.A. no no

Park [32] NinaPro DB1 27 1 6 1 8 2000ms RMS
time×ch.

CNN N.A./∼94 2 3 no no

Tsinganos [28] NinaPro DB1 27 1 53 8 200ms RMS
time×ch.

CNN 70.5 / N.A. no no

Tsinganos [15] NinaPro DB1 27 1 53 8 300ms,
1200ms

RMS TCN 89.8 / N.A. no no

Betthauser [14] private 9 1 27 8 1675ms 200ms-
MAV

TCN 69.5 / N.A. no no

Hu [13] NinaPro DB1 27 1 53 8 200ms RMS CNN+LSTM 87.0 / N.A. yes no

Kaufmann [8] private 1 121 10 8 150ms MAV,
ZC, SSC,

WL

SVM N.A. / 87.7 no no

Milosevic [10] Unibo-INAIL 7 8 6 4 1 sample RMS SVM ∼90 4 /∼70 4 no no

Du [33] CapgMyo 8 2 8 128 1 sample inst. HD-
sEMG
images

CNN 98.6 / 63.3 3 yes no

Palermo [11] NinaPro DB6 10 10 8 14 200ms WL RF 52.4 / 25.4 no no

Cene [16] NinaPro DB6 10 10 8 14 200ms MAV,
VAR,
RMS

ELM 69.8 / 41.8 no no

This work

NinaPro DB6 10 10 8 14 150ms raw
sEMG

TCN 54.5 / 49.6 yes yes

20-session 3 20 9 8 150ms raw
sEMG

TCN 97.1 / 93.7 yes yes

1 Restricted to 6 functional movements, without rest class. 2 Inter-subject. 3 With domain adaptation. 4 Precise values depending on session and training strategy.

has been made possible by the release of multi-session sEMG
datasets such as the Non-Invasive Adaptive hand Prosthetics
Database 6 (NinaPro DB6, 10 sessions, 8 classes) [11] and
the University of Bologna - INAIL (Unibo-INAIL) database
(8 days × 4 arm postures, 6 gestures) [10].

The NinaPro DB6 is the dataset used as a benchmark in
this work. On these data, Palermo et al. [11] reached an
inter-session accuracy of 25.4% by feeding Wave Length to
a Random Forest. Cene et al. [16] successfully employed
Extreme Learning Machines (ELMs) to raise this inter-
session accuracy to 41.8%. It is worth to notice that the
reason why the accuracy reached on the NinaPro DB6 is
much lower than the one reached on other datasets with
a similar number of classes and sensors, is that the hand
movements of NinaPro DB6 are all grasps, thus much less
diverse and discernable than the gestures in ordinary datasets.

On the Unibo-INAIL dataset, Milosevic et al. [10] showed
that multi-posture and multi-day training improve inter-
session generalization. A Radial Basis Function kernel SVM
(RBF-SVM) applied on 4-channel single samples of the RMS
signal yielded an intra-session recognition accuracy higher
than 90%, with an inter-session accuracy drop up to 20% (a
value similar to [11], [16]). The aforementioned approaches
showed the major limitation of classical ML: it strongly relies
on domain-specific knowledge and hand-crafted features,
limiting the capability to generalize over time.

To cope with this issue, DL represents a valid approach,
since it incorporates feature learning into model training, and

can reach a better generalization on the data. DL-based solu-
tions have also been prompted by increased data availability
(public sEMG benchmark databases) and great improvements
in computing hardware [35]. Table I shows that, DL methods
outperform traditional ML approaches when classifying data
from different sessions. This conclusion is also reinforced in
the revision made by Phinyomark et al. [34]. The first end-to-
end DL architecture was proposed by Park and Lee [32], who
applied a Convolutional Neural Network (CNN) + RMS on
NinaPro DB1, outperforming an SVM in classification accu-
racy across subjects. From our variability point of view, it is
interesting to note that this early work already addresses inter-
subject variability, showing that a CNN benefits more than a
SVM from an adaptation phase introduced before classifying
data from unseen subjects. Atzori et al. [36] also proposed a
CNN-based approach to recognize the 52 hand gestures from
the NinaPro DB1, DB2 and DB3 (taking 150ms-windows
of RMS, acting on time×channels), reaching classification
accuracy comparable to classical methods such as RF.

As to the issue of variability, a strategy typical of DL
is Adaptive Batch-Normalization (AdaBN) [33], a domain
adaptation consisting in re-training the Batch-Normalization
(BN) layers [37] of deep models without fine-tuning the
entire network. AdaBN is parameter-free, free of additional
components, and computationally simpler than generalized
fine-tuning. These qualities make AdaBN interesting for real-
time setup, in which it has already shown some success. For
instance, Du et al. [38] employed a CNN + instantaneous
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Figure 2: A) Hardware diagram of the proposed system. sEMG sensors on the forearm are connected to the Analog Front
End, which sends the data via SPI to the GAP8 processing platform. A Bluetooth link allows streaming the data and the
classification to an external gateway. B) Detailed block diagram of the GAP8 processor.

High-Density (HD) sEMG images, attaining 63.3% accuracy
on the 8 classes of their CapgMyo database.

Recently, TCN approaches have started appearing in recent
research work, gaining traction for sEMG-based gesture
recognition. Tsinganos et al. [15] achieve 89.8% classification
accuracy on the 53 classes of NinaPro DB1 with an RMS-
fed TCN. This result is 4.8% better than SoA [39] and sur-
passes by 19.3% the previous results from the same authors
obtained with conventional 2d-CNNs [28]. This TCN was
evaluated using receptive field (i.e., input sequence lengths)
of 300ms up to 2.5 s. Although the NinaPro DB1 dataset is
not multi-session [9] and so does not involve the temporal
variability which is the focus of this work, [15] is a valuable
demonstration that TCNs can yield good accuracy on this
task. Betthauser et al. [14] proved that TCNs outperform
Long Short-Term Memory (LSTM) networks in the sEMG-
based gesture recognition task, reaching 69.5% accuracy on
27 classes. Also, the TCN used in this work has a very large
receptive field: the 1.7 s input windows were generated by
computing the MAV from 200ms-long sequences.

