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ABSTRACT 34 

Background. A long-standing effort is dedicated toward identification of biomarkers allowing the 35 

prediction of graft outcome after kidney transplant. Extracellular vesicles (EVs) circulating in body 36 

fluids represent an attractive candidate, as their cargo mirrors the originating cell and its 37 

pathophysiological status. The aim of the study was to investigate EV surface antigens as potential 38 

predictors of renal outcome after kidney transplant.  39 

Methods. We characterized 37 surface-antigens by flow-cytometry, in serum- and urine- EVs from 40 

58 patients which were evaluated before, and at 10-14 days, 3 months, and 1 year after transplant, for 41 

a total of 426 analyzed samples. The outcome was defined according to estimated glomerular 42 

filtration rate (eGFR) at 1 year. 43 

Results. Endothelial cells and platelets markers (CD31, CD41b, CD42a and CD62P) in serum-EVs 44 

were higher at baseline in patients with persistent kidney dysfunction at 1 year, and progressively 45 

decreased after kidney transplant. Conversely, mesenchymal progenitor cell marker (CD1c, CD105, 46 

CD133, SSEEA-4) in urine-EVs progressively increased after transplant in patients displaying renal 47 

recovery at follow-up. These markers correlated with eGFR, creatinine and proteinuria, associated to 48 

patient outcome at univariate analysis and were able to predict patient outcome at ROC curves 49 

analysis. A specific EV molecular signature obtained by supervised learning correctly classified 50 

patients according to 1-year renal outcome.  51 

Conclusions. An EV-based signature, reflecting the cardiovascular profile of the recipient, and the 52 

repairing/regenerative features of the graft, could be introduced as a non-invasive tool for a tailored 53 

management of follow-up of patients undergoing kidney transplant.  54 
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What is already known about this subject  55 

Despite progress in understanding processes affecting allograft kidney in transplanted patients, renal 56 

function decline and allograft loss remain significant concerns. Clinical parameters, kidney biopsy, 57 

and instrumental evaluations may guide patient management. To date, a large effort is dedicated to 58 

the identification of prognostic biomarkers of graft dysfunction to direct therapeutic interventions. 59 

What this study adds 60 

We analysed EV surface antigen profile in a longitudinal cohort of transplanted patients. We 61 

identified an EV-based signature comprising endothelial and platelet markers in serum-EVs, 62 

reflecting the cardiovascular profile of the recipient, and mesenchymal/progenitor cell marker in urine 63 

EVs, reflecting the repairing/regenerative features of the graft, and predicting 1-year renal outcome. 64 

What impact this may have on practice or policy 65 

EV profiling may be performed by standardized, low-cost, flow cytometric assays directly applicable 66 

on a small amount of fresh or frozen samples. This approach is minimally invasive, amenable to full 67 

automation, and represent a promising point-of-care testing tool for a tailored management of follow-68 

up of patients undergoing kidney transplant.  69 

 70 

Keywords  71 

Kidney transplant, chronic kidney disease, extracellular vesicle, biomarker, machine learning.  72 
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Introduction 73 

Kidney transplantation is the preferred treatment for patients with end stage renal disease, as it 74 

provides higher survival rates and better quality of life compared to dialysis1,2. Despite the progress 75 

in understanding the multiple processes affecting the allograft kidney, renal function decline and 76 

allograft loss remain significant concerns. In fact, while improvements in the immunosuppressive 77 

therapy enabled to mitigate organ function decline in relation to acute rejection, the complex and 78 

multifactorial mechanisms affecting the long-term survival of the kidney graft still need to be 79 

addressed3. Overall, renal graft function decline may result from an imbalance between immune and 80 

non-immune mediated organ damage and the organ ability to repair toward functional tissue after 81 

damage, limiting maldifferentiation of fibrotic tissue3,4. In this context, clinical parameters of organ 82 

function and immune monitoring, percutaneous allograft biopsy, and instrumental evaluations may 83 

guide the graft management and surveillance. In addition, a large effort is currently dedicated to the 84 

identification of noninvasive diagnostic and prognostic biomarkers of delayed graft function, 85 

rejection, and chronic allograft dysfunction to direct therapeutic interventions5. 86 

Extracellular vesicles (EVs) are considered promising candidates as disease biomarkers. They are 87 

nanosized vesicles released from multi-vesicular bodies or shed from the surface membranes of 88 

almost all cell types6,7. Of interest, surface markers and cargo, including proteins and RNA species, 89 

reflect the originating cell and its physiopathological state8,9. In serum, EVs are a heterogeneous 90 

population deriving from the different cells of the bloodstream as well as from the endothelial 91 

layer9,10. In particular, serum EVs deriving from platelets, leukocytes and endothelial cells can be 92 

identified through specific surface markers of the originating cell11.  In urine, EVs are considered to 93 

mainly derive from cells of the nephron, and their marker expression might provide relevant 94 

information on the kidney pathophysiology12,13. Data from literature suggest that dynamics changes 95 

of EV markers and content in serum and urine during kidney transplant might mirror recovery of 96 

renal and endothelial functions14-17. In particular, our group previously showed that urinary EVs 97 

expressing CD133, a marker of renal progenitor cells involved in tissue repair, progressively 98 

increased in the first week after transplant, and paralleled the graft function18. In analogy, the kinetics 99 

of EV serum subpopulations at different timings after graft transplant showed decrease of endothelial 100 

and platelet derived particles, suggesting a decrease of cardiovascular injury after transplant14,17,19. 101 

