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Abstract
In the landscape of the emerging Industry 5.0, human–robot collaboration (HRC) represents a solution to increase the flex-
ibility and reconfigurability of production processes. Unlike classical industrial automation, in HRC it is possible to have 
direct interaction between humans and robots. Consequently, in order to effectively implement HRC it is necessary to con-
sider not only technical aspects related to the robot but also human aspects. The focus of this paper is to expand on previous 
results investigating how the learning process (i.e., the experience gained through the interaction) affects the user experience 
in the HRC in conjunction with different configuration factors (i.e., robot speed, task execution control, and proximity to 
robot workspace). Participants performed an assembly task in 12 different configurations and provided feedback on their 
experience. In addition to perceived interaction quality, self-reported affective state and stress-related physiological indica-
tors (i.e., average skin conductance response and heart rate variability) were collected. A deep quantitative analysis of the 
response variables revealed a significant influence of the learning process in the user experience. In addition, the perception 
of some configuration factors changed during the experiment. Finally, a significant influence of participant characteristics 
also emerged, auguring the necessity of promoting a human-centered HRC.

Keywords Industry 5.0 · Human–robot collaboration · Human-factors · Physiological signals · Learning process · User 
experience · Affective state

1 Introduction

The emerging Industry 5.0 focuses attention on human-
centricity, promoting the development and implementation 
of technologies that can support humans in their activi-
ties. Human–robot collaboration represents one solution 
for achieving these goals. Human–robot collaboration is a 
form of direct interaction between human and robotic sys-
tem apt to combine the abilities of the entities involved to 
achieve a common goal [1]. On the one hand, robots sup-
port with power, precision, and repeatability; on the other 

hand, humans have flexibility, problem-solving capabilities, 
and intelligence. The robots involved in HRC are called col-
laborative robots (or cobots), which, unlike classical indus-
trial robots, are special robots designed to allow physical 
interaction with human operators. This feature allows for the 
removal of barriers separating the workspace of robots from 
that of operators, making the industrial layout more flex-
ible and enabling new forms of interaction [2]. In addition, 
this perspective allows to promote greater adaptability and 
reconfigurability of production processes [3, 4]. However, 
working closely with a robot can induce stressful situations 
for operators, impacting the performance and quality of 
production processes. Such situations can impact the per-
formance and quality of production processes, as well as 
the well-being of the operator [5]. From the perspective of 
Industry 5.0, in order to promote a human-centred industry, 
it is therefore necessary also to analyze and take human fac-
tors into consideration to effectively implement HRC [6, 7].

Understanding the operator mental and physical state 
during HRC is first required in order to provide the opti-
mal support for their wellbeing. In addition to traditional 
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evaluation tools, such as questionnaires, the analysis of 
physiological response is a valuable resource for investi-
gating user experience. Through physiological response, 
it is possible to monitor the operator’s state as the task is 
being carried out in real-time, even discovering potential 
unconscious reactions. Only a relatively small number of 
publications have so far included physiological measure-
ments to comprehend the operator’s state in HRC [8–10]. 
In addition, a gap is present in the literature on how user 
experience and perception of HRC factors may evolve over 
time due to the experience gained from interacting with 
the cobot. The study of these aspects can be helpful for 
outlining guidelines for the introduction of a collaborative 
task to an operator.

In a previous work [11], an original experimental set-
ting aimed at investigating how different configurations of a 
cobot impact the user experience was presented, involving 
42 participants. The objective of this paper is to expand on 
previous findings by addressing the following research ques-
tion: How do the learning process influence operator’s user 
experience and stress?

Through a deep quantitative analysis, the joint effects of 
learning process (i.e., the experience gained by interacting 
with the cobot during the experiment) and different HRC 
configuration factors on self-reported affective state, per-
ceived interaction quality and physiological response are 
investigated. In addition, the influence of operator charac-
teristics (e.g., gender, age, previous experience with cobots, 
and attitude towards robots) on the different response vari-
ables is explored.

The main contributions of this paper can be summarized 
as follows:

 (i) A deep quantitative analysis on the learning process 
and its joint effect with different HRC configura-
tion factors on response variables (i.e., perceived 
interaction quality, affective state, and physiological 
response).

 (ii) Exploration of the influence of operator characteris-
tics on response variables.

The findings of this study can have an impact on the 
design of collaborative tasks as well as the way they are 
implemented.

The paper structure is as follows. A review on HRC and 
the human factors involved is provided in Sect. 2. Section 3 
provides a summary of the methodology and experimental 
setting. Section 4 presents the quantitative analysis results, 
highlighting the relationships with the response variables of 
the joint effect of learning process and configuration factors. 
In Sect. 5, discussion of the study results and potential impli-
cations for the improvement of HRC are presented. Finally, 
Sect. 6 focuses on conclusions and future work.

2  Literature analysis

HRC paradigm is characterized by several aspects related 
to both the robotic system and humans [6]. For the inter-
action to effectively support humans in the most difficult 
operations, careful planning is necessary [12]. Inkulu 
et al. [13] offered an overview of HRC, outlining some 
of the critical challenges and prospects. Natural ways of 
communicating with robots, such as voice and gestures, 
enable natural engagement and may cut down on idle time, 
however these recognition techniques need to be strength-
ened to withstand any environmental disturbances. Power 
force limitation strategies are helpful for effectively col-
laborating with low-payload robots, but they might not 
be appropriate for high-speed and high-payload robots, 
necessitating the deployment of additional flexible safety 
methods. Collaborative robots are enabling technologies 
for reconfigurable production systems, however, to mini-
mize potential production downtime, more research is 
required on robot adaptive systems.

Human factors related to HRC have received more 
attention in recent years [14]. Psychological and cognitive 
ergonomics are equally important to the successful imple-
mentation of HRC as physical ergonomics [15, 16]. Gualt-
ieri et al. [17] presented an overview on human factors and 
cognitive ergonomics aspects involved the design of HRC 
assembly systems. Aspects such as cognitive workload, 
stress, usability, perceived enjoyment, acceptance, trust, 
and frustration were highlighted to be of particular interest 
in the enhancement of operator’s work conditions.

The idea of symbiotic HRC was introduced by Wang 
et al. [18]. In tradition automation practice, humans are 
required to adhere to rigid work processes. Symbiotic 
HRC aims at promoting: (i) natural interaction with the 
robot; (ii) multi-modal, user-friendly programming envi-
ronment that doesn’t demand in-depth system expertise; 
(iii) an increased context dependency; (iv) an immersive 
collaboration that enables the operator to participate in the 
tasks through wearable technology (e.g., smart watches, 
augmented reality (AR) glasses).

Recent efforts have concentrated on presenting tech-
niques for improving the adaptiveness of robot systems 
during HRC in order to enhance HRC potentials [19, 20]. 
Neves and Neto [21] proposed a reinforcement learning 
approach for assembly sequence planning that included 
user preferences. Mohammed et  al. [22] introduced a 
method for efficient online collision avoidance in an aug-
mented environment. Buerkle et al. [23] presented a sensor 
framework to model humans, which incorporated subjec-
tive, objective, and physiological metrics.

Literature has extensively covered concepts like stress, 
fatigue, and mental workload which are particularly 
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relevant in the context of manufacturing [5, 24, 25]. Self-
reporting methods like the Subjective Workload Assess-
ment Technique (SWAT) [26] and the NASA-TLX [27] 
are frequently used to assess these dimensions [28]. How-
ever, these methods are not well suited to gather real-time 
data and requires the subject to recall an event, which may 
introduce some bias [29, 30]. In order to work through 
these constraints, recent years have seen a growing empha-
sis on physiological measures for the study of the opera-
tor’s condition [31, 32]. Various works on this topic have 
been presented, but only a limited fraction is specifically 
focused on industrial HRC. Koppenborg et al. [33] inves-
tigated the effects of movement speed and path predict-
ability on the operator though virtual reality. In addition 
to subjective responses, heart rate was collected by a 
chest band. Arai et al. [8] used an industrial manipulator 
to assess how various speeds and distances from the opera-
tor affected mental strain, measured through electrodermal 
activity (EDA). Kühnlenz et al. [9] investigated how vari-
ous robot trajectory profiles affected operators stress by 
analyzing EDA and heart rate variability (HRV).