Overall, these works proposing TCNs for sEMG-based
gesture recognition share the limitation of using very long
(i.e., ≥ 300ms) signal windows. In particular, in [15] the
dilated convolution is used to hugely enlarge the receptive
field at constant network size, instead of exploiting dilation to
work with smaller networks at a constant receptive field. This
limitation implies two (related) issues: i) the comparison is
altered with the other works that comply with the consensus
of using time windows < 300ms [29]; ii) the proposed
TCNs are evaluated under conditions which are not feasible
for a usable real-time implementation. In contrast, in this
work, we focus on real-time classification and target full
compliance with the upper limit of 300ms. Our proposed
TCN, TEMPONet, uses 150ms signal windows as input, and
needs < 15ms for inference when deployed on an embedded
platform.

III. MATERIALS AND METHODS

A. Acquisition and Processing Platform

The EMG signal acquisition is based on an 8 channel
commercial Analog Front End (AFE) (ADS1298) connected

to the GAP8 breakout board [40]. ADS1298 is mostly used
in acquisition system design for EMG, EEG and ECG
signals, and it is considered the de facto standard for such
applications. It allows simultaneous sampling of up to 8
bipolar channels with 24-bit resolution, reaching 32k samples
per second (ksps). Each channel has a programmable Gain
Amplifier with a gain that ranges from 1 to 12. In this
application, it drives 8 fully differential channels at sampling
rate 4 kHz connected to an array of passive gel-based EMG
electrodes, placed in a ring configuration around the forearm.
The block diagram of the GAP8 architecture is provided
in Figure 2 B. GAP8 has two main functional blocks: a
single tiny RISCV core, namely the fabric controller (FC)
and an 8-parallel set of RISCV core, i.e. the computational
cluster. FC controls SoC and peripherals and can be viewed
as a simple microcontroller. The 8 cores cluster is used for
vectorized and parallelized computationally-intensive tasks
such as embedded artificial intelligence [41].

GAP8 is not equipped with an FPU; hence, algorithms
need to be carried out using fixed-point arithmetic. The
internal memory of GAP8 is divided into two layers: L1
memory and L2 memory. L2 memory is 512 kB in size
and accessible by all cores. L1 memory is split into two
parts: a 16 kB memory for the fabric controller and a 64
kB shared memory for the cluster cores. There is also a
third level, namely L3, which externally connected via quad-
SPI or a HyperBus interface. The GAP8 processor also
includes an internal programmable DC/DC converter which
provides power supply to the fabric controller and cluster
(0.9V to 1.3V, 0.8V for retentive sleep mode). As shown in
Figure 2, this setup has been developed for measurement and
characterization purpose, using development boards, but, by
virtue of the BGA packages of ADC and GAP8, the whole
system can be integrated into a single PCB with 30x20mm
form factor, suitable for wearable applications.

All firmware has been written in C and runs on the low-
power GAP8 processor. For the development, we relied on the
GAP8 Software Development Kit (SDK) [42], which embeds
all the APIs to access the GAP8 HW features such as DMA
engines, hardware timers, and I/O. The GAP8 SDK also
includes a customized version of the RISC-V GCC compiler
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Figure 3: Processing diagram of the proposed algorithm. In the TEMPONet TCN architecture, the three blocks (each one
composed of 2 convolutional and one pooling layer) are used to extract temporal features, followed by two fully connected
layers that perform the final classification.

with support for the GAP8 ISA extensions used to accelerate
the inference of Deep Neural Networks [17]. As shown in
Fig 2 A), GAP8 is connected to the AFE (i.e. ADS1298) via
a 20MHz SPI connection (GAP8 acts as master) in parallel
to an interrupt wire (#DRDY) connected to a GAP8 digital
pin. Once a new sample is ready, the AFE asserts the #DRDY
data ready signal with a pulse. The #DRDY pulse wakes up
an interrupt routine on the GAP8 Fabric Controller, which
starts acquiring the SPI data using the embedded I/O uDMA.
Data loaded via SPI is stored in the GAP8 L2 memory as
24-bit signed fixed-point numbers, with the least significant
bit representing a value of VREF/(223–1). Acquired sEMG
samples are then used as input of the TEMPONet TCN,
whose embedded implementation is described in Section
III-B2 and profiled in Section IV.

B. TEMPONet TCN

Unlike previous studies in sEMG-based gesture recogni-
tion, which are formulated as single-sample recognition [10]
or image recognition [13], and mostly rely on extracted
features, in this work we address the sEMG signal as a time
series, using a small Temporal Convolutional Network (TCN)
based architecture to assign labels to 150ms raw sEMG time
windows.

1) TEMPONet architecture
In this section, we present a novel TCN based topology,

TEMPONet (Temporal Embedded Muscular Processing On-
line Network), depicted in Figure 3.

TEMPONet stacks 3 Convolutional Blocks composed by:
- 2 temporal convolutional layers with filter size 3 × 1,
variable dilation and full padding;

- 1 convolutional layer with filter size 5 × 1, variable stride
and padding, followed by an Average Pooling (AvgPool) with
kernel 2× 1.
The 3 blocks are characterized by dilation d = 2, 4, 8,
respectively, and stride s = 1, 2, 4, respectively. The strided
convolution of the 1st, 2nd and 3rd block raises the number
of channels to 32, 64 and 128 respectively, while each
AvgPool halves the sequence length immediately after. As an
example, Convolutional Block 2 is represented in Figure 1.
The Convolutional Blocks are followed by 2 Fully Connected
(FC) layers with dropout (to help regularization [43]) and a
SoftMax operation. FC layers flatten the input information
to compute the final label assigned to the sequence. All
layers have ReLU non-linearity as activation function and
are equipped with Batch-Normalization (BN) to counter the
internal covariate shift [37].

The two main characteristics of this network, block com-
position, and 1D dilated convolutional layers, are inspired by
the novel developments in the deep learning field. Division in
blocks of several layers where the number of channels and
size of the activation tensors is kept constant is typical of
many modern networks [44], [45], [46], [47]. It enables to
build a network where the temporal dimension is consumed
“slowly”, therefore enabling a deeper network with more
powerful processing of the raw information in the time series.
On the other hand, as previously mentioned, dilated layers
allow to increase the receptive field of each layer gradually.
Dilation factors are chosen so that the receptive field at
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Figure 4: TEMPONet flow. Left: the DMA manages L2-
L1 communication using double-buffering. Right: the cluster
executes PULP-NN on a tile stored in one of the L1 buffers.

the end of the network covers an entire time window1.
The network topology is designed in such a way that the
convolutional block increases the receptive field and reduces
the width of the signal (i.e., the input time window “visible”
from a given neuron in the layer). A larger input window
can then be analyzed by stacking more blocks instead of
increasing the filter sizes, i.e., by making the network deeper
instead of wider and therefore limiting the increase in the
number of parameters.