Interestingly, their levels correlated with renal function20. 102 

In the present study, we aimed to combine the analyses of serum and patient-matched urinary EVs, 103 

before and at different time points after kidney transplant, in order to stratify patients according to 104 

their outcome. We reasoned that data from serum- and urine- EVs, altogether, may provide 105 

information on the status of the graft tissue and, in parallel, on the recipient cardiovascular and 106 
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immune profile. We took advantage from a previously validated flow cytometric platform which 107 

allowed the simultaneous profiling of several EV surface antigens (including markers from 108 

mesenchymal/stem progenitor cells, platelets, endothelium, and immune cells)21,22, and through 109 

supervised learning algorithms, we obtained a specific molecular signature able to predict renal 110 

outcome after kidney transplant.   111 

 112 

Materials and Methods  113 

A detailed description of patient enrollment, EV characterization and statistics is provided as 114 

supplementary material.  115 

 116 

Patient recruitment and sampling strategy 117 

We consecutively recruited 58 patients who underwent kidney transplant for end-stage renal disease. 118 

All patients who gave written informed consent. Patients were excluded in case of concomitants 119 

infections, acute inflammatory disease, or active cancer. The study complied with the Declaration of 120 

Helsinki. Patient outcome was defined according to glomerular filtration rate estimated by CKD-EPI 121 

equation (eGFR) at 12 months, using a cut-off of 45 mL/min. For each patient, peripheral blood and 122 

urine samples were collected before kidney transplant (baseline, or T0), 10-14 days (T1), 3 months 123 

(T2), and 12 months (T3) after transplant (urine was not available for 38 anuric patients at T0; Figure 124 

1A). Pre-analytical factors for sample handling and storage complied with recommendations of the 125 

International Society for Extracellular Vesicles23,24.  126 

 127 

EV characterization 128 

Venous blood was collected in serum separator tubes; after clot formation a first centrifugation at 129 

1600 g for 15 min at 4°C was performed to separate serum from cellular components. Serum was 130 

transferred in a new clean tube and centrifuged at 3,000 g for 20 min, at 10,000 g for 15 min, and at 131 

20,000 g for 30’ to remove intact cells, cellular debris and larger EVs. Second morning urine samples 132 

were collected in parallel; a first centrifugation at 3000 g for 15 min at 4°C was performed to separate 133 

urine from cellular components. Urine was transferred in a new clean tube and centrifuged at 3,000 134 

g for further 15 min; high-speed centrifugation steps were not performed for urine to avoid co-135 

precipitation of Tamm-Horsfall protein and EVs24,25. Samples were processed immediately after 136 

collection and pre-cleared aliquots were then stored at -80°C and never thawed prior to analysis. 137 

Particle concentration and diameter were measured by nanoparticle tracking analysis (NTA). After 138 

EV immuno-capture by beads coated with antibodies against 37 specific EV markers, EV surface 139 

antigenic profile was evaluated by a multiplex flow cytometric (FC) assay (MACSPlex human 140 
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Exosome Kit; Miltenyi Biotec), as previously described (Figure 1B)11. The average levels of 141 

tetraspanins (CD9-CD63-CD81) for each serum and urine sample were used as internal normalizer 142 

of fluorescence levels of all the other 37 markers to allow comparison among samples and correct for 143 

intra- and inter-patient variations of vesicle concentration in the analyzed biofluid23,24. Our data 144 

provide an evaluation of specific antigen fluorescence intensity normalized to a standard EV marker 145 

(tetraspanins levels), thus reflecting an EV qualitative profile for a normalized EV concentration 146 

rather than a quantitative EV characterization. To rule out confoundings related to the experimental 147 

protocol, our standard protocol was compared with an alternative protocol including a pre-isolation 148 

step by ultracentrifugation (see Extended Methods). Single vesicle analysis was performed by super-149 

resolution microscopy using Nanoimager S Mark II microscope from ONI (Oxford Nanoimaging, 150 

Oxford, UK) after EV isolation by ultracentrifugation. 151 

 152 

Statistics and diagnostic modelling 153 

Normally distributed variables are expressed as mean ± standard deviation (SD) and analyzed by T 154 

student test. Non-normally distributed variables are expressed as median [interquartile range] and 155 

analyzed by Mann-Whitney test or Wilcoxon test, as appropriated. Categorical variables are 156 

expressed as absolute number (percentage) and compared with chi-square tests. Correlations were 157 

evaluated by Pearson’s test. Odds ratio (OR) were calculated by univariate logistic regression. 158 

Receiver operating characteristics (ROC) curves were analyzed to assess area under the curve (AUC). 159 

Machine learning (ML) supervised algorithms were used to train and validate diagnostic models to 160 

predict renal outcome at T3, using nMFI of serum- or urine- EV surface antigens. Four different 161 

machine learning classifiers (linear discriminant analysis, random forest, support vector machine with 162 

linear or gaussian kernel) and 3 algorithms for data imbalance correction were applied, generating 163 

616 different models. After tuning of hyperparameters, best models were validated by a leave-one-164 

out algorithm (see extended methods). 165 

 166 

Results 167 

Patient characteristics 168 

We enrolled 58 patients who underwent kidney transplant for end-stage renal disease. Baseline 169 

characteristics are reported in Table 1: mean age was 54 years, 44.8% were male, 77.6% received the 170 

transplanted kidney from a deceased donor. Patients were evaluated at baseline (before transplant, 171 

T0), and at 10-14 days (T1), 3 months (T2), and 12 months (T3) after transplant (Figure 1A); 35 172 

patients displayed renal function recovery, while 23 had an eGFR equal or lower to 45 mL/min at T3 173 

and were classified as persistent renal dysfunction. At baseline, no differences were found between 174 
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patients with renal recovery vs. persistent dysfunction; donor parameters were also similar (Table 1). 175 

At follow-up, eGFR was significantly lower at T2 and T3 in patients with persistent renal dysfunction 176 

compared to those with renal recovery, while creatinine and proteinuria were higher at T3 (Table S1). 177 