3  Methodology

3.1  Experimental setup

In the “Mind 4 Lab” (Manufacturing Industry 4.0 Labora-
tory) of the “Politecnico di Torino”, a collaborative assem-
bly task was implemented to emulate an HRC setting [11]. 
Using the assistance of the cobot UR3e, the task involved 
attaching two mechanical flanges to a base by tightening two 
pairs of screws (Fig. 1). The operations can be divided in the 
following phases:

(1) The cobot picks the square flange and places it in the 
correct position on the base.

(2) The operator takes the screws, inserts them into the 
holes and tightens them.

(3) The cobot takes the oval flange and places it correctly 
on the base.

(4) The operator takes the other two screws, inserts them 
into the holes and tightens them.

(5) The cobot takes the assembled mechanical component 
and places it in another work area.

A within-subjects experimental design was implemented 
in this study to examine the effects of three fixed factors 
(i.e., robot’s movement speed, proximity to robot workspace, 
and execution time control) and their interactions with the 
learning process on affective state, interaction quality, and 
physiological response [11].

Three levels of the robot’s joint speed (Speed) were 
implemented: 30°/s (Low), 90°/s (Medium), and 270°/s 
(High). These values represent the maximum speed that all 
the robot’s joints could reach. Two levels of proximity of 
the robot workspace to the operator (Distance) were intro-
duced: 30 cm (Close) and 40 cm (Far). The distances refer 
to the minimum distance between the operator’s chest and 
the robot workspace. Lastly, two levels of control for the task 
execution time (Control) were implemented: one in which 
the operator had a push-button to command the robot to con-
tinue with the task (Human) and another in which the cobot 
proceeded automatically with the operations after waiting 
25 s (NoHuman). Each participant performed the task in all 
12 possible configurations in random order.

Forty-two participants, with an average age of 
28.2 years (standard deviation = 8.1), were recruited from 
the “Politecnico di Torino” and the surroundings for the 
study (28.6% females and 71.4% males). In order to collect 
information about the participants and their user expe-
rience, a number of questionnaires were implemented. 
Before beginning the experiment, each participant was 
given an initial questionnaire to collect age, gender, and 
degree of prior experience with cobots (according to 
the following scale: L0—“I have never interacted with a 
cobot and I did not know them before now”; L1—“I have 
never interacted with a cobot but I know what they are”; 
L2—“I have interacted at least once with a cobot”; L3—“I 
have already programmed and interacted with a cobot”). 

Fig. 1  Collaborative robot UR3e and the mechanical component
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Afterwards, the Negative Attitude toward Robots Scale 
(NARS) [34] was administered to assess general attitude 
toward robots of the participant. The NARS items are 
divided in the following three sub-scales and, for each of 
them, a score can be obtained: Negative Attitudes toward 
Situations and Interactions with Robots (S1) (scoring 
between 6 and 30); Negative Attitudes toward Social Influ-
ence of Robots (S2) (scoring between 5 and 25), and Nega-
tive Attitudes toward Emotions in Interaction with Robots 
(S3) (scoring between 3 and 15) [34].

At the end of each trial, the Self-Assessment Mani-
kin (SAM) [35, 36] was administrated to participants to 
gather their affective state in the different task configura-
tions by evaluating on a 9-point scale three dimensions: 
valence, arousal, and dominance. Valence represents the 
pleasantness relative to a stimulus (for instance, happiness 
and relaxation are associated with a high valence, while 
anxiety or anger with a low valence). Arousal refers to the 
intensity of emotion provoked by a stimulus (e.g., fear and 
anger are usually associated with a high arousal, while 
relaxation and boredom with a low arousal). Dominance 
represents the degree of control felt relative to a stimulus 
(e.g., relaxation or anger are usually associated with a high 
dominance, while fear or anxiety with low dominance).

In addition, at the end of each trial, an interaction qual-
ity questionnaire (Table 1) based on Hoffman [37] and 
Baraglia et al. [38] and composed of seven items was used 
to collect participants’ perception on different dimensions 
related to the interaction with the cobot [11]. The items 
were evaluated on a 7-point scale (from “strongly disa-
gree” to “strongly agree”).

Finally, at the end of the experiment, participants were 
asked to provide overall unstructured feedback regarding 
the experience.

In addition to subjective evaluations, physiological sig-
nals were also collected to deepen the participant state 
during the experimental trials. EDA data and heart data 
through Photopletismogram (PPG) were obtained, respec-
tively, at 4 Hz and 64 Hz using the non-invasive biosensor 
Empatica E4 wristband [39]. From EDA and PPG signals 
stress and arousal indicators were derived for each HRC 
configuration, as explained in the following sub-section.

3.2  Data processing and analysis

Table 2 provides a summary of all the dependant and inde-
pendent variables included in the analysis. From physiologi-
cal signals, potential artifacts were identified and removed. 
By using the MATLAB-software “Ledalab”, EDA signal 
were decomposed in tonic component and phasic compo-
nent though Continuous Decomposition Analysis (CDA) 
[40]. The tonic component is characterized by the Skin 
Conductance Level (SCL), which represents the long-term 
fluctuations in EDA that are not directly derived by external 
stimuli. Short-term EDA fluctuations elicited by an exter-
nal stimulus represents phasic component. From the phasic 
component, Skin Conductance Responses (SCRs), which are 
amplitude differences between the SCL and response peaks, 
are detected. In the present study, the average SCR (Mean-
SCR) was calculated for each HRC configuration, represent-
ing a stress and arousal indicator. Regarding heart data, NN-
intervals (i.e., time intervals between systolic peaks) were 
obtained from PPG. As HRV measure for stress, the Root 
Mean Square of Successive Differences between adjacent 
NN-intervals (RMSSD) was included due to its widespread 
usage [5, 41].

A series of Mixed-effect Ordinal Logistic Regression 
(MOLR) models were implemented in order to investigate 
the relationship of the fixed-factors of the experiment and 
their interactions with the subjective responses (i.e., interac-
tion quality and SAM dimensions). The MOLR model was 
chosen for its suitability in (i) modelling dependent variables 
defined on an ordinal scale, and (ii) handling the participant 
effect as a random block effect. The “ordinal” package from 
the software R was used to fit these models [42]. Additional 
details on MOLR are provided in Appendix A.

Since the selected indicators for physiological response 
were continuous variables, Linear Mixed Models (LMMs) 
were implemented to explore the relationship with the con-
sidered factors and to handle the participant effect as a ran-
dom block effect. Models were fitted using the “lmerTest” 
package from the software R.

The formula used for the models is reported below using 
the Wilkinson notation [43]:

Table 1  Questionnaire for 
interaction quality [11]

Item no Dimension Questionnaire item

Q1 Robot helpfulness The robot was helpful in accomplishing the task
Q2 Interaction unsafety I felt the interaction was not safe
Q3 Interaction naturalness The collaboration felt natural
Q4 Team efficiency The robot and I worked efficiently together
Q5 Team fluency The robot and I worked fluently together
Q6 Discomfort I felt uncomfortable with the robot
Q7 Robot trustworthiness The robot was trustworthy
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To explore the potential effect of participant character-
istics, the same models were also fitted including the inde-
pendent variables Gender, Age, Experience, NS1, NS2, and 
NS3.

4  Results

This section contains the analysis results for each considered 
response variable.

4.1  Perceived interaction quality

The relationships between the learning process, the experi-
mental factors and the different aspects of the perceived 
quality of interaction with the robot will be discussed in 
this sub-section. In Appendix B, the estimated parameters of 
the fitted models are reported. Table 3 contains the results of 
the Analysis of Deviance (ANODE) for each MOLR model, 
showing the significance of each term. Figures 3, 4, 5, 6, 

(1)

Y ∼ 1 + Speed ∗ Distance ∗ Control + Trial ∗ Speed
+ Trial ∗ Distance + Trial ∗ Control + (1|Participant)

7, 8, and 9 provide a representation of the effects of the 
independent variables on the interaction quality dimensions. 
For each configuration of the fixed factors (i.e., Speed, Dis-
tance, and Control), the evolution of the expected response 
probabilities over the course of the experiment is shown. 
Through this representation, it is also possible to notice the 
significance of the fixed factors by comparing the patterns 
of the configurations (e.g., in Fig. 2, a distinct difference in 
patterns between the Human and NoHuman configurations 
can be seen).