Combining these insights, the TEMPONet 3-blocks con-
figuration presented in this paper can process a 150 ms input
window using only 460k parameters, which is well suited
for the implementation on our developed processing board
as detailed in the following sections.

2) TEMPONet embedded deployment
In this section, we describe the procedure to distill the

TEMPONet algorithm for our embedded platform for sEMG
acquisition and processing for real-time classification of
acquired sEMG signals. As mentioned in Section III-A,
the target execution platform (GAP8) has limited memory
capacity and no support for floating-point data. To enable
deployment of the trained TEMPONet on an embedded
platform, therefore, we also targeted its quantization, i.e.
reducing it to use only 8-bit integer (INT-8) parameters
and feature map tensors. The pre-trained TCNs are fine-
tuned after replacing ReLU activation functions with step
functions using the PACT methodology [48]; weights are also
quantized using a similar function. Quantization is performed
layer-wise. The INT-8 representations of feature maps y and
weights W are given by (respectively)

ŷ =

⌊
clip[0,αy)(y)

εy

⌋
; εy =

αy

256
(1)

Ŵ =

⌊
clip[αW,βW)(W)

εW

⌋
; εW =

βW − αW

256
(2)

1The modular nature of the network structure would allow to stack further
blocks and therefore process signals on different timing windows: for the
sEMG-based gesture recognition, this is of particular interest since the time-
window width could change based on the target application.

The quantization procedure operates as follows, starting
from a pretrained full-precision network: first, the parameters
αW, βW are initialized with the minimum and maximum
values of W, respectively, while αy parameters are initialized
by registering minimum and maximum values of y over a run
on the training set.

All parameters (including W, αW, βW, αy) are then
fine-tuned via backpropagation using the Adam optimizer.
Learning rate is set to a small value (10−6) for both datasets,
and the training is stopped after 30 epochs, or earlier if
convergence is achieved (i.e., if the difference in loss between
two epochs is bounded to 0.05). The quantized network can
be deployed on GAP8 by directly using the INT-8 weights
Ŵ and implementing Equation 1 as a set of comparisons
against thresholds [49]. Apart from fitting in the GAP8 L2
512 kB memory constraint (INT-8 TEMPONet has a footprint
of 460 kB), we also get rid of floating-point multiplications,
reducing both the time and energy per classification as GAP8
has no floating-point unit and would emulate these operations
in software.

The GAP8 processor receives and accumulates the data to
fill an internal 150ms × 8 channel (i.e. ∼ 10KB) buffer in
L2 and then starts the classification. Meanwhile, a second
buffer, also located in L2, receives the data in real-time from
the analog front-end in a double-buffering procedure. Data is
fed to the network at 2kHz sampling rate and using INT-32
representation only for the input data (as the ADC resolution
is 24 bits).

The implementation of TEMPONet on GAP8 is based
on the dedicated PULP-NN libraries [17] for optimized ad-
hoc convolutional kernels deployment. PULP-NN uses all the
cores available in the GAP8 cluster as well as their SIMD
extensions and bit-manipulation instructions to achieve the
best speed up and energy saving from the chip. As PULP-
NN functions work on data in the 64 kB L1 scratchpad, it is
necessary to move weights and feature maps between the
512 kB L2 memory and the L1 scratchpad. This process
is performed by using an automated tool [50] to i) divide
the data tensors in each layer in tiles that fit the L1; ii)
insert appropriate DMA calls to realize a double buffering
scheme (separate from the one on ADC data), so that data
movement is always overlapped with computation. The DMA
calls are asynchronous and non-blocking, allowing to import
new activations and weights while the previous calculation
is ongoing. Figure 4 describes this flow by highlighting the
memory L2-L1 memory traffic, managed by the DMA, and
the cluster execution of PULP-NN.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We implement our TEMPONet TCN approach using
Python 3.5 and the specialized DL development PyTorch [51]
1.1 framework. The TCN is fed with 150ms time windows
(slide 15ms) of the raw 14-channel and 8-channel sEMG
signal, for the NinaPro DB6 and for our 20-session dataset
respectively.



8

A
c

c
u

ra
c

y
[%

]

1   2     3       4   5      6          7        8  9         10 
time [session]

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

RMS + RBF-SVM

A
c

c
u

ra
c

y
[%

]

1   2     3       4   5      6          7        8  9         10 
time [session]

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

Temporal Convolutional Network

60

50

40

30

60

50

40

30

Ninapro DB6

time [session]
5       6        7              8              9             10

A
c
c

u
ra

c
y

[%
]

60

55

50

45

40

TCN + raw signal

RBF-SVM + RMS

intra-sess. val.

inter-sess. val.

Std. Error

Trained on sess. 1-to-5

Figure 5: Left and Center: classification accuracy of RMS + RBF-SVM and of TEMPONet, using the incremental training
framework on NinaPro DB6. Right: classification accuracy of RMS + RBF-SVM and of TEMPONet, after training on
sessions 1-to-5 of NinaPro DB6. All validations done on steady states + transient states.

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

70

60

50

40

A
c

c
u

ra
c

y
[%

]

1   2     3       4   5      6          7        8  9         10 
time [session]

RMS + RBF-SVM on NinaPro DB6, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

70

60

50

40

A
c

c
u

ra
c

y
 [

%
]

1   2     3       4   5      6          7        8  9         10 
time [session]

TEMPONet on NinaPro DB6, steady

100

95

90

85

80

75

70

65

A
c

c
u

ra
c

y
 [

%
]

TEMPONet on 20-session Dataset, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-

10

intra-sess. val.

inter-sess. val.

tr. days 1-to-1

tr. days 1-to-2

tr. days 1-to-5

intra-sess. val.

inter-sess. val.

100

95

90

85

80

75

70

65

A
c

c
u

ra
c

y
 [

%
]

RMS + RBF-SVM on 20-session Dataset, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-10

intra-sess. val.

inter-sess. val.

Ninapro DB6

20-session Dataset

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

70

60

50

40

A
c

c
u

ra
c

y
[%

]

1   2     3       4   5      6          7        8  9         10 
time [session]

RMS + RBF-SVM on NinaPro DB6, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

70

60

50

40

A
c

c
u

ra
c

y
 [

%
]

1   2     3       4   5      6          7        8  9         10 
time [session]

TEMPONet on NinaPro DB6, steady

100

95

90

85

80

75

70

65

A
c

c
u

ra
c

y
 [

%
]

TEMPONet on 20-session Dataset, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-

10

intra-sess. val.

inter-sess. val.

tr. days 1-to-1

tr. days 1-to-2

tr. days 1-to-5

intra-sess. val.

inter-sess. val.