No other significant differences were found between patients with renal recovery vs. persistent renal 178 

dysfunction, including prevalence/incidence of delayed graft function, vesical-ureteral reflux, 179 

bacterial and viral infections (urinary tract infections, sepsis, BKV, CMV, and colonization by 180 

Klebsiella Pneumoniae carbapenemase-producing bacteria), new-onset diabetes mellitus, graft 181 

rejection, and positivity for donor specific antibodies.  182 

 183 

Quantitative evaluation of serum- and urine- EVs  184 

Serum and urine samples were collected at each time point (urine was not available for 38 anuric 185 

patients at T0); overall, we analyzed 426 samples (232 serum and 194 urine). Serum and urine 186 

samples were first directly analyzed by NTA; after immuno-capture, EV surface antigens were then 187 

systematically characterized by a multiplex FC assay (Figure 1, Tables S2-S3).  188 

Comparing serum and urine samples, the number of serum EVs was higher than urine EVs (2.4e12 189 

vs. 5.6e9/mL; p<0.001), whereas particle diameter was similar (183 vs. 181 nm; Figure S1A-D; Table 190 

S2), independently from the renal outcome and the evaluated time point. Of interest, the number of 191 

serum EVs, but not urine EVs, significantly correlated to the corresponding creatinine level (Figure 192 

S1H-L). EVs concentration was re-evaluated after stratification for time points (Table S4). Serum EV 193 

number per mL significantly decreased after kidney transplant, while a similar but not significant 194 

trend was observed for urine EVs (Figure S2).  195 

 196 

Characterization of serum- and urine- EV surface antigens 197 

Serum and urine EVs, characterized by labelling to typical tetraspanins markers, were further 198 

analyzed using fluorescent-labelled beads coated with antibodies against 37 different surface markers 199 

(Figure S3; Tables S5-S6). We reasoned that serum EVs, deriving from endothelial cells, platelets 200 

and immune cells, could reflect the cardiovascular and immunological features of the recipient, 201 

whereas urine EVs mainly deriving from renal and infiltrating cells, the graft physiopathology.  202 

For both serum and urine samples, the levels of expression of EV markers (CD9-CD63-CD81), 203 

correlated with the EV concentration measured by NTA (Figure S1G-I). Moreover, consistently with 204 

the observed EV number, the specific CD9-CD63-CD81 EV expression was higher in serum than in 205 

urine (Figure S1E-F) and decreased after kidney transplant (Figure S2C-F).  206 

The average MFI for CD9-CD63-CD81 was then used as internal normalizer of fluorescence levels 207 

of all other 37 markers to enable comparison among the different samples and to exclude non-specific 208 
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binding such as small debris. A separate pool of samples was analyzed to evaluate whether a pre-209 

isolation step by ultracentrifugation may affect the profiling of serum- and urine- EV surface antigens. 210 

After ultracentrifugation, as expected, mean MFI for CD9, CD63, and CD81 was higher in samples 211 

underwent EV enrichment compared to standard protocol, whereas EV surface profile, after 212 

normalization by CD9-CD63-CD81, was similar to that obtained by the standard protocol (Figure 213 

S4). 214 

Serum- vs. urine- EVs showed a very different profile, being different for 29 of the 37 tested markers 215 

(Figure S3). Of note, CD42a, CD41b, CD62P and HLA-II were highly expressed in serum EVs, 216 

whereas CD105, SSEA-4 and HLA-I in urine EVs. We subsequently analyzed the kinetic of evaluated 217 

EV surface antigens in transplanted patients at different times after transplant. The expression of a 218 

large number of markers varied during the follow up. In particular, 12 out of 37 evaluated surface 219 

antigens of serum EVs showed significant differences during follow-up (Figure S5A), possibly due 220 

to effect of drugs as well as to the normalization of the uremic status. In parallel, 34 out of 37 markers 221 

changed in urine, most of which at T3 (12 months) as compared to T1 or T2 (Figure S5B), in relation 222 

to a large variety of cellular processes occurring in the transplanted graft (Tables S6). 223 

 224 

EV signature of kidney graft dysfunction  225 

We therefore evaluated the different EV profile according to the transplant outcome, defined as 226 

persistent renal dysfunction, or renal recovery after 1 year, in case of eGFR less/equal or higher to 45 227 

mL/min, respectively (Figure S6).  228 

Among serum EV surface antigens, CD62P, CD41b, CD42a, and CD31 (platelet/endothelial markers) 229 

were highly expressed in patients with persistent renal dysfunction compared to those with renal 230 

recovery at both T0 and T1, and their expression was able to predict patient outcome at T3 (Figure 231 

2). CD62P, CD42a, and CD31 appeared higher also at T2 in patients with kidney dysfunction. During 232 

follow-up, the expression of these markers gradually decreased in all patients independently from 233 

renal outcome and CD62P, CD42a, and CD31 were also inversely correlated to eGFR (R ranging 234 

between -0.247 and -0.130; Figure 2). The expression of all EV markers was similar between groups 235 

at T3 (Tables S7-S10). The association of CD62P, CD41b, CD42a, and CD31 with patient outcome 236 

was confirmed by univariate analysis at T0, with ORs ranging between 0.84 and 0.98 (Table S11). 237 

The analysis indicates a 2% to 19% decrease in the likelihood of renal recovery for each 1 unit 238 

increase in nMFI of the considered EV surface antigens.  239 

Considering urine EVs, as differences observed from T0 to T1 may be attributable to vesicles secreted 240 

by transplanted kidney (Table S12), we analyzed their profile starting from T1 (Tables S13-S15). 241 

CD105, CD1c, SSEA-4, and CD133/1, characteristic of immune cells and mesenchymal/stem 242 
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progenitor cells, gradually and significantly increased from T1 to T3 in patients with renal recovery, 243 

but not in those with persistent renal dysfunction at T3 (Figure 3). Noteworthy, at T1 these 4 EV 244 

markers were already significantly higher in patients with renal recovery, and associated to patient 245 

outcome at univariate analysis, with ORs ranging between 1.01 and 1.15 (Table S11), thus indicating 246 

a 1% to 15% increase in the likelihood of renal recovery for each 1 unit increase of their nMFI. 247 