Speed, Control, Trial, and the interaction term 
Control⋅Trial had a significant effect on the perceived robot 
helpfulness (Q1_Helpful) and their effect can be seen in 
Fig. 2:

– Speed had a general positive effect (βSpeedMed = 0.95, 
βSpeedHigh = 0.99), meaning that when the robot moved 
faster it was perceived as being more helpful in complet-
ing the task.

– Trial had a significant positive effect (βTrial = 0.07), mean-
ing that the perceived robot helpfulness slowly increased 
due to the learning process.

– The cobot was rated as being less helpful when the 
person had no control over the task execution time 

Table 2  Summary of the variables

Type of variable Variable name Description

Independent variables Speed Robot movement speed (Low, Medium, High)
Distance Proximity of the operator to the robot workspace (Close, Far)
Control Control of the task execution time (Human, NoHuman)
Trial Number of the trial performed by the participant. It represents the temporal progress of the 

experiment
Participant ID of the participant
Age Age of the participant
Gender Gender of the participant
Experience Level of prior experience with collaborative robots
NS1 Score for “Negative Attitudes toward Situations and Interactions with Robots” from NARS
NS2 Score for “Negative Attitudes toward Social Influence of Robots” from NARS
NS3 Score for “Negative Attitudes toward Emotions in Interaction with Robots” from NARS

Dependant variables Q1_Helpful Assessment of perceived robot helpfulness (7-point scale)
Q2_NotSafe Assessment of perceived interaction unsafety (7-point scale)
Q3_Natural Assessment of perceived interaction naturalness (7-point scale)
Q4_Efficient Assessment of perceived team efficiency (7-point scale)
Q5_Fluid Assessment of perceived team fluency (7-point scale)
Q6_Uncomfortable Assessment of perceived discomfort (7-point scale)
Q7_Trustworthy Assessment of perceived robot trustworthiness (7-point scale)
Valence SAM dimension assessing how positive is the emotion (9-point scale)
Arousal SAM dimension assessing how much agitated a person feels (9-point scale)
Dominance SAM dimension assessing how strong is the dominance feeling (9-point scale)
MeanSCR Average of amplitudes of Skin Conductance Responses [μS]
RMSSD Root Mean Square of Successive Differences between adjacent heart rate NN-intervals [ms]
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(βControlNoHum = −2.17). However, it is interesting to 
note that the interaction term Control⋅Trial had a posi-
tive effect (βControlNoHum⋅Trial = 0.16). As the experiment 
progressed, the negative effect due to the lack of con-
trol was partially offset by the progressive acquisition 
of experience with the collaborative task.

Concerning the interaction unsafety (Q2_NotSafe), 
Speed, Control, and Trial were found to be significant, 
and Fig. 3 shows their effect on the response probabilities:

– The perceived safety degraded when the robot 
movement speed was high (βSpeedMed = −0.02, 
βSpeedHigh = 0.30).

– An increase of the perceived unsafety was observed 
when the participant had no control of task execution 
time (βControlNoHum = 1.31).

– As the experiment progressed (i.e., Trial increased), the 
participant became increasingly familiar with the col-
laborative task and the perceived unsafety gradually 
decreased (βTrial = −0.15).

Table 3  ANODE table with resulting p-values for quality of interaction

*0.05 > p ≥ 0.01 , **0.01 > p ≥ 0.001 , ***p < 0.001

Model term Q1_Helpful Q2_NotSafe Q3_Natural Q4_Efficient Q5_Fluid Q6_Uncomf Q7_Trustw

Speed  < 0.001***  < 0.001***  < 0.001***  < 0.001***  < 0.001*** 0.010** 0.413
Distance 0.209 0.259 0.584 0.881 0.643 0.206 0.031*
Control  < 0.001***  < 0.001***  < 0.001***  < 0.001***  < 0.001***  < 0.001*** 0.001**
Trial  < 0.001***  < 0.001***  < 0.001***  < 0.001***  < 0.001***  < 0.001***  < 0.001***
Speed⋅Distance 0.533 0.470 0.449 0.772 0.637 0.352 0.096
Speed⋅Control 0.653 0.090 0.171 0.018* 0.018* 0.004** 0.244
Distance⋅Control 0.696 0.618 0.697 0.366 0.961 0.775 0.700
Speed⋅Trial 0.631 0.133 0.041* 0.889 0.359 0.023* 0.903
Distance⋅Trial 0.733 0.342 0.965 0.109 0.261 0.899 0.496
Control⋅Trial 0.004** 0.621 0.017* 0.005** 0.004** 0.058 0.844
Speed⋅Distance⋅Control 0.457 0.411 0.068 0.808 0.343 0.410 0.904

Fig. 2  Effect of the variables on the response probabilities for perceived robot helpfulness (Q1_Helpful). For each configuration, the graph 
shows how response probability for each level (represented by the colored area) changes according to Trial 
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Fig. 3  Effect of the variables on the response probabilities for perceived interaction unsafety (Q2_NotSafe). For each configuration, the graph 
shows how response probability for each level (represented by the colored area) changes according to Trial 

Fig. 4  Effect of the variables on the response probabilities for perceived interaction naturalness (Q3_Natural). For each configuration, the graph 
shows how response probability for each level (represented by the colored area) changes according to Trial 
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Fig. 5  Effect of the variables on the response probabilities for perceived team efficiency (Q4_Efficient). For each configuration, the graph shows 
how response probability for each level (represented by the colored area) changes according to Trial 

Fig. 6  Effect of the variables on the response probabilities for perceived team fluency (Q5_Fluid). For each configuration, the graph shows how 
response probability for each level (represented by the colored area) changes according to Trial 
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Fig. 7  Effect of the variables on the response probabilities for perceived discomfort (Q6_Uncomfortable). For each configuration, the graph 
shows how response probability for each level (represented by the colored area) changes according to Trial 

Fig. 8  Effect of the variables on the response probabilities for perceived robot trustworthiness (Q7_Trustwothy). For each configuration, the 
graph shows how response probability for each level (represented by the colored area) changes according to Trial 
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The terms Speed, Control, Trial, Speed⋅Trial, and 
Control⋅Trial resulted significant in explaining the vari-
ability of perceived interaction naturalness with the cobot 
(Q3_Natural) and their effect are shown in Fig. 4:

– The medium speed of the robot had a slightly posi-
tive effect on interaction naturalness (βSpeedMed = 0.11), 
whi le  t he  h igh  speed  caused  a  decrease 
(βSpeedHigh = -0.46). However, it is interesting to note 

that as the participant became more familiar with the 
task, this negative effect was gradually completely com-
pensated (βSpeedMed⋅Trial = 0.11, βSpeedHigh⋅Trial = 0.16).

– Par ticipants felt  the interaction less natural 
when they had no control over task execution 
(βControlNoHum = −2.42). However, as the participant 
became more familiar with the task, this negative 
effect was partially offset through the learning process 
(βControlNoHum⋅Trial = 0.13).

Regarding perceived team efficiency (Q4_Efficient), 
the terms Speed, Control, Trial, Speed⋅Control, and 
Control⋅Trial were found to be significant, and Fig. 5 shows 
their effect on the response probabilities:

– The robot movement speed had an overall positive effect 
(βSpeedMed = 1.68, βSpeedHigh = 1.92). However, the inter-
action term Speed⋅Control had a general negative effect 
(βSpeedMed⋅ControlNoHum = −0.65, βSpeedHigh⋅ControlNoHum = −0
.91), meaning that a higher robot movement speed with 
the absence of execution time control by the participant 
implied a decrease in team efficiency.

– Trial had a slightly positive effect on team efficiency 
(βTrial = 0.03).