100

95

90

85

80

75

70

65

A
c

c
u

ra
c

y
 [

%
]

RMS + RBF-SVM on 20-session Dataset, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-10

intra-sess. val.

inter-sess. val.

Ninapro DB6

20-session Dataset

TCN + raw signal

RBF-SVM + RMS

intra-sess. val.

inter-sess. val.

Std. Error

Trained on sess. 1-to-5
80

75

70

65

60

55

A
c

c
u

ra
c

y
[%

]

time [session]
5              6              7              8              9             10 

Figure 6: Left and Center: classification accuracy of the baseline RMS + RBF-SVM and our TEMPONet, reached on
the different sessions of NinaPro DB6 after transient removal, using the incremental multi-session training framework.
Adding training sessions improves the accuracy in the never-seen sessions, with better results for the TEMPONet TCN.
Right: classification accuracy of RMS + RBF-SVM and TEMPONet, after training on sessions 1-to-5 of NinaPro DB6. All
validations are done on steady states.

To analyze the accuracy drop in multi-session classifica-
tion, we propose an incremental training protocol, where we
sweep training data from 1 to a maximum of half dataset
sessions (i.e., 5 for NinaPro DB6 and 10 for the 20-session
dataset), using the remaining half for testing. The training
sessions always precede the testing ones, in a sequential
scenario, to maintain temporal coherence among sessions.
Regarding the amount of data used for the training, we adopt
an internal 2-fold stratified (i.e. equal number of gestures
repetition for each fold) cross-validation to evaluate our
algorithm also on the same sessions used for training (i.e.
without the temporal variability). TCN training uses cross-
entropy as a loss function and stochastic gradient descent
for 20 epochs (batch size = 64) with L2 regularization
(weight_decay=10−4). The initial learning rate is set to 0.001
for the NinaPro DB6 dataset and 0.01 for the 20-session
dataset; in both cases, it is divided by 10 at epoch 9 and
19.

We introduce two figures of merit to evaluate our ap-
proach, based on our protocol: (1) the intra-session validation
accuracy, computed as the average accuracy on the fold
not used for training (alternately), and (2) the inter-session
validation accuracy, calculated as the average accuracy on
sessions 6-to-10 for the NinaPro DB6 and 11-to-20 for
the 20-session dataset, which are never used for training.

Network training is always performed off-line, hence on
steady gestures, removing contraction transients. This was
obtained by discarding the first and the last 1.5 s of each
gesture for NinaPro and 300ms for the dataset we introduce
in this work, thus focusing the classification only on steady
signal portions.

To evaluate the inference performance, we run TEMPONet
on the Ninapro DB6 comparing the results of the multi-
session testing described in [16], that represents, at the best
of our knowledge, the previous state-of-the-art inter-session
accuracy for the NinaPro DB6. We obtained an average
49.6% accuracy against 41.8% reported in [16]. In this test,
the accuracy is evaluated on the entire gestures (i.e. including
transients).

Furthermore, we compare our TCN topology against a
baseline Radial Basis Function kernel Support Vector Ma-
chine (RBF-SVM) applied on the Root Mean Square (RMS)
of the sEMG signal, computed on 60ms time windows. This
setup has been chosen as a baseline since it is a widely
used approach [52] and it allows to show how the algorithm
performs against a well-established classification scheme.
We implement the SVM using the Scikit-learn framework
(version 0.20.0) [53], and we optimize the SVM parameters,
resulting in C = 1 and gamma=‘scale’.

Figure 5 depicts the results of RBF-SVM and TCN on the
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Figure 7: Left and Center: classification accuracy of the baseline RMS + RBF-SVM and our TEMPONet, reached on the
different sessions of our 20-session Dataset after transient removal, using the incremental multi-session training framework.
Adding training sessions improves the accuracy in the never-seen sessions, with better results for the TEMPONet TCN.
Right: classification accuracy of RMS + RBF-SVM and TEMPONet, after training on sessions 1-to-10 of the 20-session
Dataset. All validations are done on steady states.
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Figure 8: Comparison of the real-time inter-session classifi-
cation of the RBF-SVM and TEMPONet on our 20-session
dataset.

NinaPro DB6 dataset, evaluated on the full validation set. The
algorithm comparison shows that TCN performs 4.3% better
than the SVM. All accuracy results are reported as mean (i.e.
average over subjects, training folds, and validation sessions),
or as mean ± Standard Error.

It is noteworthy that, since most of the classification errors
are located in the transients, the design of an end-to-end ges-
ture controller usually requires to remove gesture transients.
This is a well-established procedure common to both inter-
session [8], [54], [55] and inter-subject [56] studies, and is
sufficient for the aim of a steady gesture controller design.
It can be done by techniques such as threshold comparison,
DTW, or Hidden Markov Models. For this reason, in the
following paragraphs, we present the accuracy results also
with data purged of transients. To provide better insight in
how the accuracy varies when removing transients, Figure 9
compares the average inter-session accuracy achieved testing
only on steady signals and on full ones for both datasets
and considering both RBF-SVM and TEMPONet TCN ap-
proaches. Similarly to what happens with steady signals,
the advantage of TEMPONet in terms of accuracy on full
grows proportionally to the number of sessions involved in
the training. The accuracy drop on full with respect to steady
is substantially similar between RBF-SVMs and TCNs for
both datasets.
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Figure 9: Average inter-session accuracy obtained on steady
signals (removing transients, in full color) and on full signals
(including transients, in a light color) for both datasets and
techniques.

B. NinaPro DB6 (steady)

On NinaPro DB6, both the SVM and the TCN yield
the best recognition accuracy when trained with a higher
number of sessions, namely 1-to-5 (i.e. the first half of the
dataset sessions). Recognition accuracy over time are plotted
in Figure 6.

The SVM trained on sessions 1-to-5 reaches an average
intra-session validation accuracy of (69.2 ± 0.7)%, and an
average inter-session validation accuracy on sessions 6-to-10
of (60.4± 0.9)%, resulting in a drop of 8.8%. Compared to
training on only session 1, the 5-session training maintains
the same intra-session accuracy (+0.4%) but increases the
inter-session accuracy by 9.5%.
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Figure 10: Hand gestures used during experimentation in-
cluding finger and wrist contractions.