CD105, CD1c, SSEA-4, and CD133/1 were also directly correlated to eGFR (R ranging between 248 

0.187 and 0.384; Figure 3). A pool of urine EVs isolated by control subjects was analyzed using 249 

super-resolution microscopy to assess colocalization of these markers on single vesicles: 48.9%, 250 

21.3%, and 10.6% of EVs expressed CD105, CD133/1 and SSEA-4, respectively. Interestingly, 251 

CD105 appeared as the marker with higher expression levels also in flow cytometric analyses. In 252 

addition, 24.7% of urine EVs co-expressed CD105 and CD133/1, while other combinations were 253 

observed in less than 2% of vesicles (Figure S7). 254 

Finally, we correlated serum- and urine- EV surface antigens with creatinine, eGFR and proteinuria 255 

(Table S16). Of note, all urine EV markers were correlated to creatinine and eGFR, while CD31 on 256 

serum EVs and SSEA-4 on urine EVs correlated with proteinuria as index of renal damage (R of 257 

0.264 and -0.206, respectively; p<0.01). 258 

 259 

Prediction of renal recovery after kidney transplantation 260 

The diagnostic performance of serum and urine EV surface antigens associated to patient outcome at 261 

univariate analysis (Figure 4A-5A) was assessed by analysis of ROC curves; each EV marker was 262 

evaluated singularly or as a compound EV marker generated by linear weighted combination of all 263 

the others (CD62P-CD41b-CD42a-CD31 for serum EVs; CD105-CD1c-SSEA4-CD133/1 for urine 264 

EVs; Table S17). AUC for serum EV markers ranged between 0.730 and 0.999, with the compound 265 

marker displaying an AUC of 0.836 (95%CI 0.736-0.929; Figure 4B); of note, serum CD42a 266 

displayed an AUC of 0.999 (95%CI 0.995-1.000), correctly discriminating all except one patient. On 267 

the other side, the AUC for urine EV markers was comprised between 0.686 and 0.856, with the 268 

compound marker reaching up to 0.901 (95%CI 0.823-0.978; Figure 5B). 269 

Finally, in the attempt to exploit the specific EV signature and develop an advanced diagnostic model 270 

to predict renal outcome at T3, we combined nMFI levels of all EV surface antigens differentially 271 

expressed in patients with persistent renal dysfunction compared to those with renal recovery, at T0 272 

for serum EVs (HLA-II-CD62P-CD41b-CD42a-CD29-CD31; Table S7), or at T1 for urine EVs 273 

(CD19-CD56-CD105-CD2-CD1c-SSEA-4-HLA-I-CD42a-CD133/1-CD45-CD20; Table S13) by 274 

the use of supervised ML algorithms. As detailed in the methods section, 4 ML classifiers and 275 

different algorithms for dataset imbalance correction were applied to levels of EV markers in serum 276 
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and urine, resulting in 616 different models. Accuracy of prediction models based on serum EV 277 

antigens ranged between 72.4% and 100.0% at training, and between 69.0% and 98.3% at validation; 278 

models based on urine EV antigens displayed an accuracy comprised between 74.1% and 86.2% at 279 

training and between 62.1% and 80.1% at validation (Table S18).  280 

The best ML model exploiting a serum EV signature was a RF regressor with synthetic minority over-281 

sampling technique as correction for data imbalance; confusion matrix and a representative 282 

classification tree are shown in Figure 4C-D. At training, all patients with persistent renal 283 

dysfunction, and 34 of 35 patients with renal recovery were correctly classified (sensitivity 100.0% 284 

and specificity 97.1%), resulting in an overall accuracy of 98.3%. At validation, the model confirmed 285 

a very high performance (98.3% accuracy, 95.7% sensitivity, 100.0% specificity) without any 286 

detected overfitting effect. Of note, only 1 patient with persistent renal dysfunction was misclassified 287 

at validation, thus meaning a negative predictive value of 97.3%.  288 

Conversely, a urine EV signature obtained by a linear support vector machine algorithm (see 289 

methods) displayed a lower but still reliable performance, with the correct prediction of 17 of 23, and 290 

32 of 35 patients with persistent renal dysfunction or renal recovery, respectively (84.5% accuracy, 291 

73.9% sensitivity, 91.4% specificity) at training. At validation, we observed a minimum overfitting 292 

bias (4.4%), with a final accuracy of 80.1%, and a sensitivity/specificity respectively of 71.6% and 293 

85.7% (Figure 5C). The plot built on the two best discriminants (SSEA-4 and CD105) confirmed an 294 

excellent discrimination of patients according to their outcome (Figure 5D).  295 

Considering donor age and type (explant from deceased vs. living donors) as potentially associated 296 

to graft function, we also performed a multivariate logistic regression analysis to assess their impact 297 

on associations between renal outcome and each single serum- and urine- derived EV marker (Table 298 

S19). All EV antigens which were significantly associated to renal outcome (CD105-CD1c-SSEA4-299 

CD133/1 from urine, and CD62P-CD41b-CD42a-CD31 from serum) confirmed their association 300 

independently from donor age/type, except the serum EV marker CD42a which was no longer related 301 

to patient outcome after correction for donor age or type. Interestingly, renal outcome was not only 302 

directly associated to CD133/1 (OR 1.09; p=0.008), but also inversely related to donor age (OR 0.97; 303 

p=0.035), thus meaning an increase likelihood of renal recovery at the increase of CD133/1 levels 304 

and at the donor age decrease. Consistently, sensitivity analysis performed on ML models confirmed 305 

a negligible impact of donor age/type on prediction performance, which remains highly reproducible 306 

even when models were applied on the cohort stratified for age tertile, or for deceased vs. living donor 307 