– The perceived efficiency was significantly reduced when 
participants were not in control of task execution time 
(βControlNoHum = −1.65). However, this effect was gradu-

Table 4  ANODE table with resulting p-values for each SAM dimen-
sion

*0.05 > p ≥ 0.01 , **0.01 > p ≥ 0.001 , ***p < 0.001

Model term Valence Arousal Dominance

Speed  < 0.001***  < 0.001*** 0.028*
Distance 0.931 0.797 0.137
Control  < 0.001***  < 0.001***  < 0.001***
Trial 0.034*  < 0.001***  < 0.001***
Speed⋅Distance 0.703 0.246 0.569
Speed⋅Control 0.003** 0.675 0.615
Distance⋅Control 0.362 0.776 0.137
Speed⋅Trial  < 0.001*** 0.374 0.975
Distance⋅Trial 0.192 0.836 0.472
Control⋅Trial 0.446 0.195 0.394
Speed⋅Distance⋅Control 0.536 0.448 0.598

Fig. 9  Effect of the variables on the response probabilities for Valence. For each configuration, the graph shows how response probability for 
each level (represented by the colored area) changes according to Trial 
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ally mitigated by the experience gained by the participant 
as the experiment progressed (βControlNoHum⋅Trial = 0.15).

Regarding team fluency (Q5_Fluid), Speed, Control, 
Trial, Speed⋅Trial, and Control⋅Trial were found to be sig-
nificant and their effect can be seen in Fig. 6:

– Compared to low robot speed, medium and high 
robot speeds were related to increased team fluency 
(βSpeedMed = 1.63, βSpeedHigh = 1.49). However, the 
interaction term Speed⋅Control had a negative effect 
(βSpeedMed⋅ControlNoHum = −1.64, βSpeedHigh⋅ControlNoHum = −
1.04), meaning that a medium or high robot movement 
speed with no execution time control by participants was 
related with a degradation of team efficiency. It is worth 
noting that a medium robot speed was associated with 
slightly greater team fluency than a high one, however 
the penalty due to the absence of execution time control 
was significantly greater for the medium speed.

– Lack of execution time control had a negative impact 
on team fluency (βControlNoHum = −1.72). However, this 
degradation was gradually compensated by the learning 
process of the participant (βTrial = 0.01, βControlNoHum⋅Trial 
= 0.16).

The terms Speed, Control, Trial, Speed⋅Control, and 
Speed⋅Trial resulted significant in explaining the variability 
of perceived discomfort (Q6_Uncomfortable), and Fig. 7 
shows their effect:

– The increase of robot movement speed had a gen-
eral positive effect on discomfort (βSpeedMed = 0.66, 
βSpeedHigh = 0.97). Moreover, the interaction term 
Speed⋅Control further enhanced this positive effect 
(βSpeedMed⋅ControlNoHum = 1.90, βSpeedHigh⋅ControlNoHum = 0.89).

– A greater discomfort was observed in configurations 
with no control of time execution by participants 
(βControlNoHum = 1.27).

– As the experiment progressed, perceived discomfort 
gradually decreased (βTrial = −0.04) mainly due to learn-
ing process. This effect was further enhanced by the 
interaction term Speed⋅Trial for medium and high speeds 
(βSpeedMed⋅ Trial = −0.22, βSpeedHigh⋅ TrailNo = −0.07).

Concerning robot trustworthiness (Q7_Trustworthy), the 
terms Distance, Control, and Trial resulted significant, and 
their effect are shown in Fig. 8:

– The cobot was felt less trustworthy when a greater dis-
tance between the participant and robot workspace was 
present (βDistanceFar = −0.45).

– The absence of time execution control by partici-
pants implied a degradation of robot trustworthiness 
(βControlNoHum = −0.17).

– Trial had a general positive effect (βTrial = 0.17), meaning 
that the learning process gradually increased perceived 
trustworthiness.

Likelihood Ratio (LR) tests with only fixed-term models 
were performed to check if the random effect Participant 
was significant. From the obtained results, the random effect 
Participant resulted highly significant (p < 0.001) for every 
fitted model.

4.2  Self‑reported affective state

This subsection examines how the experimental variables 
influence the self-reported affective state collected thought 
the SAM. In the Appendix B, the estimated parameters of 
the fitted models are reported. Table 4 contains the results 
of the ANODE for each MOLR model, showing the signifi-
cance of each model term. Figures 10, 11, and 12 provide a 
representation of the effects of the independent variables on 
the interaction quality dimensions.

Regarding Valence dimension, the terms Speed, Control, 
Trial, Speed⋅Control, and Speed⋅Trial were found significant 
and Fig. 9 shows their effect:

– Medium and high robot speed had a positive effect 
(βSpeedMed = 0.55, βSpeedHigh = 0.45), resulting in gener-
ally more pleasant emotions. Moreover, as the experi-
ment progressed this effect was gradually increased 
(βSpeedMed⋅Trial = 0.22, βSpeedHigh⋅TrailNo = 0.29).

– Configurations with no time execution control by partici-
pants led to less pleasant emotions (βControlNoHum = −0.30). 
Moreover, this negative effect was further enhanced with 

Table 5  ANOVA table with resulting p-values for each physiological 
response indicator

*0.05 > p ≥ 0.01 , **0.01 > p ≥ 0.001 , ***p < 0.001

Model term Mean SCR RMSSD

Speed 0.024* 0.087
Distance 0.606 0.059
Control 0.054 0.011*
Trial  < 0.001*** 0.060
Speed⋅Distance 0.829 0.457
Speed⋅Control 0.610 0.119
Distance⋅Control 0.085 0.691
Speed⋅Trial 0.111 0.080
Distance⋅Trial 0.423 0.096
Control⋅Trial 0.061 0.013*
Speed⋅Distance⋅Control 0.919 0.276
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Fig. 10  Effect of the variables on the response probabilities for Arousal. For each configuration, the graph shows how response probability for 
each level (represented by the colored area) changes according to Trial 

Fig. 11  Effect of the variables on the response probabilities for Dominance. For each configuration, the graph shows how response probability 
for each level (represented by the colored area) changes according to Trial 
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Fig. 12  Effect of the variables on the response probabilities for average SCR. Overlapping confidence intervals for different levels of Distance 
highlight the low significance of the factor on MeanSCR 

Fig. 13  Effect of the variables on the response probabilities for RMSSD. The change in slope for different levels of Control highlights the signifi-
cant effect on RMSSD 
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medium and high robot speeds (βSpeedMed⋅ControlNoHum = −
1.46, βSpeedHigh⋅ControlNoHum = −1.70).

– Trial had a general negative effect (βTrial = −0.28), mean-
ing that the learning process potentially decreased the 
participant’s positive feeling of novelty, even leading to 
boredom especially when the robot speed was low.

The terms Speed, Control, and Trial were significant in 
explaining the variability of Arousal and their effect can 
be seen in Fig. 10:

Table 6  ANODE table with resulting p-values for quality of interaction including participant’s characteristics

*0.05 > p ≥ 0.01 , **0.01 > p ≥ 0.001 , ***p < 0.001

Model term Q1_Helpful Q2_NotSafe Q3_Natural Q4_Efficient Q5_Fluid Q6_Uncomf Q7_Trustw

Speed  < 0.001***  < 0.001***  < 0.001***  < 0.001***  < 0.001*** 0.010** 0.420
Distance 0.205 0.259 0.589 0.881 0.655 0.201 0.031*
Control  < 0.001***  < 0.001***  < 0.001***  < 0.001***  < 0.001***  < 0.001*** 0.001**
Trial  < 0.001***  < 0.001***  < 0.001***  < 0.001***  < 0.001***  < 0.001***  < 0.001***
Age 0.626 0.667 0.052 0.171 0.054 0.875 0.213
Gender 0.393 0.123 0.726 0.989 0.682 0.113 0.872
Experience 0.475 0.819 0.340 0.367 0.256 0.807 0.063
NS1 0.067 0.993 0.099 0.122 0.046* 0.813 0.149
NS2 0.351 0.939 0.794 0.798 0.885 0.834 0.491
NS3 0.868 0.917 0.617 0.345 0.372 0.758 0.294
Speed⋅Distance 0.533 0.471 0.456 0.782 0.635 0.354 0.102
Speed⋅Control 0.653 0.090 0.167 0.018* 0.018* 0.004** 0.247
Distance⋅Control 0.696 0.610 0.692 0.363 0.969 0.765 0.699
Speed⋅Trial 0.631 0.126 0.041* 0.870 0.324 0.023* 0.904
Distance⋅Trial 0.733 0.373 0.998 0.119 0.292 0.929 0.511
Control⋅Trial 0.004** 0.618 0.017* 0.005** 0.004** 0.055 0.808
Speed⋅Distance⋅Control 0.457 0.410 0.065 0.810 0.330 0.405 0.905