The TEMPONet TCN trained on sessions 1-to-5 reaches a
similar intra-session validation accuracy of (71.8 ± 0.7)%
(2.6% higher than the SVM), while increases the inter-
session validation accuracy of 4.8% compared to the SVM
((65.2±1.0)%), with a resulting drop of 6.6%. Compared to
training on only session 1, the 5-session training increases the
intra-session accuracy by 5.5%), and strongly increases the
inter-session accuracy by 17.5%. Noteworthy, increasing the
amount of training data is a key point for our TEMPONet,
which strongly increases its performance.

These results confirm the initial assumption that TCNs are
more efficient in extracting information directly from raw
data, as well as to remove part of the noise due to temporal
variability, thus achieving better generalization over time.

C. 20-session Dataset (steady)

Our dataset has been acquired for 10 days and involves 3
subjects (all male, average age of 29±3 years). Each day in-
cludes 2 sessions, taking place in the morning and afternoon,
for a total of 20 sessions for the complete experimentation.

A single session has an approximate duration of one and
a half minutes, including 8 hand gestures and rest, as shown
in Figure 10. Each gesture is repeated 6 times, with a
contraction time of approximately 3 s. To ease the labeling
process, 3 s of rest between contractions of the same gestures
and up to 5 s between each new gesture are left.

We tested both the SVM and the TEMPONet TCN again
on our 20-session dataset. We maintain the same topology
and the same training parameter, except for the learning rate
(Section IV). Recognition accuracy using our incremental
training protocol and among time is plotted in Figure 7.

Both the SVM and the TEMPONet TCN reach again
the best average intra-/inter-session validation accuracy with
the maximum training session (1-to-10). The SVM reaches,
(96.0 ± 0.3)%, (91.1 ± 0.6)%, and 4.9% of respectively
intra-session, inter-session (on sessions 11-to-20), and drop.
The TEMPONet increases this performance to (97.1±0.3)%
intra-session accuracy, (93.7± 0.5)% inter-session accuracy,
and only 3.4% accuracy-drop.

Compared to training on only session 1, the SVM main-
tains the same intra-session accuracy (−0.2%), while the

TEMPONet strongly increases its performance of 9.4%.
Noteworthy, both methods enhanced with more training ses-
sions show a sharp performance gain of the inter-session
accuracy, namely 12.9% for the SVM and 22.7% for the
TCN.

Similarly to NinaPro DB6, the effect of multi-session
training on the SVM and the TCN is similar, but with higher
gains for the TCN. The fact that our TEMPONet TCN
outperforms the SVM also on the new 20-session dataset
further validates the initial hypothesis that TCNs can attain
better generalization by their higher ability to process raw
data and to handle the inter-session sEMG variability noise.

Furthermore, a more explicit comparison between the
recognition accuracy of the SVM and our TEMPONet is
shown in Figure 8, which displays the output labels of
the two classifiers in the real-time inter-session setup on
our 20-session dataset (subject 1, training sessions 1-to-10,
validation session 20). This visual inspection highlights that
the output sequence returned by TEMPONet is more accurate
and more stable (i.e., smooth) in inter-session validation than
the output of the SVM. The smoothness of the TEMPONet
TCN classification is due to the fact that, for each inference,
TEMPONet leverages 150ms of signal history, rich enough
to enhance stability and avoid erratic oscillations as the ones
exhibited by the SVM.

We can finally notice that the classification accuracy
reached on the 20-session dataset (all > 90%) is consistently
much higher than on NinaPro DB6 (all < 75%), even in
presence of a similar number of classes (8 for NinaPro DB6
vs. 9 for the 20-session dataset) and sensors (14 for NinaPro
DB6 vs. 8 for the 20-session dataset). The cause is that hand
movements in NinaPro DB6 are all grasps, thus much less
diverse and discernable than the hand gestures of our 20-
session dataset.

D. Embedded Deployment Performance

Regarding the embedded implementation, the input sEMG
signals are preprocessed digitally before executing the TEM-
PONet TCN. This process includes a 10-tap notch filter
to remove PLI interference, and a 15-tap band-pass filter
(BW = 2Hz − 1 kHz) to cancel the DC drift and high-
frequency components. The signal is then downsampled to
2 kHz to match the sampling rate of the NinaPro DB6 dataset.
The execution time of these steps is negligible (< 100 µs) and
does not affect the real-time performance of the classifier.
The processing chain later continues with the execution of
TEMPONet as described in Figure 4.

To evaluate fairly the accuracy of the quantized version
of TEMPONet, we also distilled the RBF-SVM support
vectors to INT-8. This was performed offline by evaluating
the mean µ and standard deviation σ of the support vectors
and applying Eq. 2 by setting αW = µ−5σ, βW = µ+5σ 2.

Table II reports the memory occupancy and the accuracy
of the full-precision and 8-bit TEMPONet, compared to the

2We tried several other settings for αW , βW; we chose the one resulting
in the smallest accuracy drop.
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TABLE II: Memory footprint and best intra-/inter-session
accuracy of the baseline RMS + RBF-SVM, full-precision
TEMPONet TCN and 8-bit quantized TCN.

Memory Intra-sess. Inter-sess.
Footprint acc. acc.

NinaPro DB6
RMS + RBF-SVM (float) 1.3MB 69.2% 60.4%
RMS + RBF-SVM (INT-8) 332 kB 50.7% 44.7%
TEMPONet TCN (float) 1.8MB 71.8% 65.2%
TEMPONet TCN (INT-8) 460 kB 64.5% 61.0%

20-session dataset
RMS + RBF-SVM (float) 670 kB 96.0% 91.1%
RMS + RBF-SVM (INT-8) 168 kB 95.8% 78.6%
TEMPONet TCN (float) 1.8MB 97.1% 93.7%
TEMPONet TCN (INT-8) 460 kB 96.6% 93.3%

TABLE III: Inference time and energy of the TEMPONet
deployed on GAP8.

inf. time energy MAC/cycle

TEMPONet inference on GAP8 @ 1V, 170MHz
Dilated Convolutions 5.40 ms 0.38 mJ 9.54
Non-Dilated Convolutions 5.86 ms 0.41 mJ 6.95
Pooling 0.16 ms 0.01 mJ n.a.
Fully Connected 1.42 ms 0.10 mJ 4.10

Full net 12.84 ms 0.90 mJ 7.73

SVM baselines. Remarkably, the accuracy drop after quan-
tization decreases given its regularizing effect. On NinaPro
DB6, quantization leads to an accuracy loss of 7.3% intra-
session and 4.2% inter-session, still above the full-precision
RBF-SVM baseline. On our 20-session dataset, quantization
causes an accuracy loss of just 0.5% intra-session and only
0.4% inter-session, again above the full-precision SVM, but
with a 1.5× lower memory footprint. On the other hand, the
quantization of the support vectors, which is still necessary
to deploy SVMs on our GAP8 based processing platform
(512 kB memory constraint), results in a ∼ 15% inter-session
accuracy loss for both the datasets.