(Figure S8). 308 

 309 

EV signature of graft rejection  310 
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Finally, we performed a sub-analysis on serum and urine EV profile in patients with or without graft 311 

rejection, diagnosed in transplanted patients by kidney biopsy in 7 cases during a follow-up of 1 year 312 

(6 cellular and 1 humoral acute rejection; Tables S20-21).  313 

Serum EV concentration and mean MFI for CD9-CD63-CD81 were respectively 2.4- and 4.2-fold 314 

higher in rejecting patients compared to the others (Figure S9A-C); 15 of the 37 serum EV antigens 315 

(CD3-CD19-CD8-CD25-CD49e-ROR1-CD209-CD9-CD11c-CD86-CD44-CD326-CD69-CD45-316 

CD20) were highly expressed in case of graft rejection compared to normal follow-up (Figure S9D). 317 

Similarly, urine EV concentration and mean MFI for CD9-CD63-CD81 were respectively 2.6- and 318 

3.6-fold higher in rejecting patients (Figure S9E-G), and 10 EV antigens (CD19-CD56-CD105-319 

CD1c-ROR1-CD209-CD9-CD42a-CD86-CD14) were more expressed in case of rejection, compared 320 

to non-rejecting patients (Figure S9H). Of interest, both serum and urine EV markers were mainly of 321 

immune origin, and different from those associated with renal outcome. 322 

At univariate analysis, we confirmed the association of 9 of the 15 serum EV markers and 7 of the 10 323 

urine EV markers with a diagnosis of graft rejection (Figure S10A-B and Table S22). The diagnostic 324 

performance of EV markers associated to the diagnosis of rejection was assessed by ROC curves; 325 

AUC ranged between 0.720 and 0.834 (Table S23). Serum EV compound biomarker reached an AUC 326 

of 0.857 (95% CI 0.702-1.000), whereas urine EV compound biomarker 0.770 (95% CI 0.578-0.962 327 

- Figure S10C-D). Finally, supervised learning was used to develop and validate diagnostic models 328 

to detect graft rejection. As before, we trained 616 different models based on serum or urine EV 329 

markers differentially expressed in rejecting patients. After tuning, ML models with the highest 330 

accuracy were reported in Table S24: accuracy ranged between 81.5% and 99.1% at training, and 331 

81.0% and 96.1% at validation for models combining serum EV antigens, and between 71.6% and 332 

80.9% at training, and 72.3% and 79.3% at validation for urine EV antigens. The best model was 333 

again a RF regressor based on serum EV markers; confusion matrix and a representative classification 334 

tree are shown in Figure S10E-F. At training the accuracy was 99.1%, with the correct identification 335 

of all cases of rejection (100% sensitivity) and of 223 out of 225 cases of normal follow-up 336 

(specificity 99.1%). Reliability of the models was confirmed by leave-one out validation: accuracy 337 

was 96.1% (3% overfitting), with a sensitivity of 71.4% and a specificity of 96.9%. 338 

 339 

Discussion 340 

We here report for the first time a comprehensive characterization of serum- and urine- EVs in a 341 

cohort of transplanted patients by a standardized multiplex flow cytometric assay. The prospective 342 

longitudinal evaluation of EV profile over 1-year follow-up, allowed us to identify a molecular 343 

signature that appear to predict the outcome of the grafted kidney, related to pre-transplant asset of 344 
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both receiver (serum) and graft (urine). In particular, serum EV signature was mainly characterized 345 

by endothelial cells and platelets markers, probably reflecting the cardiovascular profile of the 346 

recipient. Conversely, urine EV signature was mainly characterized by markers of mesenchymal 347 

progenitor cells, which may mirror the repairing/ regenerative features of the graft.  348 

EVs and their content have been extensively studied in the context of kidney transplant. Different EV 349 

subpopulations in biological fluids, deriving from different cell types and characterized on the basis 350 

of EV surface marker expression, have been previously profiled using conventional cytofluorimetric-351 

based analyses14,19. However, this technique implies several limitations in terms of detection 352 

threshold (exclusive characterization of larger EVs, so called microparticles), possible identification 353 

of multiple vesicles as a single event, and non-specific nanoparticle detection of protein/antibody 354 

aggregates. Alternatively, bead-based cytofluorimetric assays have been used to characterize bead-355 

absorbed isolated EVs for single markers26. This procedure, however, requires EV isolation, and 356 

appears time-consuming and poorly standardized. In our study, we were able to analyze serum- and 357 

urine- EVs using a commercially available cytofluorimetric kit21,22, which allow the fast and 358 

reproducible profiling of a standardized panel of 37 EV surface antigens including markers from 359 

endothelium, platelets, immune cells, and mesenchymal/stem progenitor cells. According to a 360 

previously validated protocol11, we directly characterize EVs after immuno-capture without other 361 

pre-isolation steps. Of note, we did not perform any vesicle pre-enrichment steps, in the effort to 362 

implement and standardize an assay, which was developed for an application on isolated EVs21,22, to 363 

be directly applied as point-of-care tool for EV analysis in complex biofluids. This approach has 364 

further relevance, as it can be achieved avoiding time-consuming protocols and without sophisticated 365 

instrumentation, and therefore it could be easily translated to clinical practice. 366 

 367 

Using this assay, we systematically characterized surface antigens expressed on serum- and urine- 368 