Table 7  ANODE table with resulting p-values for SAM affective 
dimensions including participant’s characteristics

*0.05 > p ≥ 0.01 , **0.01 > p ≥ 0.001 , ***p < 0.001

Model term Valence Arousal Dominance

Speed  < 0.001***  < 0.001*** 0.029*
Distance 0.938 0.795 0.142
Control  < 0.001***  < 0.001***  < 0.001***
Trial 0.035*  < 0.001***  < 0.001***
Age 0.339 0.511 0.007**
Gender 0.184 0.342 0.096
Experience 0.036* 0.507 0.290
NS1 0.399 0.756 0.412
NS2 0.174 0.720 0.725
NS3 0.478 0.669 0.932
Speed⋅Distance 0.694 0.240 0.569
Speed⋅Control 0.002** 0.678 0.633
Distance⋅Control 0.361 0.782 0.130
Speed⋅Trial  < 0.001*** 0.376 0.953
Distance⋅Trial 0.234 0.826 0.538
Control⋅Trial 0.514 0.190 0.432
Speed⋅Distance⋅Control 0.549 0.442 0.606

Table 8  ANOVA table with resulting p-values for physiological 
response including participant’s characteristics

*0.05 > p ≥ 0.01 , **0.01 > p ≥ 0.001 , ***p < 0.001

Model term Mean SCR RMSSD

Speed 0.025* 0.098
Distance 0.632 0.055
Control 0.058 0.011*
Trial  < 0.001*** 0.059
Age 0.090 0.201
Gender 0.579 0.872
Experience 0.411 0.936
NS1 0.059 0.571
NS2 0.353 0.248
NS3 0.618 0.466
Speed⋅Distance 0.829 0.453
Speed⋅Control 0.610 0.118
Distance⋅Control 0.085 0.683
Speed⋅Trial 0.112 0.090
Distance⋅Trial 0.447 0.090
Control⋅Trial 0.065 0.014*
Speed⋅Distance⋅Control 0.919 0.273
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– Medium and high speeds were associated with a posi-
tive effect (βSpeedMed = 1.23, βSpeedHigh = 1.61), implying 
greater emotional activation as the robot speed increased.

– The lack of time execution control led to higher arousal 
of participants (βControlNoHum = 1.44).

– Trial had a general negative effect (βTrial = −0.17), mean-
ing that the learning process decreased the arousal, 
potentially leading to calmness or boredom.

With respect to Dominance, the terms Speed, Control, 
and Trial were significant and their effect are shown in 
Fig. 11:

– Participants sense of dominance was slightly reduced 
as the robot speed increased (βSpeedMed = −0.40, 
βSpeedHigh = −0.84).

– Dominance was significantly reduced in configurations 
with no time execution control (βControlNoHum =−3.06).

– As the experiment progressed, dominance gradually 
increased (βTrial = 0.20) mainly due to the participant’s 
learning process.

LR tests with only fixed-term models were performed to 
check if the random effect Participant was significant. From 
the obtained results, the random effect Participant resulted 
highly significant (p < 0.001) for every fitted model.

4.3  Physiological measures

The influence of the learning process and the experimental 
factors on physiological responses will be presented in this 
sub-section. In the Appendix B, the estimated parameters of 
the fitted models are reported.

Table 5 contains the results of the analysis of variance 
(ANOVA) for each linear mixed model, showing the signifi-
cance of each model term.

Regarding the EDA response, the most significant 
terms for the average SCR (mean = 0.0497, sd = 0.0576) 
are Speed, Control and Trial. Control was still included 
among the significant variables because of its p-value 
close to the significance level (α = 0.05). With reference 
to Fig. 12, the effects of the significant terms can be inter-
preted as follows:

– An increase of the average SCR was observed 
when robot speed was higher (βSpeedMed = 0.03, 
βSpeedHigh = 0.01), meaning that participants experi-
enced more mental strain as the robot speed increased.

– As the experiment progressed, mental strain gradually 
decreased (βTrial = −0.0004) mainly due to the partici-
pant’s learning process.

– Configurations with no task execution control tended 
to lead through more stressful conditions, which raised 
the mean SCR (βControlNoHum = 0.03).

With respect to HRV, Distance ,  Control,  and 
Control⋅Trial were the most significant terms in explain-
ing the variability of RMSSD (mean = 56.89, sd = 40.01). 
Distance was still included among the significant vari-
ables because of its p-value close to the significance level 
(α = 0.05). Referring to Fig. 13, the effects of the signifi-
cant terms can be interpreted as follows:

– More stressful situations arose when participants had 
no control of time execution, which led to a signifi-
cant decrease of RMSSD (βControlNoHum = −14.25). 
However, this negative effect was gradually com-
pensated by the learning process of the participant 
(βControlNoHum⋅Trial = 2.31).

– A small positive effect on RMSSD was observed when 
participants were more distant from the robot’s work-
space (βDistanceFar = 1.80), implying potentially slightly 
less stressful conditions.

LR tests with only fixed-term models were performed to 
check if the random effect Participant was significant. From 
the obtained results, the random effect Participant resulted 
highly significant (p < 0.001) for every fitted model.

4.4  Influence of participant’s characteristics

The diversity of each participant turned out to be an impor-
tant factor in order to explain the variability of the response 
variables considered. To gain some additional insights, the 
participant characteristics collected during the experiment 
(i.e., age, gender, prior experience with cobots, and attitudes 
towards robots) were included in the models.

Table 6 contains the ANODE for each interaction qual-
ity dimension. Only interaction naturalness (Q3) and team 
fluency (Q5) have at least one significant term related to 
participant characteristics. For interaction naturalness, Age 
had a positive effect (βAge = 0.10) and was considered sig-
nificant due to its p-value close to 0.05. Regarding team 
fluency, Age had a positive effect (βAge = 0.08), with its 
p-value close to 0.05, and NS1 had a significant negative 
effect (βNS1 = −0.23). This means that participants with a 
more negative attitude towards situations and interactions 
with robots tended to rate the team fluency lower.

Table  7 shows the ANODE for each SAM dimen-
sion. Valence was negatively affected by Experience 
(βExperience = −0.87), meaning that participants with a high 
level of prior experience with cobots tended to report a less 
positive feeling, likely due to a decreased sense of novelty. 
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Dominance was found to be positively affected by Age 
(βAge = 0.09). This may suggest that older individuals may 
tend to feel more in control of the situation during HRC.

In Table 8, the results of the ANOVA for the physiologi-
cal responses are reported. None of the participant charac-
teristics considered appeared to be significant for the average 
SCR and RMSSD.

LR tests with only fixed-term models were also carried 
out, revealing that the random effect Participant resulted still 
highly significant (p < 0.001) for every model. This suggests 
that there are important participant characteristics that have 
not been considered, and further study will be needed to 
identify them.

5  Discussion

The quantitative analysis revealed the influence of the learn-
ing process in conjunction with the configuration factors on 
the response variables, highlighting some interesting rela-
tionships and expanding the preliminary results of a previous 
work [11].

5.1  Effects of configuration factors and learning 
process

Among the fixed factors of robot configuration, Speed and 
Control were found to be most significant overall. In addi-
tion, the experience gained by interacting with the cobot 
during the experiment (Trial) significantly influenced the 
response variables. The main effects of the terms considered 
are summarized below.