Table III highlights the performance of our network in
terms of inference time, energy, and MAC/cycle, collected
with real execution of the net on the GAP8 SoC targeting
the most efficient voltage-frequency configuration to save
energy (1 Volt, 170 MHz). Also, we detail these metrics for
the different layer types involved, namely Dilated and Non-
Dilated Convolutions, Pooling, and Fully Connected layers.

The last column of Table III, the mean MAC/cycle, is a key
indicator of computational efficiency; Dilated Convolutions
are not only algorithmically effective but also achieve the
highest level of efficiency: 42% of the execution time is spent
to run 53% of the overall operations of the network. Overall,
exploiting the 8-cores of GAP8, our network reaches a mean
MAC/cycle of 7.73. Therefore, TEMPONet can classify a
time window in 12.8ms, consuming 0.90mJ. Our real-time
constraint is given by the 15ms of the sliding window, and
is therefore well-met by the embedded application, as shown
in Figure 11.

Looking at classification energy, each a time window costs
0.90mJ per inference. Between two adjacent inferences, the
GAP8 SoC is only collecting data (and not processing it)

Windowing in real-time inference: 15ms slide

150ms window 12.8ms computation time

time

start window output 10ms

Figure 11: The windowing scheme and inference time in
real-time inference.

for 2.2ms . During this phase, we are able to idle the 8-
core cluster using its embedded hardware synchronization
unit [57], which enables fully state-retentive clock gating and
wakeup in a few nanoseconds. The power consumption in
this phase is limited to the ∼ 10mW consumed by the SoC
to collect data from the sensor. Overall, a 15ms window
costs 0.90mJ, yielding an average power of 60mW. Using
a small 1000mAh battery, the sEMG gesture classification
system can run continuously for ∼ 13 · 106 classifications,
i.e., for a lifetime of ∼ 54 h.

To measure the computational impact of Dilated Convo-
lutions as opposed to conventional ones, we projected our
measured results over a modified version of TEMPONet
where dilation factors are removed. Still, the dimension of the
receptive field is kept constant, therefore covering the same
time window as our TEMPONet. To do so, we increased the
filter size of the layers to 5, 9, and 17 in each of the three
blocks. The consequence is twofold: first, execution time and
energy jump to 28.7ms and 2.0mJ, respectively. Second, the
dimension of the modified TEMPONet grows to 970 kB, too
high to be suitable for embedded deployment in the GAP8
L2 memory (512 kB).

To have fair benchmarking, we need to compare our
approach against platforms that are capable of running deep
learning algorithms (e.g., Cortex H7 or A8 family) on sEMG
signals. There are some embedded systems for sEMG pro-
cessing and gesture classification, such as [18] and [19]
which can execute DL algorithms on a Cortex-A processor,
with a power envelope ≥ 500mW, almost one order of
magnitude higher than GAP8. Platforms of this class are
capable of running inference of Deep Neural Networks [58],
but their size and power envelope limit their applicability
to real wearable systems. Recently, some attempts have also
been made on Deep Neural Network deployment on high-end
Cortex M family (ARM Cortex H7), leveraging an energy-
efficient software support (i.e., CMSIS-NN, the SoA in SW
implementation of Deep Neural Networks). Unfortunately,
the deployment of a Neural network on an H7 platform
reaches a top performance of 0.69MAC/cycle @ 346mW
@ 400MHz measured on an STM32-H7 microcontroller
[17], more than 10× slower and 23× less efficient than
our proposed TCN implementation, which combines parallel
execution of the GAP8 cluster cores and the ISA extensions
utilized by the PULP-NN computational backend [59].
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V. CONCLUSION

In this work, we addressed the temporal variability af-
fecting the inter-session generalization of sEMG-based hand
gesture recognition. We proposed a new approach based on
the novel TEMPONet Temporal Convolutional Network.

Our approach, validated on the NinaPro Database 6 and
on our new 20-session sEMG dataset, proves that the best
training set compositions are the ones including the highest
number of sessions, producing an inter-session classification
accuracy of 65.2% on NinaPro DB6, and 93.7% on our 20-
session dataset. These accuracies improve by up to 4.8%
and 2.6% the results yielded by a reference RBF-SVM, on
NinaPro DB6 and on the 20-session dataset respectively.
This low inter-session accuracy drop allows the design of
a robust long-term sEMG-based controller. Moreover, the
TEMPONet does not require any additional hand-crafted
feature extraction.

We also distilled the TCN applying deep network quanti-
zation to 8-bit, showing that our approach reaches as little
as 2.8× and 1.5× lower memory footprint compared to a
baseline RBF-SVM, for the NinaPro DB6 and the 20-session
dataset respectively, with an inter-session accuracy decrease
of only 4.2% and 0.4% respectively, still higher than the
reference SVM.

Finally, we showed an implementation of the quantized
TEMPONet on the GAP8 microcontroller, achieving 12.8ms
time with 0.90mJ energy per classification. Considering
a 1000mAh battery, our TEMPONet running on GAP8,
reaches up to 13M gesture classifications, for a total always-
on classification time of ∼ 54 h.

ACKNOWLEDGMENTS

This work has been partially supported by the European
H2020 FET project OPRECOMP under Grant 732631, and
by project EC Horizon-2020 ALOHA under Grant 780788.

REFERENCES

[1] R. Meattini, S. Benatti, U. Scarcia, D. De Gregorio, L. Benini, and
C. Melchiorri, “An sEMG-Based Human-Robot Interface for Robotic
Hands Using Machine Learning and Synergies,” IEEE Transactions on
Components, Packaging and Manufacturing Technology, vol. 8, no. 7,
pp. 1149–1158, 2018.