EVs from 58 patients evaluated at the different time points, for a total of 426 analyzed samples. A 369 

large number of markers appeared to change after transplant. In particular, endothelial- and platelet- 370 

derived EVs from serum samples progressively decreased 3 and 12 months after transplant. This is 371 

in line with prospective studies in transplanted patients evaluating serum endothelial and platelet 372 

microparticles, that were reported to progressively decrease, paralleling renal function 373 

recovery14,19,20. The novelty of our findings was the ability of endothelial and platelet EV markers, 374 

namely, CD31, CD41b, CD42a and CD62P, to predict the renal recovery at 1 year. These results 375 

suggest that not only renal function improvement may decrease the uremia-induced cardiovascular 376 

injury, lowering inflammation and oxidative stress, but that, in turn, the recipient pre-transplant 377 

cardiovascular and/or metabolic status may profoundly impact graft vascularization and function at 378 
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follow-up. The use of serum rather than plasma may have determined the artificial generation of 379 

platelet derived EVs; however, low-speed centrifugation may determine in-vitro cold-induced platelet 380 

activation also in plasma samples27,28. EV release by platelets in this circumstance is not fully 381 

standardizable, thus making EV quantitative data less reliable. In vitro platelet activation induced by 382 

serum separator tubes is expected to be similar in all groups, thus avoiding significant biases when 383 

comparing EV surface profiles. Indeed, both plasma and serum have been used in biomarkers 384 

discovery studies, and previous studies did not find any significant difference in EV profiling of 385 

serum and plasma from matched samples11,29. 386 

 387 

In analogy, we identified four different markers in urine EVs (CD1c, CD105, CD133, and SSEA-4), 388 

that progressively increased in transplanted patients, and that were able to predict the recovery of 389 

renal function. These markers are characteristic of proliferating mesenchymal/stem cells and immune 390 

cells which may be involved in the reparative ability of the kidney. Of interest, CD133 has been 391 

described as characteristic marker of progenitor cells, with the ability to survive after damage and 392 

proliferate in response to cell injury30,31. Accordingly, the levels of urine EVs expressing CD133 were 393 

found elevated in healthy individuals and almost absent in end stage kidney disease18. Our group 394 

previously reported the increase in CD133 expressing EVs in the first week following a kidney 395 

transplant associated with early graft function, underlying that EV-carried CD133 might mirror the 396 

regenerative processes occurring in the transplanted kidney after ischemic processes18. Indeed, at 397 

graft tissue level, the number of CD133 expressing cells was lower in delayed graft function in respect 398 

to early graft function patients32, underlying the ability of EVs to mirror the tissue expression profile.  399 

 400 

Our results on the prominent role of intrinsic pro-regenerative markers to predict long term graft 401 

function underline the concept that the pre-transplant graft status might dictate the gain of functional 402 

versus fibrotic tissue after ischemia-reperfusion insults. These findings are also in line with recent 403 

data showing the importance of organ biological age not only on post-transplant function, but also on 404 

risk of rejection, as organ damage may lead to leakage of cellular chromatin and mitochondrial 405 

proteins triggering immune responses in the recipient33,34. EVs may also carry information predicting 406 

ongoing or imminent rejection. At this regard, we observed, in a small subset of patients, the increase 407 

of a distinct subset of antigens in case of rejection, either in serum- or urine- EVs, including mainly 408 

markers of T-/B-lymphocytes and of immune system activation. In line with this hypothesis, an 409 

increase of CD3-positive EVs has been observed in urine of patients with acute cellular rejection, 410 

reflecting infiltration of T cells in the graft35. Moreover, circulating CD31/CD45 endothelial EVs and 411 

C4d-positive EVs increased in patients with antibody-mediated humoral rejection and may provide 412 
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information on its severity and response to treatment36,37. These data suggest that an EV signature 413 

reflecting immune cell activation may allow the discrimination of rejecting patients38, representing 414 

an attractive choice, to be validated in a dedicated study.   415 

 416 

Altogether, we were able to identify a signature of the pre-transplant cardiovascular asset and graft 417 

regenerative ability that might predict the post-transplant graft performance. The molecular signature 418 

was obtained by combination of fluorescence levels of single EV antigens using advanced 419 

computational algorithms. Supervised learning was applied to train and validate the prediction 420 

models, exploiting high-dimensional and non-linear boundaries among data obtained from EV 421 

profiling, allowing an accurate prediction of renal outcome. Accuracy at validation was 98.3% and 422 

80.1% respectively for serum- and urine- EV markers, outperforming previously reported 423 

conventional biomarkers5,13. 424 

 425 

The main limitation of our study is the absence of an external validation cohort. Anyway, the 426 

longitudinal design and the use of ML algorithms allowed a robust internal validation, demonstrating 427 

the dynamic consistent change of EV biomarkers over patient follow-up, and a high generalizability 428 

of the proposed models due to the negligible overfitting effect. Second, our experimental approach 429 

including beads-based immunocapture and flow-cytometry does not allow the evaluation of single 430 

vesicles, while the use of pre-clearing steps by low-medium speed centrifugation excludes larger EVs 431 

from the analysis. A third limitation is the absence of kidney specific antigens among EV markers 432 

included in the analysis; on the contrary, we chose to use a validated and high-performing platform 433 

which included the majority of surface markers expressed on vesicles, and we focused on the specific 434 

EV signature, as reflex of the cardiovascular profile of the recipient and of the repairing/regenerative 435 

capability of the graft.  436 

In conclusion, we systematically characterized serum- and urine- EVs from a highly selected 437 

longitudinal cohort of patients underwent kidney transplant. We developed the first prediction model 438 

based on the profile of antigens expressed on EV surface; our model was able to predict renal outcome 439 

at 1 year follow-up using EV parameters before or immediately after kidney transplant. EV profiling 440 

has been performed by a standardized, low-cost, flow cytometric platform. This approach is 441 

minimally invasive, amenable to full automation, and represent a promising point-of-care testing tool. 442 

After validation in larger studies, EV profiling could be integrated in the post-transplant clinical 443 

work-up, selecting patients at higher risk of persistent renal dysfunction for a closer follow-up.  444 
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Table 1. Baseline characteristics of patients 552 