• Speed. The robot movement speed had a general posi-
tive effect on the perceived robot helpfulness and effi-
ciency, meaning that higher speeds were generally more 
appreciated by the participants from a performance 
viewpoint. However, High robot speed was also asso-
ciated with slightly greater perceived unsafety and less 
interaction naturalness and comfort. Regarding the 
participants’ affective state, the robot movement speed 
had a general high positive effect on arousal and a nega-
tive one on dominance. This means that participants, in 
general, felt slightly less in control of the situation and 
more aroused when robot movement speed was higher, 
leading to potentially more stressful situations. This was 
also confirmed from a physiological point of view, by an 
increase of average SCRs (MeanSCR) for higher speeds. 
Valence was positively influenced by higher robot move-
ment speeds, leading to more positive feelings in general.

• Control. The absence of participant’s control of the task 
execution time had a significant negative effect on the 
interaction quality. In this kind of configurations, the 

robot was perceived by participants less helpful and 
trustworthy. In addition, the interaction was perceived 
less safe, natural, efficient, fluid, and comfortable. 
Regarding the participants’ affective state, the lack of 
time execution control had a general negative effect: 
valence was slightly degraded, arousal increased, and 
dominance significantly decreased. This led to more 
stressful situations for the participants and a physiolog-
ical confirmation was found in a significant decrease of 
HRV.

• Speed⋅Control. The interaction term Speed⋅Control 
played an interesting role. The lack of time execution 
control by the participant amplified or degraded the 
robot movement speed effect on some aspects of the 
interaction quality. Perceived team fluency was greater 
for higher speeds, with a slightly higher effect for the 
Medium speed. However, without time execution control 
the positive effect was almost nullified for higher speeds. 
Speed⋅Control had also a negative effect on perceived 
efficiency and especially on comfort. Concerning the 
affective state, the term Speed⋅Control had a significant 
negative effect on valence, meaning that the lack of time 
execution control by the participant led to more unpleas-
ant emotions with higher robot speeds.

• Distance. The distance from the robot workspace was 
found to be not particularly influencing in general; just 
a slight decrease in robot trustworthiness and a slight 
increase in HRV were associated with a higher distance. 
This result could be also influenced by the relatively 
small size of the UR3e robot and future research will be 
required to verify this hypothesis.

• Trial. The experimental progress had a significant overall 
positive effect on the interaction quality. As the experi-
ment progressed, participants tended to perceive the 
robot more helpful, safe, and trustworthy. In addition, the 
interaction was felt gradually more fluid, efficient, and 
comfortable. However, a constant slight decrease of per-
ceived interaction naturalness emerged when robot speed 
was Low. Concerning the participants’ affective state, the 
learning process had a negative effect on arousal and a 
positive effect on dominance, leading to a gradual relaxa-
tion of the participant. This effect was also confirmed 
physiologically by the constant decrease of the average 
SCR as the experiment progressed. The learning process 
negatively affected the valence when the robot speed was 
Low. This can be interpreted as an increasing sense of 
boredom in participants when the robot movement speed 
is perceived to be too slow. The overall positive effect of 
Trial on the response variables was further enhanced by 
the interaction terms Speed⋅Trial and Control⋅Trial.

• Speed⋅Trial. The negative effect of Speed on interaction 
naturalness and comfort was gradually compensated 
by the interaction term Speed⋅Trial, meaning that the 
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learning process particularly helped in improving these 
aspects for higher speeds. Regarding the affective state, 
valence was positively influenced by the interaction term 
Speed⋅Trial. Medium speed was initially associated with 
a slightly more positive feeling than the High one. How-
ever, as the experiment progressed, participants were in 
general more pleased with the High speed level.

• Control⋅Trial. As the experiment progressed, the inter-
action term Control⋅Trial partially compensated the 
negative effects on interaction naturalness, robot help-
fulness, team fluency and efficiency due to the absence of 
execution time control. In addition, the interaction term 
Control⋅Trial showed also a significant gradual compen-
sation of the negative effect of Control on HRV due to 
the learning process.

The interpretations of the results were also reflected in the 
unstructured interviews with participants. Initially, most par-
ticipants were more comfortable with the Low and Medium 
robot movement speeds. However, towards the last few tri-
als, the Low speed was perceived to be particularly tedious, 
even leading some participants to become more distracted. 
This may be due to the repetitiveness of the task and, con-
sequently, the learning process that led most participants to 
prefer a High robot speed by the end of the experiment. The 
factor of distance from the robot’s workspace, instead, was 
found to be more of a matter of preference due to the partici-
pant’s comfort in performing their operations. Controlling 
the task execution time was generally preferred by partici-
pants, primarily due to less psychological pressure. Towards 
the end of the experiment, however, some participants were 
able to finish their tasks well in advance when they were 
not in control of the task execution time, implying a longer 
wait time before the robot proceeded with the next task. This 
resulted in a partial boredom effect but also in a degradation 
of the perceived efficiency, naturalness, and fluency of the 
interaction. Interestingly, at the end of the experiment, some 
participants expressed a preference for configurations in 
which the robot continued with its operations automatically, 
without waiting for a command, because this implied one 
less operation for the operator. This interesting cue raises 
the demand and the need to make collaborative robots more 
situationally aware, in order to allow a greater support of 
the operator also from the psycho-cognitive point of view. 
Moreover, the implementation of the ability of initiative by 
the cobot would allow to better support the operator and to 
create a symbiotic collaboration, characterized by a greater 
naturalness and fluency.

5.2  Importance of the operator’s characteristics

The random effect Participant was found to be signifi-
cant in all models, highlighting the importance of a more 

personalized HRC. Moreover, this fact hinted that some user 
characteristics may significantly influence the perceived 
interaction quality and affective response. To further investi-
gate this fact, all previous models were re-fitted by including 
the variables Age, Gender, Experience, and the three NARS-
related scores (i.e., NS1, NS2, NS3) (see Tables 12 13, and 
14). Results revealed that of the characteristics considered 
only a few were significant for some response variables. 
Age was associated with a positive effect on self-reported 
dominance and perceived interaction naturalness and flu-
ency. This may imply that an older age may result in feeling 
more confident and in control of the situation during the 
HRC. However, this effect may be due to the fact that most 
of the older people involved in the experiment knew at least 
what a cobot was. Future investigation of this will be needed 
by involving people with a more diverse background and a 
wider, more distributed age range. Experience had a sig-
nificant negative effect on self-reported valence. This effect 
could be due to a decreased sense of novelty and excitement 
for those more familiar with collaborative robots, which can 
also lead to boredom. Finally, NS1 was associated with a 
significant negative effect on perceived team fluency. This 
means that participants with a more positive attitude towards 
situations and interactions with robots tended to perceive 
greater team fluency. It is worth noting that even in the new 
models the Participant random effect still turned out to be 
quite significant, indicating that there are potentially signifi-
cant aspects of the participant that were not accounted for. 
Further investigation of user characteristics is needed and 
will be the focus of future works.

6  Conclusions

The aim of this paper was to expand the previous prelimi-
nary results [11] by deepening the joint effect of the learning 
process with several HRC setting factors on the operator’s 
affective state, perceived interaction quality, and physiologi-
cal response. Among the configuration factors, cobot move-
ment speed (Speed) and control of the task execution time 
(Control) were found to be the most influential ones. The 
learning process (Trial) also played a key role, especially in 
improving user experience and decreasing stressful condi-
tions. It also emerged that the learning effect can change the 
perception of certain factors.

Regarding the robot movement speed, initially most par-
ticipants preferred a low speed. However, as the experiment 
progressed, there was a greater preference toward higher 
speeds as they helped to be more engaged and efficient. This 
result highlights that when the robot trajectories are predict-
able and known, there is a preference to maintain a high 
speed of the robot’s movements, mainly for performance and 
satisfaction reasons. On the other hand, when the operator 
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is not aware of the robot’s trajectory, it may be preferred to 
maintain a lower movement speed.