[2] T. S. Saponas et al., “Making muscle-computer interfaces more
practical,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’10. New York, NY, USA:
ACM, 2010, pp. 851–854. [Online]. Available: http://doi.acm.org/10.
1145/1753326.1753451

[3] T. Starner, J. Weaver, and A. Pentland, “Real-time american sign
language recognition using desk and wearable computer based video,”
IEEE Transactions on pattern analysis and machine intelligence,
vol. 20, no. 12, pp. 1371–1375, 1998.

[4] T. S. Saponas, D. S. Tan, D. Morris, R. Balakrishnan, J. Turner, and
J. A. Landay, “Enabling always-available input with muscle-computer
interfaces,” in Proceedings of the 22nd annual ACM symposium on
User interface software and technology. ACM, 2009, pp. 167–176.

[5] touch bionics, http://www.touchbionics.com/products, 2018.
[6] Ottobock, https://www.ottobockus.com/prosthetics/

upper-limb-prosthetics/solution-overview/myoelectric-prosthetics/,
2018.

[7] J. Yousefi and A. Hamilton-Wright, “Characterizing emg data using
machine-learning tools,” Computers in biology and medicine, vol. 51,
pp. 1–13, 2014.

[8] P. Kaufmann, K. Englehart, and M. Platzner, “Fluctuating emg signals:
Investigating long-term effects of pattern matching algorithms,” in 2010
Annual International Conference of the IEEE Engineering in Medicine
and Biology. IEEE, 2010, pp. 6357–6360.

[9] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.-G. M. Hager,
S. Elsig, G. Giatsidis, F. Bassetto, and H. Müller, “Electromyography
data for non-invasive naturally-controlled robotic hand prostheses,”
Scientific Data, vol. 1, p. 140053, dec 2014. [Online]. Available:
http://www.nature.com/articles/sdata201453

[10] B. Milosevic, E. Farella, and S. Benatti, “Exploring Arm Posture
and Temporal Variability in Myoelectric Hand Gesture Recognition,”
Proceedings of the IEEE RAS and EMBS International Conference
on Biomedical Robotics and Biomechatronics, vol. 2018-August, pp.
1032–1037, 2018.

[11] F. Palermo, M. Cognolato, A. Gijsberts, H. Muller, B. Caputo,
and M. Atzori, “Repeatability of grasp recognition for robotic hand
prosthesis control based on sEMG data,” in 2017 International
Conference on Rehabilitation Robotics (ICORR). IEEE, jul 2017, pp.
1154–1159. [Online]. Available: https://ieeexplore.ieee.org/document/
8009405/

[12] S. Benatti, E. Farella, E. Gruppioni, and L. Benini, “Analysis of
robust implementation of an emg pattern recognition based control,”
in Proceedings of the International Joint Conference on Biomedical
Engineering Systems and Technologies-Volume 4. SCITEPRESS-
Science and Technology Publications, Lda, 2014, pp. 45–54.

[13] Y. Hu, Y. Wong, W. Wei, Y. Du, M. Kankanhalli, and W. Geng,
“A novel attention-based hybrid cnn-rnn architecture for semg-based
gesture recognition,” PloS one, vol. 13, no. 10, p. e0206049, 2018.

[14] J. L. Betthauser, J. T. Krall, R. R. Kaliki, M. S. Fifer, and N. V. Thakor,
“Stable Electromyographic Sequence Prediction during Movement
Transitions using Temporal Convolutional Networks,” International
IEEE/EMBS Conference on Neural Engineering, NER, vol. 2019-
March, no. c, pp. 1046–1049, 2019.

[15] P. Tsinganos, B. Cornelis, J. Cornelis, B. Jansen, and A. Skodras,
“Improved Gesture Recognition Based on sEMG Signals and TCN,”
ICASSP 2019 - 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), no. May, pp. 1169–
1173, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/
8683239/

[16] V. H. Cene, M. Tosin, J. Machado, and A. Balbinot, “Open Database
for Accurate Upper-Limb Intent Detection Using Electromyography
and Reliable Extreme Learning Machines,” Sensors (Basel, Switzer-
land), vol. 19, no. 8, 2019.

[17] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, “PULP-NN:
Accelerating Quantized Neural Networks on Parallel Ultra-Low-Power
RISC-V Processors,” arXiv:1908.11263 [cs], Aug. 2019.

[18] J. Liu, F. Zhang, and H. H. Huang, “An open and configurable embed-
ded system for emg pattern recognition implementation for artificial
arms,” in Engineering in Medicine and Biology Society (EMBC), 2014
36th Annual International Conference of the IEEE. IEEE, 2014, pp.
4095–4098.

[19] X. Zhang, H. Huang, and Q. Yang, “Real-time implementation of
a self-recovery emg pattern recognition interface for artificial arms,”
in Engineering in Medicine and Biology Society (EMBC), 2013 35th
Annual International Conference of the IEEE. IEEE, 2013, pp. 5926–
5929.

[20] L. G. Tassinary, J. T. Cacioppo, and E. J. Vanman, “The Skeletomotor
System : Surface,” 1985, no. January 1990.

[21] C. J. De Luca, “The Use of Surface Electromyography,” Journal of
applied biomechanics, vol. 13, no. July 1993, pp. 1–38, 1997.

[22] R. M. Rangayyan, Biomedical Signal Analysis: A Case-Study Ap-
proach. IEEE/Wiley, New York, NY, 2002.

[23] B. Milosevic, S. Benatti, and E. Farella, “Design challenges for
wearable emg applications,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, March 2017, pp. 1432–1437.

[24] M. Tomasini, S. Benatti, B. Milosevic, E. Farella, and L. Benini,
“Power Line Interference Removal for High-Quality Continuous
Biosignal Monitoring with Low-Power Wearable Devices,” IEEE Sen-
sors Journal, vol. 16, no. 10, pp. 3887–3895, 2016.

[25] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Tem-
poral convolutional networks for action segmentation and detection,”
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1003–1012, 2016.

[26] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic

http://doi.acm.org/10.1145/1753326.1753451
http://doi.acm.org/10.1145/1753326.1753451
http://www.touchbionics.com/products
 https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/myoelectric-prosthetics/
 https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/myoelectric-prosthetics/
http://www.nature.com/articles/sdata201453
https://ieeexplore.ieee.org/document/8009405/
https://ieeexplore.ieee.org/document/8009405/
https://ieeexplore.ieee.org/document/8683239/
https://ieeexplore.ieee.org/document/8683239/


13

convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

[27] S. Benatti, F. Casamassima, B. Milosevic, E. Farella, P. Schönle,
S. Fateh, T. Burger, Q. Huang, and L. Benini, “A versatile embedded
platform for EMG acquisition and gesture recognition,” IEEE Transac-
tions on Biomedical Circuits and Systems, vol. 9, no. 5, pp. 620–630,
Oct 2015.