Variable Overall cohort 
[n=58] 

Renal Recovery 
[n=35] 

Persistent renal 
dysfunction  

[n=23] 
P-Value 

Donor parameters 
Age (years) 
Male sex, n (%) 
Hypertension, n (%) 
Diabetes, n (%) 
Deceased donor, n (%) 
Cause of death 

Cerebrovascular, n (%) 
Trauma, n (%) 

eGFR* (mL/min) 

 
54 ± 18.1 
26 (44.8) 
15 (25.9) 
5 (8.6) 

45 (77.6) 
 

31 (68.9) 
14 (31.1) 
98 ± 25.5 

 
50 ± 17.5 
17 (48.6) 
8 (22.9) 
3 (8.6) 

29 (82.9) 
 

19 (65.5) 
10 (34.5) 
98 ± 26.1 

 
59 ± 18.1 
9 (39.1) 
7 (30.4) 
2 (8.7) 

16 (69.6) 
 

12 (75.0) 
4 (25.0) 

97 ± 25.1 

 
0.071 
0.479 
0.519 
1.000 
0.235 

 
0.738 

 
0.910 

Receiver parameters 
Age at transplant (years) 
Male sex, n (%) 
Hypertension, n (%) 
Diabetes, n (%) 
Months on dialysis prior to transplant 
Peritoneal dialysis, n (%) 
Hemodialysis, n (%) 

 
49 ± 13.5 
38 (65.5) 
41 (70.7) 
2 (3.4) 

43 [24; 60] 
19 (32.8) 
44 (75.9) 

 
48 ± 13.6 
25 (71.4) 
24 (68.6) 
0 (0.0) 

45 [21; 59] 
13 (37.1) 
26 (74.3) 

 
51 ± 13.4 
13 (56.5) 
17 (73.9) 
2 (8.7) 

41 [27; 72] 
6 (26.1) 
18 (78.3) 

 
0.358 
0.243 
0.662 
0.153 
0.956 
0.380 
0.729 

Cause of kidney insufficiency 
Unknow, n (%) 
APDKD, n (%) 
Glomerular disease, n (%) 
Diabetes, n (%) 
Vascular, n (%) 
Other*, n (%) 

 
19 (32.8) 
16 (27.6) 
11 (19.0) 
2 (3.4) 
0 (0.0) 

10 (17.2) 

 
12 (34.3) 
11 (31.4) 
8 (22.9) 
0 (0.0) 
0 (0.0) 
4 (11.4) 

 
7 (30.5) 
5 (21.7) 
3 (13.0) 
2 (8.7) 
0 (0.0) 
6 (26.1) 

 
0.198 

Transplant and treatment 
HLA mismatches (n) 
Cold ischemia (hours) 
Thymoglobulin, n (%) 
Basiliximab, n (%) 
Steroid, n (%) 
FK-506, n (%) 
Ciclosporin, n (%) 
Mycophenolic acid, n (%) 
M-Tor inhibitor, n (%) 

 
3 [3; 4] 

11.0 [6.8; 14.0] 
17 (29.3) 
41 (70.7) 
58 (100.0) 
58 (100.0) 

0 (0.0) 
57 (98.3) 
0 (0.0) 

 
3 [3; 4] 

11.0 [8.0; 14.0] 
11 (31.4) 
24 (68.6) 
35 (100.0) 
35 (100.0) 

0 (0.0) 
34 (97.1) 
0 (0.0) 

 
3 [3; 4] 

9.0 [3.0; 15.0] 
6 (26.1) 
17 (73.9) 
23 (100.0) 
23 (100.0) 

0 (0.0) 
23 (100.0) 

0 (0.0) 

 
0.870 
0.463 
0.662 
0.662 
1.000 
1.000 
1.000 
1.000 
1.000 

Kidney function/damage at Baseline 
Creatinine (mg/dL) 
eGFR* (mL/min) 

 
8.5 ± 3.06 

7 ± 2.9 

 
8.7 ± 2.78 

7 ± 2.7 

 
8.2 ± 3.49 

7 ± 3.1 

 
0.509 
0.580 

 553 

Clinical and biochemical characteristics of patients included in the analysis after stratification for 554 

post-transplant renal outcome at baseline (T0; before kidney transplant): renal recovery (n=35) vs. 555 

persistent renal dysfunction (n=23; eGFR ≤ 45 mL/min at T3). APDKD, autosomal dominant 556 

polycystic kidney disease. A p<0.05 was considered significant and shown in bold. *eGFR: 557 

glomerular filtration rate was estimated by CKD-EPI equation. **Other includes autoimmune 558 

diseases, pyelonephritis, and hemolytic-uremic syndrome.  559 
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Legends to Figures 560 

 561 

Figure 1. Study design and protocol 562 

We analyzed serum and urine at different time points in patients who underwent kidney transplant. 563 

(A) A cohort of 58 patients was included in the study, and evaluated at baseline (before transplant, 564 

T0), 10-14 days after transplant (T1), and at 3 months (T2), or 12 months after transplant (T3). 565 

Patients were discriminated according to creatinine levels at T3 (eGFR ≤ 45 mL/min, persistent renal 566 

dysfunction, vs. eGFR > 45 mL/min, renal recovery). A total of 232 serum and 194 urine samples 567 

were analyzed (*urine were not available for 38 anuric patients at T0). (B) Whole blood and urine 568 

samples underwent serial centrifugation cycles to eliminate cells, cellular debris and larger vesicles. 569 