The absence of participant’s control of the task execution 
time led to a general degradation of perceived interaction 
quality and an increase of stress. However, it is interesting 
to note that these negative effects were mitigated through the 
learning process. In fact, some participants at the end of the 
experiment even expressed that they appreciated the absence 
of the control button, as it represented one less operation for 
them to do. This hint suggests that the implementation of a 
system that is able to automatically recognize the completion 
of human operations may be particularly appreciated in the 
HRC, contributing to establish a more natural and human-
like interaction.

The distance between operator and robot workspace 
turned out to be merely a question of preference and to be 
not particularly influential. This fact might be due to the 
UR3e robot’s relatively small size, although further research 
is needed to confirm this hypothesis. Future work will focus 
on introducing cobots of different payload (e.g., UR10e or 
UR16e) to investigate whether the cobot size may influ-
ence the perceived interaction quality and the overall user 
experience.

The non-invasive acquisition of physiological responses 
provided objective information about the participant’s state 
and unconscious reactions. By analyzing HRV and EDA, 
confirmation of the participants’ self-reported affective state 
and unstructured feedback was found. Such concordance is 
certainly promising for the design of a real-time monitoring 
system of operator well-being in HRC.

The differences among participants were found to be sig-
nificant, highlighting the need to design and implement a 
more customizable HRC. An initial investigation into the 
effect of certain aspects of participants on response variables 
was conducted, however a more in-depth study is needed. 
Future work will also focus on a more in-depth study of the 
link between physiological responses and the affective state 
of the operator in the HRC.

Appendix A—Mixed‑effect ordinal logistic 
regression (MOLR)

Ordinal Logistic Regression (OLR) model is a regression 
model for ordinal dependent variables based on Cumulative 
Link Models (CLMs). CLMs are a powerful class of 

Generalized Linear Models (GLMs) for ordinal response 
variables, allowing them to be treated properly as categori-
cal variables as well as exploiting their ordinal nature [42, 
44]. In CLMs, the cumulative probability for each level j of 
the ordinal response (i.e., ℙ(Y ≤ j) ) is modeled via a link 
function. In this context, a commonly used link function 
(i.e., a function that links the probability to the linear func-
tion of the predictor variables) is the logit link. The logit 
link maps probability values from (0, 1) to real numbers in 
(−∞,+∞) and is defined as the logarithm of the odds p

1−p
 , 

where p is the probability. Logit link is often preferred to 
others (such as probit or log–log) because of mathematical 
convenience and higher interpretability of results. CLMs 
with the logit link function are called OLR models. There-
fore, OLR model can be thought of as an extension of the 
logistic regression model (which applies to binary response 
variables), allowing for more than two (ordered) response 
categories.

Compared to OLR, other more common methods can 
be used to analyze an ordinal response variable, however 
they have several limitations. For instance, by treating the 
numerically coded ordinal variable as quantitative, typical 
least squares regression can be used. However, this com-
mon method, in addition to introducing a scale promotion 
for the response variable, often violates the assumptions of 
homoscedasticity and normality of the residuals. Another 
common method of modeling an ordinal variable is to treat 
it as nominal and use a multinomial logistic regression. This 
choice also introduces limitations, most notably the loss of 
information from ignoring the ordering which results in a 
loss of power for the model.

Mixed-effect Ordinal Logistic Regression (MOLR) 
models are based on Cumulative Link Mixed Models 
(CLMMs), which are an extension of CLMs that allow 
the inclusion of normally distributed random effects. The 
MOLR model can be specified in terms of cumulative log-
its as follows:

with i = 1, …, n and k = 1, …, K, where J is the number 
of levels of the ordinal response variable, n the number of 

(2)

logit
(

ℙ
(

Yik ≤ j
))

= log

(

ℙ
(

Yik ≤ j
)

1 − ℙ
(

Yik ≤ j
)

)

= �j − xTik� − uk forj = 1,… , J − 1
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observations, and K the number of participants (i.e., 42 in 
this case). The term ℙ

(
Yik ≤ j

)
 represents the probability 

that the observation i of the participant k is associated with 
a rating equal or below j. Note that the logit is not defined for 
j = J, since ℙ

(
Yik ≤ J

)
= 1 . The vector � contains the model 

parameters, the vector xT
ik

 contains data of the independent 
variables of observation i of participant k, and the terms 
�j are called threshold parameters and serves as intercepts 
of the model. The term uk represents the random effect for 
participant k, where uk ∼ N(0, �2) . Note that the negative 
sign in front of xT

ik
� ensures that positive parameters are 

associated with increased probability for higher ratings as 
the explanatory variables increase.

Appendix B—List of estimated parameters 
of the models

In this section, the estimated parameters for the fitted mod-
els are reported. Tables 9, 10, and 11 contain the estimated 
parameters of the models for interaction quality dimensions, 
SAM dimensions, and physiological signals, respectively. In 
Tables 12, 13, and 14, instead, the estimated parameters of 
the models with participant characteristics for interaction 
quality dimensions, SAM dimensions, and physiological 
signals are reported.  

Table 9  MOLR model parameter estimates for each interaction quality dimension

Model term Model parameter Coefficient

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Thresholds (intercepts) θ1  − 6.20 0.29  − 6.64  − 4.57  − 5.06 0.80  − 8.22
θ2  − 4.81 2.59  − 5.23  − 2.80  − 3.33 3.09  − 6.37
θ3  − 3.57 3.52  − 3.78  − 1.75  − 2.10 4.12  − 4.78
θ4  − 2.27 4.42  − 2.29  − 0.71  − 0.94 4.90  − 3.57
θ5  − 0.30 5.54  − 0.37 0.81 0.81 6.46  − 1.16
θ6 2.84 7.08 2.21 3.32 3.17 9.14 1.87

Speed Medium 0.95  − 0.02 0.11 1.68 1.63 0.66  − 0.68
High 0.99 0.30  − 0.46 1.92 1.49 0.97  − 0.63

Distance Far  − 0.77 0.70  − 0.62  − 0.73  − 0.34 0.33  − 0.45
Control NoHuman  − 2.17 1.31  − 2.42  − 1.65  − 1.72 1.27  − 0.17
Trial – 0.07  − 0.15  − 0.01 0.03 0.01  − 0.04 0.17
Speed⋅Distance Medium⋅Far 0.82  − 0.30 0.63 0.49  − 0.25  − 0.29 0.94

High⋅Far 0.69  − 0.91 1.25 0.49  − 0.10  − 1.05 1.07
Speed⋅Control Medium⋅NoHuman 0.29 1.34  − 0.26  − 0.65  − 1.64 1.90  − 0.25

High⋅NoHuman  − 0.19 0.31 0.10  − 0.91  − 1.04 0.89  − 0.56
Distance⋅Control Far⋅NoHuman 0.36  − 0.36 0.80  − 0.01  − 0.42  − 0.24 0.05
Speed⋅Trial Medium⋅Trial  − 0.02  − 0.04 0.11 0.01 0.04  − 0.22 0.03

High⋅Trial 0.04 0.10 0.16 0.03 0.09  − 0.07 0.03
Distance⋅Trial Far⋅Trial 0.02  − 0.06 0.01 0.08 0.06  − 0.01 0.04
Control⋅Trial NoHuman⋅Trial 0.16  − 0.03 0.13 0.15 0.16  − 0.12  − 0.01
Speed⋅Distance⋅Control Medium⋅Far⋅NoHuman  − 1.07  − 0.47  − 0.20  − 0.49 1.10  − 0.54  − 0.16

High⋅Far⋅NoHuman  − 0.42 0.79  − 1.79  − 0.44 0.11 0.79  − 0.41

Random effect – St. deviation

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Participant – 2.42 2.12 2.27 1.91 1.95 2.41 2.35
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Table 10  MOLR model parameter estimates for each SAM dimension

Model term Model parameter Coefficient

Valence Arousal Dominance

Thresholds (Intercepts) θ1  − 7.67  − 3.08  − 6.52
θ2  − 6.64  − 1.07  − 5.39
θ3  − 4.95 0.42  − 4.46
θ4  − 3.62 1.40  − 3.80
θ5  − 2.17 2.52  − 2.66
θ6  − 1.09 3.47  − 1.66
θ7 0.52 4.92  − 0.16
θ8 2.85 6.56 2.32