[28] P. Tsinganos, B. Cornelis, J. Cornelis, B. Jansen, and A. Skodras,
“Deep learning in emg-based gesture recognition,” in PhyCS, 2018.

[29] B. Hudgins, P. Parker, and R. N. Scott, “A new strategy for mul-
tifunction myoelectric control,” IEEE transactions on bio-medical
engineering, vol. 40, pp. 82–94, 02 1993.

[30] K. Englehart and B. Hudgins, “A robust, real-time control scheme for
multifunction myoelectric control,” IEEE Transactions on Biomedical
Engineering, vol. 50, no. 7, pp. 848–854, July 2003.

[31] C. Castellini, E. Gruppioni, A. Davalli, and G. Sandini, “Fine detection
of grasp force and posture by amputees via surface electromyography,”
Journal of Physiology-Paris, vol. 103, pp. 255–262, 2009.

[32] K.-H. Park and S.-W. Lee, “Movement intention decoding based on
deep learning for multiuser myoelectric interfaces,” 2016 4th Interna-
tional Winter Conference on Brain-Computer Interface (BCI), pp. 1–2,
2016.

[33] Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou, “Revisiting batch normal-
ization for practical domain adaptation,” ArXiv, vol. abs/1603.04779,
2016.

[34] A. Phinyomark and E. J. Scheme, “Emg pattern recognition in the era
of big data and deep learning,” 2018.

[35] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016, http://www.deeplearningbook.org.

[36] M. Atzori, M. Cognolato, and H. Müller, “Deep learning with convo-
lutional neural networks applied to electromyography data: A resource
for the classification of movements for prosthetic hands,” Frontiers in
Neurorobotics, vol. 10, 09 2016.

[37] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” ArXiv, vol.
abs/1502.03167, 2015.

[38] Y. Du, W. Jin, W. Wei, Y. Hu, and W. Geng, “Surface emg-based inter-
session gesture recognition enhanced by deep domain adaptation,” in
Sensors, 2017.

[39] W. Wei, Y. Wong, Y. Du, Y. Hu, M. Kankanhalli, and W. Geng,
“A multi-stream convolutional neural network for semg-based gesture
recognition in muscle-computer interface,” Pattern Recognition Letters,
vol. 119, 12 2017.

[40] Texas Instruments, 2015. [Online]. Available: http://www.ti.com/lit/
ds/symlink/ads1298.pdf

[41] D. Palossi, A. Loquercio, F. Conti, E. Flamand, and L. Benini, “A
64mW DNN-based Visual Navigation Engine for Autonomous Nano-
Drones,” IEEE Internet of Things Journal, pp. 1–1, 2019.

[42] “GAP8 SDK,” https://greenwaves-technologies.com/setting-up-sdk/.
[43] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

[44] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,”
2017. [Online]. Available: http://arxiv.org/abs/1704.04861

[45] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

[46] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Ex-
tremely Efficient Convolutional Neural Network for Mobile Devices,”
arXiv:1707.01083 [cs], Jul. 2017.

[47] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the inception architecture for computer vision,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

[48] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “PACT: Parameterized Clipping Activation for
Quantized Neural Networks,” arXiv:1805.06085 [cs], May 2018.

[49] M. Rusci, A. Capotondi, F. Conti, and L. Benini, “Work-in-Progress:
Quantized NNs as the Definitive Solution for Inference on Low-
Power ARM MCUs?” in 2018 International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), Sep.
2018, pp. 1–2.

[50] A. Burrello, F. Conti, A. Garofalo, D. Rossi, and L. Benini, “Dory:
Lightweight memory hierarchy management for deep nn inference on
iot endnodes: work-in-progress,” in Proceedings of the International
Conference on Hardware/Software Codesign and System Synthesis
Companion. ACM, 2019, p. 17.

[51] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differenti-
ation in pytorch,” in NIPS-W, 2017.

[52] C. Castellini and P. van der Smagt, “Surface emg in advanced hand
prosthetics,” Biological cybernetics, vol. 100, no. 1, pp. 35–47, 2009.

[53] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[54] S. Amsuss, L. P. Paredes, N. Rudigkeit, B. Graimann, M. J. Herrmann,
and D. Farina, “Long term stability of surface EMG pattern classifi-
cation for prosthetic control,” Proceedings of the Annual International
Conference of the IEEE Engineering in Medicine and Biology Society,
EMBS, pp. 3622–3625, 2013.

[55] J. He, D. Zhang, N. Jiang, X. Sheng, D. Farina, and X. Zhu, “User
adaptation in long-term, open-loop myoelectric training: Implications
for EMG pattern recognition in prosthesis control,” Journal of Neural
Engineering, vol. 12, no. 4, 2015.

[56] M. Atzori, A. Gijsberts, S. Heynen, A.-G. M. Hager, O. Deriaz,
P. V. der Smagt, C. Castellini, B. Caputo, and H. Müller,
“Building the NINAPRO Database: A Resource for the Biorobotics
Community - HES SO Valais publications - Aigaion 2.0,”
Proceedings of the IEEE International Conference on Biomedical
Robotics and Biomechatronics, p. 51, 2012. [Online]. Available:
http://publications.hevs.ch/index.php/publications/show/1172

[57] F. Glaser, G. Haugou, D. Rossi, Q. Huang, and L. Benini, “Hardware-
accelerated energy-efficient synchronization and communication for
ultra-low-power tightly coupled clusters,” in 2019 Design, Automation
Test in Europe Conference Exhibition (DATE), March 2019, pp. 552–
557.

[58] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley,
and L. Van Gool, “Ai benchmark: Running deep neural networks on
android smartphones,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 0–0.

[59] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, “Pulp-nn:
Accelerating quantized neural networks on parallel ultra-low-power
risc-v processors,” arXiv preprint arXiv:1908.11263, 2019.

http://www.deeplearningbook.org
http://www.ti.com/lit/ds/symlink/ads1298.pdf
http://www.ti.com/lit/ds/symlink/ads1298.pdf
https://greenwaves-technologies.com/setting-up-sdk/
http://arxiv.org/abs/1704.04861
http://publications.hevs.ch/index.php/publications/show/1172