EVs were immuno-captured using fluorescent-labelled beads (different amount of phycoerythrin, PE, 570 

and fluorescein isothiocyanate, FITC) coated with antibodies against 37 EV surface antigens. The 571 

analysis of EV surface antigens was performed by flow cytometry after incubation with detection 572 

antibodies against CD9, CD63, and CD81, labeled with allophycocyanin (APC). Gating strategy is 573 

described in the extended methods section; representative plots are reported for one serum (above) 574 

and one urine sample (below). 575 

 576 

Figure 2. Prediction of renal recovery by serum EV surface antigens 577 

Serum extracellular vesicle (EV)- surface antigens were evaluated by flow cytometry in transplanted 578 

patients at different time points (T0, before transplant; T1, 10-14 days after transplant; T2, 3 months 579 

after transplant; T3, 12 months after transplants; left column); median fluorescence intensity (nMFI; 580 

%) was reported after normalization for mean MFI for CD9, CD63 and CD81. The correlation of 581 

each EV antigen with glomerular filtration rate (eGFR; mL/min) was evaluated by Pearson’s R test 582 

(central column); regression lines with 95% confidence intervals were shown for each correlation. In 583 

the right column, mean nMFI (with standard error) is shown at the different time points in patients 584 

displaying renal recovery (green line) or persistent renal dysfunction at T3 (red line; eGFR ≤ 45 585 

mL/min). *p<0.05; **p<0.01 ***p<0.001; statistics is reported in Tables S5, and S7 to S10. We 586 

reported EV surface antigens associated to renal outcome at univariate logistic regression analysis 587 

(Table S11): CD62P (A), CD41b (B), CD42a (C), and CD31 (D). 588 

 589 

Figure 3. Prediction of renal recovery by urine EV surface antigens 590 

Urine extracellular vesicle (EV)- surface antigens were evaluated by flow cytometry in transplanted 591 

patients at different time points (T0, before transplant; T1, 10-14 days after transplant; T2, 3 months 592 

after transplant; T3, 12 months after transplants; left column); median fluorescence intensity (MFI; 593 
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%) was reported after normalization for mean MFI for CD9, CD63 and CD81. The correlation of 594 

each EV antigen with glomerular filtration rate (eGFR; mL/min) was evaluated by Pearson’s R test 595 

(central column); regression lines with 95% confidence intervals were shown for each correlation. In 596 

the right column, mean MFI (with standard error) is shown at the different time points for each EV 597 

antigen in patients displaying renal recovery (green line) or persistent renal dysfunction at T3 (red 598 

line; eGFR ≤ 45 mL/min). *p<0.05; **p<0.01; ***p<0.001; statistics is reported in Tables S6, and 599 

S12 to S15. We reported EV surface antigens associated to renal outcome at univariate logistic 600 

regression analysis (Table S11): CD105 (A), CD1c (B), SSEA-4 (C), and CD133/1 (D). 601 

 602 

Figure 4. Supervised learning to predict renal recovery using serum EV markers 603 

Supervised learning was used to train and validate a prediction model able to discriminate patients 604 

with renal recovery (n=35) from those with persistent renal dysfunction (Glomerular Filtration Rate, 605 

eGFR ≤ 45 mL/min; n=23). Normalized median fluorescence intensity (nMFI) of serum extracellular 606 

vesicle (EV) surface antigens at T0 was used to derive the prediction models. (A) The association of 607 

differentially expressed serum EV antigens with renal outcome was assessed by univariate regression 608 

analysis. Odds ratios (ORs) are reported for each EV antigen together with its 95% confidence 609 

interval; an OR greater than 1 is associated with an increased likelihood of renal recovery; an OR less 610 

than 1 is associated with a decreased likelihood (significant associations were highlighted in red). (B) 611 

Analysis of receiver operating characteristic (ROC) curves for EV surface antigens associated with 612 

renal outcome at univariate analysis. Diagnostic performance was assessed also for a compound EV 613 

marker derived by linear combination of all the others (black line) (C-D) Machine learning algorithms 614 

were used to train and validate 308 different diagnostic models based on serum EV markers. 615 

Confusion matrix and a representative tree are shown for the best model at training and validation: a 616 

random forest regressor with SMOTE correction for dataset imbalance, 10 classification trees and a 617 

maximum split number of 20. Validation is provided by leave-one-out algorithm (see extended 618 

methods). Statistics is reported in Tables S11, S17, and S18. 619 

 620 

Figure 5. Supervised learning to predict renal recovery using urine EV markers 621 

Supervised learning was used to train and validate a prediction model able to discriminate patients 622 

with renal recovery (n=35) from those with persistent renal dysfunction (Glomerular Filtration Rate, 623 

eGFR ≤ 45 mL/min; n=23). Normalized median fluorescence intensity (nMFI) of urine extracellular 624 

vesicle (EV) surface antigens at T1 was used to derive the prediction models. (A) The association of 625 

differentially expressed urine EV antigens with renal outcome was assessed by univariate regression 626 

analysis. Odds ratios (ORs) are reported for each EV antigen together with its 95% confidence 627 



 
 

22 
 

interval; an OR greater than 1 is associated with an increased likelihood of renal recovery; an OR less 628 

than 1 is associated with a decreased likelihood (significant associations were highlighted in red). (B) 629 

Analysis of receiver operating characteristic (ROC) curves for EV surface antigens associated with 630 

renal outcome at univariate analysis. Diagnostic performance was assessed also for a compound EV 631 

marker derived by linear combination of all the others (black line) (C-D) Machine learning algorithms 632 

were used to train and validate 308 different diagnostic models based on urine EV markers. Confusion 633 

matrix and a representative plot are shown for the best model at training and validation: a support 634 

vector machine with linear kernel. Validation is provided by leave-one-out algorithm (see extended 635 

methods). The plot illustrates discriminant performance of 2 of the 11 differentially expressed EV 636 

antigens: if a circle of a defined color (real outcome) falls within a graph area of the same color 637 

(predicted outcome), then the patient is correctly predicted according to its outcome. Statistics is 638 

reported in Tables S11, S16, and S17. 639 