Speed Medium 0.55 1.23  − 0.40
High 0.45 1.61  − 0.85

Distance Far  − 0.52 0.75 0.53
Control NoHuman  − 0.30 1.44  − 3.06
Trial –  − 0.28  − 0.18 0.20
Speed⋅Distance Medium⋅Far 0.08  − 0.82 0.28

High⋅Far  − 0.23  − 0.89 0.37
Speed⋅Control Medium⋅NoHuman  − 1.46 0.20  − 0.44

High⋅NoHuman  − 1.70  − 0.43 0.35
Distance⋅Control Far⋅NoHuman  − 0.16  − 0.52  − 0.39
Speed⋅Trial Medium⋅Trial 0.22 0.01 0.01

High⋅Trial 0.29 0.08 0.01
Distance⋅Trial Far⋅Trial 0.07  − 0.01  − 0.04
Control⋅ Trial NoHuman⋅Trial 0.04  − 0.07 0.04
Speed⋅Distance⋅Control Medium⋅Far⋅NoHuman 0.49 0.25 0.25

High⋅Far⋅NoHuman 0.91 0.97  − 0.55

Random effect – St. deviation

Valence Arousal Dominance

Participant – 2.24 2.12 1.51
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Table 11  LMM parameter 
estimates for each physiological 
indicator

Model term Model parameter Coefficient

Mean SCR RMSSD

Intercept – 0.0431 57.46
Speed Medium 0.0279 2.75

High 0.0117 16.36
Distance Far 0.0089 1.80
Control NoHuman 0.0254  − 14.25
Trial –  − 0.0004  − 0.22
Speed⋅Distance Medium⋅Far 0.0005 17.95

High⋅Far 0.0017 18.48
Speed⋅Control Medium⋅NoHuman  − 0.0061 0.12

High⋅NoHuman  − 0.0104  − 5.22
Distance⋅Control Far⋅NoHuman  − 0.0132 11.26
Speed⋅Trial Medium⋅Trial  − 0.0025  − 0.53

High⋅Trial  − 0.0005  − 2.46
Distance⋅Trial Far⋅Trial  − 0.0008  − 1.55
Control⋅Trial NoHuman⋅Trial  − 0.0019 2.31
Speed⋅Distance⋅Control Medium⋅Far⋅NoHuman  − 0.0003  − 21.56

High⋅Far⋅NoHuman 0.0056  − 19.51

Random effect – St. deviation
Mean SCR RMSSD

Participant – 0.0431 20.62
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Table 12  MOLR model parameter estimates for each interaction quality dimension, including participant characteristics

Model term Model parameter Coefficient

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Thresholds (intercepts) θ1  − 8.75 0.60  − 6.24  − 5.24  − 5.39 0.32  − 8.64
θ2  − 7.36 2.90  − 4.83  − 3.47  − 3.65 2.61  − 6.77
θ3  − 6.11 3.83  − 3.38  − 2.43  − 2.42 3.63  − 5.17
θ4  − 4.81 4.73  − 1.89  − 1.39  − 1.25 4.42  − 3.95
θ5  − 2.84 5.85 0.03 0.14 0.49 5.97  − 1.52
θ6 0.30 7.40 2.61 2.64 2.85 8.65 1.50

Speed Medium 0.94  − 0.03 0.11 1.68 1.61 0.66  − 0.67
High 0.97 0.28  − 0.47 1.90 1.46 0.95  − 0.62

Distance Far  − 0.76 0.68  − 0.60  − 0.71  − 0.31 0.32  − 0.43
Control NoHuman  − 2.16 1.31  − 2.39  − 1.63  − 1.70 1.28  − 0.16
Trial – 0.07  − 0.16  − 0.01 0.03 0.01  − 0.04 0.17
Age – 0.02 0.02 0.10 0.06 0.08 0.01 0.06
Gender Female  − 0.70  − 1.25 0.28  − 0.01  − 0.27  − 1.48 0.13
Experience –  − 0.33 0.10  − 0.43  − 0.35  − 0.43  − 0.13  − 0.90
NS1 –  − 0.26  − 0.01  − 0.22  − 0.18  − 0.23  − 0.04  − 0.21
NS2 –  − 0.12  − 0.01  − 0.03  − 0.03  − 0.02  − 0.03 0.09
NS3 –  − 0.02 0.01  − 0.07  − 0.11  − 0.10 0.05  − 0.15
Speed⋅Distance Medium⋅Far 0.82  − 0.29 0.63 0.48  − 0.26  − 0.29 0.93

High⋅Far 0.70  − 0.90 1.25 0.48  − 0.10  − 1.05 1.06
Speed⋅Control Medium⋅NoHuman 0.29 1.34  − 0.27  − 0.65  − 1.65 1.90  − 0.25

High⋅NoHuman  − 0.18 0.32 0.10  − 0.90  − 1.03 0.88  − 0.56
Distance⋅Control Far⋅NoHuman 0.35  − 0.36 0.80  − 0.01  − 0.41  − 0.24 0.04
Speed⋅Trial Medium⋅Trial  − 0.02  − 0.03 0.11 0.01 0.04  − 0.22 0.03

High⋅Trial 0.04 0.11 0.16 0.03 0.10  − 0.06 0.03
Distance⋅Trial Far⋅Trial 0.02  − 0.05 0.01 0.08 0.06  − 0.01 0.04
Control⋅ Trial NoHuman⋅ Trial 0.16  − 0.03 0.13 0.14 0.15  − 0.12  − 0.01
Speed⋅Distance⋅Control Medium⋅Far⋅NoHuman  − 1.06  − 0.48  − 0.20  − 0.48 1.12  − 0.55  − 0.15

High⋅Far⋅NoHuman  − 0.42 0.79  − 1.80  − 0.44 0.00 0.79  − 0.40

Random effect – St. deviation

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Participant – 2.16 2.01 2.06 1.76 1.72 2.34 2.17
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Table 13  MOLR model parameter estimates for each SAM dimension, including participant characteristics

Model term Model parameter Coefficient

Valence Arousal Dominance

Thresholds (Intercepts) θ1  − 8.50  − 2.10  − 4.69
θ2  − 7.47  − 0.09  − 3.56
θ3  − 5.78 1.40  − 2.63
θ4  − 4.46 2.38  − 1.97
θ5  − 3.01 3.50  − 0.83
θ6  − 1.93 4.45 0.17
θ7  − 0.32 5.91 1.68
θ8 2.01 7.56 4.16

Speed Medium 0.55 1.24  − 0.43
High 0.45 1.61  − 0.88

Distance Far  − 0.49 0.75 0.50
Control NoHuman  − 0.27 1.45  − 3.04
Trial –  − 0.27  − 0.18 0.20
Age – 0.04 0.03 0.09
Gender Female 0.96 0.74  − 0.87
Experience –  − 0.87  − 0.29  − 0.31
NS1 –  − 0.10 0.04  − 0.07
NS2 –  − 0.15  − 0.04 0.03
NS3 – 0.09 0.06 0.01
Speed⋅Distance Medium⋅Far 0.09  − 0.82 0.27

High⋅Far  − 0.21  − 0.89 0.36
Speed⋅Control Medium⋅NoHuman  − 1.45 0.20  − 0.44

High⋅NoHuman  − 1.70  − 0.43 0.33
Distance⋅Control Far⋅NoHuman  − 0.15  − 0.52  − 0.42
Speed⋅Trial Medium⋅Trial 0.22 0.01 0.02

High⋅Trial 0.29 0.08 0.02
Distance⋅Trial Far⋅Trial 0.06  − 0.01  − 0.03
Control⋅ Trial NoHuman⋅ Trial 0.03  − 0.07 0.04
Speed⋅Distance⋅Control Medium⋅Far⋅NoHuman 0.48 0.25 0.27

High⋅Far⋅NoHuman 0.89 0.98  − 0.53

Random effect – St. deviation

Valence Arousal Dominance

Participant – 1.87 2.05 1.30
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